Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Water Res ; 252: 121239, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335753

ABSTRACT

Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 µm (unseeded) to 82.1 µm, 125.7 µm, and 148.9 µm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.


Subject(s)
Poultry , Wastewater , Animals , Struvite , Phosphates/analysis , Phosphorus/analysis , Organic Chemicals , Nutrients/analysis , Chemical Precipitation
2.
J Environ Manage ; 354: 120381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359626

ABSTRACT

The results of a comparative study of two different technological solutions applicable to decentralised domestic wastewater treatment systems are presented. A hybrid reactor with activated sludge and mobile biofilm carriers moving in wastewater is one of them, and an innovative quasi-technical combination of a biological reactor with a sprinkled bed filled with sintered clay granules, followed in the process line by an innovative slope type filtration bed, is the other one. The study has shown a significant advantage of filter bed installations in functional quality, expressed in low values of indicators and pollutant concentrations. In the comparison of technological reliability and probability of exceeding the requirement values of BOD5 = 40 mg/L, Facility 1 achieved technological reliability of 70% and probability of exceeding was 23%. Technological reliability of Facility 2 in this component was 100% and P = 0%. Both facilities presented 100% technological reliability in the COD indicators, with zero probability of exceeding the required value of 150 mg/L. The reliability of TSS removal was similarly high in both facilities: 91% and 100%. The higher functional quality of Facility 2 was evident in TN and PO4-P parameters, where the period of its operation with exceeded values did not exceed 20% and 13%, respectively, with a low probability of exceeding the value of 18% and 2.5%, respectively. However, Facility 1 was unreliable in this regard in 90% and 84%, with a very high probability of exceeding the required values of these parameters: 88% and 72%. This facility does not meet the required criteria in this respect and may cause a risk to the aquatic environment if wastewater is discharged directly into open watercourses, or if it enters shallow groundwater. The use of a suitable, biologically active soil-plant receiver can eliminate this risk.


Subject(s)
Environmental Pollutants , Water Purification , Wastewater , Waste Disposal, Fluid/methods , Reproducibility of Results , Bioreactors , Sewage , Water Purification/methods , Biofilms
3.
Water Res ; 254: 121351, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401287

ABSTRACT

The application of Fenton-like membrane reactors for water purification offers a promising solution to overcome technical challenges associated with catalyst recovery, reaction efficiency, and mass transfer typically encountered in heterogeneous batch reaction modes. This study presents a dual-modification strategy encompassing electron polarization and defect engineering to synthesize Al-doped and oxygen vacancies (OV)-enriched Co3O4 spinel catalysts (ACO-OV). This modification empowered ACO-OV with exceptional performance in activating peroxymonosulfate (PMS) for the removal of organic contaminants. Moreover, the ACO-OV@polyethersulfone (PES) membrane/PMS system achieved organic contaminant removal through filtration (with a reaction kinetic constant of 0.085 ms-1), demonstrating outstanding resistance to environmental interference and high operational stability. Mechanistic investigations revealed that the exceptional catalytic performance of this Fenton-like membrane reactor stemmed from the enrichment of reactants, exposure of reactive sites, and enhanced mass transfer within the confined space, leading to a higher availability of reactive species. Theoretical calculations were conducted to validate the beneficial intrinsic effects of electron polarization, defect engineering, and the confined space within the membrane reactor on PMS activation and organic contaminant removal. Notably, the ACO-OV@PES membrane/PMS system not only mineralized the targeted organic contaminants but also effectively mitigated their potential environmental risks. Overall, this work underscores the significant potential of the dual-modification strategy in designing spinel catalysts and Fenton-like membrane reactors for efficient organic contaminant removal.


