Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Chin J Nat Med ; 22(2): 146-160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342567

ABSTRACT

In this study, 37 derivatives of phorbol esters were synthesized and their anti-HIV-1 activities evaluated, building upon our previous synthesis of 51 phorbol derivatives. 12-Para-electron-acceptor-trans-cinnamoyl-13-decanoyl phorbol derivatives stood out, demonstrating remarkable anti-HIV-1 activities and inhibitory effects on syncytia formation. These derivatives exhibited a higher safety index compared with the positive control drug. Among them, 12-(trans-4-fluorocinnamoyl)-13-decanoyl phorbol, designated as compound 3c, exhibited the most potent anti-HIV-1 activity (EC50 2.9 nmol·L-1, CC50/EC50 11 117.24) and significantly inhibited the formation of syncytium (EC50 7.0 nmol·L-1, CC50/EC50 4891.43). Moreover, compound 3c is hypothesized to act both as an HIV-1 entry inhibitor and as an HIV-1 reverse transcriptase inhibitor. Isothermal titration calorimetry and molecular docking studies indicated that compound 3c may also function as a natural activator of protein kinase C (PKC). Therefore, compound 3c emerges as a potential candidate for developing new anti-HIV drugs.


Subject(s)
Anti-HIV Agents , Phorbols , Molecular Docking Simulation , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Phorbols/chemistry , Phorbols/pharmacology , Phorbol Esters/pharmacology , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , Structure-Activity Relationship
2.
CNS Neurosci Ther ; 30(2): e14373, 2024 02.
Article in English | MEDLINE | ID: mdl-37501354

ABSTRACT

BACKGROUND: Elderly patients often exhibit postoperative cognitive dysfunction (POCD), a postsurgical decline in memory and executive function. Oxidative stress and neuroinflammation, both pathological characteristics of the aged brain, contribute to this decline. This study posits that electroacupuncture (EA) stimulation, an effective antioxidant and anti-inflammatory modality, may enhance telomerase reverse transcriptase (TERT) function, the catalytic subunit of telomerase known for its protective properties against cellular senescence and oxidative damage, to alleviate POCD in aged mice. METHODS: The animal POCD model was created by subjecting aged mice to abdominal surgery, followed by EA pretreatment at the Baihui acupoint (GV20). Postoperative cognitive function was gauged using the Morris water maze (MWM) test. Hippocampal TERT mRNA levels and telomerase activity were determined through qPCR and a Telomerase PCR ELISA kit, respectively. Oxidative stress was assessed through superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) levels. Iba-1 immunostaining determined the quantity of hippocampal microglia. Additionally, western blotting assessed TERT, autophagy markers, and proinflammatory cytokines at the protein level. RESULTS: Abdominal surgery in aged mice significantly decreased telomerase activity and TERT mRNA and protein levels, but increased oxidative stress and neuroinflammation and decreased autophagy in the hippocampus. EA-pretreated mice demonstrated improved postoperative cognitive performance, enhanced telomerase activity, increased TERT protein expression, improved TERT mitochondrial localization, and reduced oxidative damage, autophagy dysfunction, and neuroinflammation. The neuroprotective benefits of EA pretreatment were diminished following TERT knockdown. CONCLUSIONS: Our findings underscore the significance of TERT function preservation in alleviating surgery-induced oxidative stress and neuroinflammation in aged mice. A novel neuroprotective mechanism of EA stimulation is highlighted, whereby modulation of TERT and telomerase activity reduces oxidative damage and neuroinflammation. Consequently, maintaining TERT function via EA treatment could serve as an effective strategy for managing POCD in elderly patients.