Subject(s)
Aluminum Oxide , Cobalt , Electrons , Oxides , Polymers , Sulfones , Magnesium Oxide , Peroxides
4.
Water Res ; 253: 121261, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367373

ABSTRACT

Fully anoxic suspended growth treatment of domestic wastewater is rarely performed in practice at large scale. However, recent advances in membrane aerated biofilm reactor (MABR) technology can enable the "hybrid" concept that couples nitrification in the MABR with anoxic suspended growth for biological nitrogen removal. Small scale sequencing batch reactors were constructed to compare high-rate anoxic metabolization of influent carbon and biological phosphorus removal side-by-side with a conventional aerated system in a low-strength domestic wastewater (COD/TN ratio of approximately 6). Little differences existed in the oxidation of soluble readily biodegradable organic material between the two systems, but hydrolysis of particulate and colloidal organic matter in the anoxic reactor over a range of solid retention times was 60 % of the aerobic reactor. Reduced hydrolysis limited the amount of carbon available to ferment to volatile fatty acid (VFA), adversely impacting anoxic biological phosphorus removal (bio-P) process rates, and ortho-P removal performance was diminished by more than half at equivalent SRTs. At optimal growth conditions, i.e., an SRT of approximately 8 days and with supplementary VFA, ortho-P removal from the influent averaged roughly 75 %. Experimentation with supplemented acetic acid showed reduced anoxic metabolic efficiency, quantified via a P/O ratio of 0.90 versus 1.7 for the aerobic system, although overall anoxic bio-P removal demonstrably increased with external carbon.


Subject(s)
Phosphorus , Wastewater , Phosphorus/metabolism , Waste Disposal, Fluid , Nitrification , Carbon , Bioreactors , Nitrogen/metabolism , Denitrification
5.
Bioresour Technol ; 396: 130380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281551

ABSTRACT

In response to the challenges of limited nutrient removal and the difficulty in forming aerobic granular sludge (AGS) with low carbon to nitrogen (C/N) ratios, a novel two-stage sequencing batch reactors (SBRs) (R1 and R2) system with added iron shavings was proposed and established. The results showed that AGS was developed and nitrogen (82.8 %) and phosphorus (94.7 %) were effectively removed under a C/N ratio at 1.7 ± 0.5. The average size of R1 and R2 increased from 45.3 µm to 138.7 µm and 132.8 µm. Under high biological selective pressure, phosphorus accumulating organisms like Comamonadaceae (14.8 %) and Chitinophagales (5.7 %) experienced enrichment in R1. Furthermore, R2 exhibited an increased abundance of nitrifying bacteria (2.3 %) and a higher proportion of nitrogen removal through autotrophic denitrification (>17.5 %). Overall, this study introduces an innovative two-stage SBRs with added iron shavings, offering a novel approach for the treatment of low C/N ratios wastewater.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Waste Disposal, Fluid/methods , Nitrogen/analysis , Carbon , Aerobiosis , Bioreactors/microbiology , Phosphorus
6.
Environ Res ; 246: 118098, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38184062

ABSTRACT

Hydrothermal carbonization (HTC) is a promising alternative to transform biomass waste into a solid carbonaceous material (hydrochar) and a process water with potential for material and energy recovery. In this study, two alternatives for process water treatment by conventional and acid-assisted HTC of swine manure are discussed. Process water from conventional HTC at 180 °C showed high biodegradability (55% COD removal) and methane production (∼290 mL STP CH4 g-1 CODadded) and the treatment in an upflow anaerobic sludge blanket reactor allowed obtaining a high methane production yield (1.3 L CH4 L-1 d-1) and COD removal (∼70%). The analysis of the microbiota showed a high concentration of Synergistota and Firmicutes phyla, with high degradation of organic nitrogen-containing organic compounds. Acid-assisted HTC proved to be a viable option for nutrient recovery (migration of 83% of the P to the process water), which allowed obtaining a solid salt by chemical precipitation with Mg(OH)2 (NPK of 4/4/0.4) and MgCl2 (NPK 8/17/0.5), with a negligible content of heavy metals. The characteristics of the precipitated solid complied with the requirements of European Regulation (2019)/1009 for fertilizers and amendments in agricultural soils, being a suitable alternative for the recycling of nutrients from wastes.