Subject(s)
Cognitive Dysfunction , Electroacupuncture , Postoperative Cognitive Complications , Telomerase , Animals , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Neuroinflammatory Diseases , Oxidative Stress/physiology , Postoperative Cognitive Complications/metabolism , RNA, Messenger/metabolism
3.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37811543

ABSTRACT

The present study was proposed to model full-length HBV-RT and investigate the intermolecular interactions of known inhibitor and libraries of phytocompounds to probe the potential natural leads by in silico and in vitro studies. Homology modeling of RT was performed by Phyre2 and Modeller and virtual screening of ligands implemented through POAP pipeline. Molecular dynamics (MD) simulation (100 ns) and MM-GBSA calculations were performed using Schrodinger Desmond and Prime, respectively. Phytocompounds probable host protein targets gene set pathway enrichment and network analysis were executed by KEGG database and Cytoscape software. Prioritized plant extracts/enriched fraction LC-MS analysis was performed and along with pure compound, RT inhibitory activity, time-dependent HBsAg and HBeAg secretion, and intracellular HBV DNA, and pgRNA by qRT-PCR was performed in HepG2.2.15 cell line. Among the screened chemical library of 268 phytocompounds from 18 medicinal plants, 15 molecules from Terminalia chebula (6), Bidens pilosa (5), and Centella asiatica (4)) were identified as potential inhibitors of YMDD and RT1 motif of HBV-RT. MD simulation demonstrated stable interactions of 15 phytocompounds with HBV-RT, of which 1,2,3,4,6-Pentagalloyl Glucose (PGG) was identified as lead molecule. Out of 15 compounds, 11 were predicted to modulate 39 proteins and 15 molecular pathways associated with HBV infection. TCN and TCW (500 µg/mL) showed potent RT inhibition, decreased intracellular HBV DNA, and pgRNA, and time-dependent inhibition of HBsAg and HBeAg levels compared to PGG and Tenofovir Disoproxil Fumarate. We propose that the identified lead molecules from T. chebula as promising and cost-effective moieties for the management of HBV infection.Communicated by Ramaswamy H. Sarma.

4.
Saudi J Biol Sci ; 30(9): 103751, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37593463

ABSTRACT

Acquired immune deficiency syndrome (AIDS) is an unadorned disease affected via the human immunodeficiency virus (HIV), which has become the most infectious diseases worldwide. HIV-1 RT has been shown to be present in the cardiac tissue of patients with HIV-associated infective endocarditis, and to be associated with the development of valvular lesions and other cardiac abnormalities. The use of anti-retroviral therapies has helped to control the virus and reduce the incidence of HIV-1 associated infective endocarditis. Though, these treatments have several adjacent effects, and the improvement of drug-resistant stresses of the virus has become a significant challenge in HIV treatment. This study is to identify A. lebbeck phytoconstituents with HIV-1 RT inhibitory activity for potential therapeutic use against HIV-1 RT associated with infective endocarditis. We performed in silico and in vitro screening of natural cardiovascular phytoconstituents from Albizia lebbeck, a medicinal plant that has been traditionally used for the management of numerous diseases. The in silico results showed that all three compounds (geraldone, luteolin, and isookanin) exhibited affinities of solid binidng to the active amino acids of HIV-1 RT's DNA-polymerase (DNA-p) and Ribonuclease-H (RNA-H) active positions, suggesting their potential as HIV-1 RT inhibitors. In vitro assessment of the three compounds at a concentration of 1 mg/mL revealed that Geraldone exhibited the most effective inhibitory consequence on HIV-1 RT activity (83.45%), followed by Isookanin (75.88%) and Luteolin (66.36%). These findings suggest that these compounds have the potential to inhibit HIV-1 RT associated with infective endocarditis and could assist as main compounds for emerging unique anti-HIV-1 agents. Further studies are needed to confirm the in vitro and in vivo efficacy of these molecules and assess their safety and efficiency as anti-HIV-1 drugs.