Subject(s)
Carbon , Manure , Animals , Swine , Anaerobiosis , Carbon/metabolism , Methane , Water Supply , Temperature
7.
Chemosphere ; 349: 140843, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043611

ABSTRACT

This article provides a comprehensive review of membrane biofilm reactors for waste gas (MBRWG) treatment, focusing on studies conducted since 2000. The first section discusses the membrane materials, structure, and mass transfer mechanism employed in MBRWG. The concept of a partial counter-diffusion biofilm in MBRWG is introduced, with identification of the most metabolically active region. Subsequently, the effectiveness of these biofilm reactors in treating single and mixed pollutants is examined. The phenomenon of membrane fouling in MBRWG is characterized, alongside an analysis of contributory factors. Furthermore, a comparison is made between membrane biofilm reactors and conventional biological treatment technologies, highlighting their respective advantages and disadvantages. It is evident that the treatment of hydrophobic gases and their resistance to volatility warrant further investigation. In addition, the emergence of the smart industry and its integration with other processes have opened up new opportunities for the utilization of MBRWG. Overcoming membrane fouling and developing stable and cost-effective membrane materials are essential factors for successful engineering applications of MBRWG. Moreover, it is worth exploring the mechanisms of co-metabolism in MBRWG and the potential for altering biofilm community structures.


Subject(s)
Bioreactors , Volatile Organic Compounds , Gases , Waste Disposal, Fluid , Biofilms
8.
Appl Biochem Biotechnol ; 196(1): 537-557, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37155003

ABSTRACT

The technological development for efficient nutrient removal from liquid dairy manure is critical to a sustainable dairy industry. A nutrient removal process using a two-step fed sequencing batch reactor (SBR) system was developed in this study to achieve the applicability of simultaneous removal of phosphorus, nitrogen, and chemical oxygen demand from anaerobically digested liquid dairy manure (ADLDM). Three operating parameters, namely anaerobic time:aerobic time (min), anaerobic DO:aerobic DO (mg L-1), and hydraulic retention time (days), were systematically investigated and optimized using the Taguchi method and grey relational analysis for maximum removal efficiencies of total phosphorus (TP), ortho-phosphate (OP), ammonia-nitrogen (NH3-N), total nitrogen (TN), and chemical oxygen demand (COD) simultaneously. The results demonstrated that the optimal mean removal efficiencies of 91.21%, 92.63%, 91.82%, 88.61%, and 90.21% were achieved for TP, OP, NH3-N, TN, and COD at operating conditions, i.e., anaerobic:aerobic time of 90:90 min, anaerobic DO:aerobic DO of 0.4:2.4 mg L-1, and HRT of 3 days. Based on analysis of variance, the percentage contributions of these operating parameters towards the mean removal efficiencies of TP and COD were ranked in the order of anaerobic DO:aerobic DO > HRT > anaerobic time:aerobic time, while HRT was the most influential parameter for the mean removal efficiencies of OP, NH3-N, and TN followed by anaerobic time:aerobic time and anaerobic DO:aerobic DO. The optimal conditions obtained in this study are beneficial to the development of pilot and full-scale systems for simultaneous biological removal of phosphorus, nitrogen, and COD from ADLDM.


Subject(s)
Manure , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Manure/analysis , Biological Oxygen Demand Analysis , Bioreactors , Phosphorus , Phosphates , Nitrogen
9.
Front Microbiol ; 14: 1282906, 2023.
Article in English | MEDLINE | ID: mdl-38029112

ABSTRACT

Most studies focus on the "clockwise sequential" switching manner for a four-compartment periodic anaerobic baffled reactor (PABR), while the exploration of the "every second" option on the feasibility for real industrial wastewater treatment is rarely reported. Hence, a PABR-treating traditional Chinese medicine wastewater was run continuously in "every second" switching manner with both switching period T and hydraulic residence time of 48 h. Satisfactory start-up performance was achieved during the operation of a climbing average organic load rate at approximately 1, 2, 4, and 6 kg chemical oxygen demand (COD) m-3 d-1 for 12, 24, 24, and 6 days, respectively. The average COD removal was 87.20% after the second lifting of OLR and 89.98% after the third one. Denaturing gradient gel electrophoresis and its cluster analysis showed that the microbial communities in each compartment adapted their structure in response to the periodically changing micro-ecology conditions. Moreover, the residence time distribution test with tap water in the clean PABR was carried out in experiments and computational fluid dynamics (CFD) simulation, both of which were in good agreement. The CFD model output visualized the flow velocity field and hydrodynamic-mass transport inside the PABR. Optimization of operation pattern in PABR including switching manner and frequency depended on both the type of waste being treated and the flexibility of biomass to periodically changing micro-ecology conditions.

10.
Environ Res ; 238(Pt 2): 117237, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37793587

ABSTRACT

The biofilm sequencing batch reactor (BSBR) process has higher phosphate recovery efficiency and enrichment multiple when the phosphorus load is lower, but the mechanism of phosphate enrichment at low phosphorus load remains unclear. In this study, we operated two BSBR operating under low and high phosphorus load (0.012 and 0.032 kg/(m3·d)) respectively, and used metagenomic, metatranscriptomic, and proteomics methods to analyze the community structure of the phosphorus accumulating organisms (PAOs) in the biofilm, the transcription and protein expression of key functional genes and enzymes, and the metabolism of intracellular polymers. Compared with at high phosphorus load, the BSBR at low phosphorus load have different PAOs and fewer types of PAOs, but in both cases the PAOs must have the PHA, PPX, Pst, and acs genes to become dominant. Some key differences in the metabolism of PAOs from the BSBR with different phosphorus load can be identified as follows. When the phosphorus load is low, the adenosine triphosphoric acid (ATP) and NAD(P)H in the anaerobic stage come from the TCA cycle and the second half of the EMP pathway. The key genes that are upregulated include GAPDH, PGK, ENO, ppdk in the EMP pathway, actP in acetate metabolism, phnB in polyhydroxybutyrate (PHB) synthesis, and aceA, mdh, sdhA, and IDH1 in the TCA cycle. In the meantime, the ccr gene in the PHV pathway is inhibited. As a result, the metabolism of the PAOs features low glycogen with high PHB, Pupt, Prel, and low PHV. That is, more ATP and NAD(P)H flow to phosphorus enrichment metabolism, thus allowing the highly efficient enrichment of phosphorus from low concentration phosphate thanks to the higher abundance of PAOs. The current results provide theoretical support and a new technical option for the enrichment and recovery of low concentrations of phosphate from wastewater by the BSBR process.


Subject(s)
NAD , Proteomics , Phosphorus , Biofilms , Adenosine Triphosphate , Bioreactors , Sewage
11.
Water Res ; 246: 120460, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857006

ABSTRACT

Phosphorus recovery from human waste will help assure global food security, reduce environmental impact, and ensure effective stewardship of this limited and valuable resource. This can be accomplished by the precipitation of struvite (MgNH4PO4·6H2O) in a two-zone reactor, continuously fed with nutrient-rich hydrolysed urine and a magnesium solution. The solid struvite crystals are periodically "harvested", removing accumulated crystal mass - and therefore recovered nutrients - from the process, and the operating campaign can, in principle, be continuously operated in a batch-continuous operating mode. A previously developed process model is augmented, incorporating two well-mixed volumes (upper zone and lower zone) that are coupled by intermixing forward and back flows. The intermixing back flow is parametrised and, therefore, adjusted for analysis. Crystal linear growth rate is modelled by a simple power-law kinetic, driven by the nutrient solution's saturation index (SI) of struvite. The instantaneous mass transfer rate of struvite constituents from liquid to solid phase is predicted, using the total interfacial area of the crystal population exposed to the well-mixed solution. This model describes a 12-L, laboratory reactor operated in the hybrid batch-continuous mode, although larger reactors could easily be accommodated, subject to their mixing behaviours. Experiments were performed at a 10-hour hydraulic residence time (HRT), which, importantly, is based on the volume of the well-mixed lower zone, since this is the volume of liquid that actively interacts with the suspended struvite crystals. The Mg/P feed molar ratio was varied (0.34, 0.64 and 1.29) to assess Mg feed rate-limiting behaviour. The concentration profiles of elemental P and Mg agree with experimentation, while P and Mg composition in the solid and X-ray diffraction support the production of struvite.


Subject(s)
Phosphates , Phosphorus , Humans , Struvite/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Crystallization , Nutrients , Waste Disposal, Fluid
12.
Food Chem ; 429: 136980, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37527600

ABSTRACT

Edible beef tallow (BT) has been widely used in Sichuan hotpot due to its unique flavor and texture. However, BT should not be consumed in excess caused by its trans-fatty acids and cholesterol issues. In this study, a BT substitute was prepared after enzymatic interesterification in a pilot-scale packed-bed reactor using soybean oil and fully hydrogenated palm oil (4:3, w/w) as feedstock. The products were characterized against BT in terms of fatty acid/triacylglycerol compositions, solid fat content, polymorphism, and melting/crystallization behaviors to select the most promising BT substitute. The optimal flow rate was 120 mL/min. Changes in volatile compounds during stir-frying and simmering were also investigated for Sichuan hotpots made with these two oils. The volatile compounds of BT substitute were similar to that of natural BT. The findings will contribute to expanding the base oil categories of Sichuan hotpot oils.


Subject(s)
Red Meat , Animals , Cattle , Soybean Oil/chemistry , Triacetin/chemistry , Fatty Acids/chemistry , Kinetics , Temperature , Oxidation-Reduction , Esterification , Pilot Projects
13.
Bioresour Technol ; 386: 129502, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506947

ABSTRACT

Effect of ß-cyclodextrin (ß-CD) on simultaneous removal of NH4+-N, NO3--N, COD, and phosphorus (P) in biogenic manganese oxides (BioMnOx) driven moving bed biofilm reactor (MBBR) was investigated. 58.64% and 86.32%, 79.65% and 98.39%, 62.45% and 97.30%, and 24.80% and 95.90% of TN and COD were removed in phases I-IV, indicating that simultaneous nitrification and denitrification (SND) efficiencies were 75.44%, 83.91%, 72.71%, and 35.83%, respectively. Composition and fluorescence spectral characteristics of extracellular polymeric substance (EPS) were evaluated including the removal kinetics of TN and COD. Metabolic activity of Mn2+, decolorization performance of BioMnOx, and reactive oxygen species (ROS) characteristics were determined in biofilm. Furthermore, intermediate Mn3+ and BioMnOx concentration were analyzed. Finally, the removal process of nitrogen (N) and P was proposed based on characterizations of elemental characterization, electrochemistry, and microbial community. This study provides new insights into the N and P removal mediated by BioMnOx and ß-CD.


Subject(s)
Microbiota , beta-Cyclodextrins , Nitrification , Denitrification , Wastewater , Manganese , Waste Disposal, Fluid , Biofilms , Extracellular Polymeric Substance Matrix , Phosphorus , Bioreactors , Oxides , Nitrogen/chemistry
14.
Bioresour Technol ; 385: 129410, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37390931

ABSTRACT

To achieve the goal of cost-effective mariculture wastewater treatment, a novel Bacteria-Algae Coupling Reactor (BACR) integrating acidogenic fermentation with microalgae cultivation was applied for the mariculture wastewater treatment. Currently, there is limited research on the impact of different concentrations of mariculture wastewater on the pollutant removal and the high-value products recovery. In this study, different concentrations (4, 6, 8, and 10 g/L) of mariculture wastewater were treated with BACR. The results showed thatoptimalMW concentrations of 8 g/L improved the growth viability and biochemical components synthetic of Chlorella vulgaris, which increased the potential for high-value products recovery. The BACR exhibited the excellent removal efficiency of chemical oxygen demand, ammonia-nitrogen and total phosphorus with 82.30%, 81.12% and 96.40%, respectively. This study offers an ecological and economic approach to improve the MW treatment through the utilization of a novel bacterial-algal coupling system.


Subject(s)
Chlorella vulgaris , Microalgae , Wastewater , Fermentation , Bacteria , Nitrogen , Biomass , Phosphorus
15.
J Solid State Electrochem ; : 1-14, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37363394

ABSTRACT

The degradation efficiency of chloroquine phosphate (CQ), an anti-COVID-19 drug, was investigated in a flow-by electrochemical reactor (FBER) provided with two boron-doped diamond (BDD) electrodes (as cathode and anode) under batch recirculation mode. A central composite rotatable design (CCRD) was run down to model and assess the influence of initial pH in an interval of 3.71 to 11.28, the current density in an interval of 34.32 to 185.68 mA cm-2, and liquid volumetric flow rate in an interval of 0.58 to 1.42 L min-1, and conduct the convex optimization to obtain the maximum degradation efficiency. Experimental results were modeled through a second-order polynomial equation having a determination coefficient (R2) of 0.9705 with a variance coefficient of 1.1%. Optimal operating conditions found (initial pH of 5.38, current density (j) of 34.4 mA cm-2, and liquid flow rate (Q) of 1.42 L min-1) led to a global maximum degradation efficiency, COD removal efficiency, and mineralization efficiency of 89.3, 51.6 and 53.1%, respectively, with an energy consumption of 0.041 kWh L-1 within 9 h of treatment. Additionally, a pseudo-zero-order kinetic model was demonstrated to fit the experimental data and the calculated pseudo-zero-order kinetic constant (kapp) was 13.14 mg L-1 h-1 (2.54 × 10-5 mol dm-3 h-1). Furthermore, the total operating cost was of 0.47 US$ L-1. Finally, this research could be helpful for the treatment of wastewater containing an anti-COVID-19 drug such as CQ. Supplementary Information: The online version contains supplementary material available at 10.1007/s10008-023-05452-7.

16.
Bioresour Technol ; 384: 129356, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37336445

ABSTRACT

Composting experiment of swine manure, adding with yellow phosphorus slag(YPS) at 5% (w/w), was conducted in an industrial-scale reactor covered with semi-permeable membrane. During 27 days of composting, the changes in temperature, compost quality and phosphorus(P) speciation of products were monitored. Results indicated that the temperature of compost pile was sharply increased on day 2, and the thermophilic period lasted for 15 days. The dynamics in germination index(GI), pH, nutrient contents, etc. of products were in line with conventional composting process. For P distribution, the contents of total-P and citric acid extracted-P(CAP) of products were increased during composting, while that of Olsen-P was decreased. HCl extracted inorganic P(HCl-Pi), a slowly release fraction of P, was dominated in the product, which showed an increasing trend during the composting. These results suggest that the industrial-scale composting with novel YPS additive can be accomplished, and its product contains abundant slowly released P.


Subject(s)
Composting , Soil , Animals , Swine , Soil/chemistry , Manure , Phosphorus , Temperature
17.
Sci Total Environ ; 892: 164579, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37269993

ABSTRACT

Dissimilatory sulfate reduction (DSR) is the key sulfur cycle that transforms sulfate to sulfide. This process leads to odour issues in wastewater treatment. However, few studies have focused on DSR during treating food processing wastewater with high sulfate. This study investigated DSR microbial population and functional genes in an anaerobic biofilm reactor (ABR) treating tofu processing wastewater. The tofu processing wastewater is a common food processing wastewater in Asia. The full-scale ABR was operated for over 120 days in a tofu and tofu-related products manufacturing factory. Mass balance calculations based on the reactor performance indicated that 79.6-85.1 % of the sulfate was transformed into sulfide irrelevant to dissolved oxygen supplementation. Metagenomic analysis revealed 21 metagenome-assembled genomes (MAGs) containing enzymes encoding DSR. The biofilm contained the complete functional genes of DSR pathway in the full-scale ABR, indicating that biofilm could process DSR independently. Comamonadaceae, Thiobacillus, Nitrosomonadales, Desulfatirhabdium butyrativorans, Desulfomonile tiedjei were the dominant DSR species in the ABR biofilm community. Dissolved oxygen supplementation directly inhibited DSR and mitigated HS- production. It was also found that Thiobacillus contained all the function genes encoding every necessary enzyme in DSR, and thus Thiobacillus distribution directly correlated to DSR and the ABR performance.


Subject(s)
Soy Foods , Thiobacillus , Wastewater , Anaerobiosis , Bioreactors/microbiology , Bacteria/genetics , Bacteria/metabolism , Thiobacillus/metabolism , Sulfates/metabolism , Sulfides/metabolism , Oxidation-Reduction
18.
Bioresour Technol ; 376: 128907, 2023 May.
Article in English | MEDLINE | ID: mdl-36933574

ABSTRACT

Heterotrophic nitrification and aerobic denitrification (HNAD) sludge were successfully acclimated. The effects of organics and dissolved oxygen (DO) on nitrogen and phosphorus removal by the HNAD sludge were investigated. The nitrogen can be heterotrophically nitrified and denitrified in the sludge at a DO of 6 mg/L. The TOC/N (total organic carbon to nitrogen) ratio of 3 was found to result in removal efficiencies of over 88% for nitrogen and 99% for phosphorus. The use of demand-driven aeration with a TOC/N ratio of 1.7 improved nitrogen and phosphorus removal from 35.68% and 48.17% to 68% and 93%, respectively. The kinetics analysis generated an empirical formula, Ammonia oxidation rate = 0.08917·(TOC·Ammonia)0.329·Biomass0.342. The nitrogen, carbon, glycogen, and poly-ß-hydroxybutyric acid (PHB) metabolism pathways of HNAD sludge were constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The findings suggest that heterotrophic nitrification precedes aerobic denitrification, glycogen synthesis, and PHB synthesis.


Subject(s)
Nitrification , Sewage , Denitrification , Wastewater , Ammonia/analysis , Bioreactors , Nitrogen/metabolism , Oxygen/analysis , Heterotrophic Processes , Phosphorus/metabolism , Carbon , Glycogen/metabolism , Hydroxybutyrates
19.
Bioresour Technol ; 377: 128957, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965588

ABSTRACT

Simultaneous removal of NH4+-N, NO3--N, COD, and P by manganese redox cycling in nutrient wastewater was established with two moving bed biofilm reactors (MBBRs) with in-situ generated biogenic manganese oxides (BioMnOx) and non-BioMnOx. In-situ generated BioMnOx preferentially promoted the denitrification, and the average removal of NO3--N, NH4+-N, and TN in the experimental MBBR with BioMnOx increased to 89.00%, 70.64%, and 76.06% compared with the control MBBR with non-BioMnOx. The relevant enzymes activity, extracellular polymeric substance (EPS), electron transport system activity (ETSA), and reactive oxygen species (ROS) were investigated. The element valence and morphology of purified BioMnOx were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), as well as the effect of BioMnOx on nitrogen and phosphorus removal. The results suggested that BioMnOx could improve nitrogen conversion. Electrochemical characteristic and microbial community were detected. This study provided a new strategy for nutrients removal in BioMnOx-mediated wastewater treatment.


Subject(s)
Nitrification , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Denitrification , Manganese , Biofilms , Extracellular Polymeric Substance Matrix , Phosphorus , Bioreactors , Oxides , Nitrogen
20.
Chemosphere ; 322: 138078, 2023 May.
Article in English | MEDLINE | ID: mdl-36754302

ABSTRACT

Conventional homogeneous-based catalyzed transesterification for the production of biodiesel can be replaced with a membrane reactor that has an immobilized heterogeneous catalyst. Combining reaction with separation while utilizing membranes with a certain pore size might boost conversion process. this investigation to study the effectiveness of membrane reactor in combination with heterogeneous green nano catalysis of MnO2. Techniques such as XRD, EDX, FTIR, SEM, and TGA were used to characterize the synthesized MnO2 nano catalyst. The highest conversion of around 94% Trachyspermum ammi oil was obtained by MnO2. The optimum process variables for maximum conversion were catalyst loading of 0.26 (wt.%), 8:1 M ratio, 90 °C reaction temperature, and time 120 min. The green nano catalyst of MnO2 was reusable up to five cycles with minimum loss in conversion rate of about 75% in the fifth cycle. Nuclear magnetic resonance validated the synthesis of methyl esters. It was concluded that membrane reactor a promising technique to efficiently transesterify triglycerides into methyl esters and enable process intensification uses MnO2 as a catalyst.


Subject(s)
Ammi , Oxides , Manganese Compounds , Biofuels , Esterification , Esters , Plant Oils
SELECTION OF CITATIONS
SEARCH DETAIL