5.
Chin Clin Oncol ; 12(3): 23, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37417289

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite enormous research efforts, GBM remains a deadly disease. The standard-of-care treatment for patients with newly diagnosed with GBM as per the National Cancer Comprehensive Cancer Network (NCCN) is maximal safe surgical resection followed by concurrent chemoradiation and maintenance temozolomide (TMZ) with adjuvant tumor treating fields (TTF). TTF is a non-pharmacological intervention that delivers low-intensity, intermediate frequency alternating electric fields that arrests cell proliferation by disrupting the mitotic spindle. TTF have been shown in a large clinical trial to improve patient outcomes when added to radiation and chemotherapy. The SPARE trail (Scalp-sparing radiation with concurrent temozolomide and tumor treating fields) evaluated adding TTF concomitantly to radiation and chemotherapy. METHODS: This study is an exploratory analysis of the SPARE trial looking at the prognostic significance of common GBM molecular alterations, namely MGMT, EGFR, TP53, PTEN and telomerase reverse transcriptase (TERT), in this cohort of patients treated with concomitant TTF with radiation and chemotherapy. RESULTS: As expected, MGMT promoter methylation was associated with improved overall survival (OS) and progression-free survival (PFS) in this cohort. In addition, TERT promoter mutation was associated with improved OS and PFS in this cohort as well. CONCLUSIONS: Leveraging the molecular characterization of GBM alongside advancing treatments such as chemoradiation with TTF presents a new opportunity to improve precision oncology and outcomes for GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Temozolomide/pharmacology , Temozolomide/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Dacarbazine/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Precision Medicine , Biomarkers , DNA Methylation
6.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298904

ABSTRACT

This study identified phytochemicals in Argemone mexicana (A. mexicana) extracts that are responsible for its medicinal properties, and the best solvent for their extraction. The extracts of the stem, leaves, flowers, and fruits of A. mexicana were prepared at low (corresponding to room temperature) and high temperatures (corresponding to the boiling points) in various solvents, viz., hexane, ethyl acetate, methanol, and H2O. The UV-visible absorption spectra of various phytoconstituents in the isolated extracts were determined through spectrophotometry. Qualitative tests for the screening of phytoconstituents in the extracts were performed to identify various phytochemicals. We identified the presence of terpenoids, alkaloids, cardiac glycosides, and carbohydrates in the plant extracts. The antioxidant and anti-human immunodeficiency virus type 1 reverse transcriptase (anti-HIV-1RT) potential, as well as the antibacterial activity of various A. mexicana extracts were determined. These extracts showed strong antioxidant activities. The extracts exhibited antimicrobial activities against Salmonella typhi, Staphylococcus epidermis, Citrobacter, Neisseria gonorrhoeae, and Shigella flexineri. These extracts significantly inhibited HIV-1 reverse transcriptase activity. The aqueous leaf extract prepared at a temperature equivalent to the boiling point, i.e., 100 °C, was identified to be the most active against pathogenic bacteria and HIV-1 RT.


Subject(s)
Anti-Infective Agents , Argemone , Argemone/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Solvents , Phytochemicals/chemistry
7.
J Herb Med ; 38: 100627, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36644210

ABSTRACT

Introduction: The National Administration of Traditional Chinese Medicine of the People's Republic of China (NATCM) and the State Administration of Traditional Chinese medicine (TCM) advocated a combination therapy of TCM and anti-viral drugs for novel coronavirus pneumonia (NCP) to improve the efficacy of clinical treatment. Methods: Forty-six patients diagnosed with NCP were sequentially divided into intent-to-treat population: the experimental group (combination of FuXi-Tiandi-Wuxing Decoction and anti-viral drugs; n = 23) and the control group (anti-viral drugs only) (n = 23). The two groups were compared in terms of duration of fever, cough symptom score, fatigue, appetite, dyspnea, out-of-bed activities, chest computer tomography (CT) recovery, virological clearance, average length of hospital stay, and clinical effective rate of drug. After 6 days of observation, patients from the control group were divided into as-treated population: experimental subgroup (n = 14) to obtain clinical benefit and control subgroup (n = 9). Results: There was a significant improvement in the duration of fever (1.087 ± 0.288 vs 4.304 ± 2.490), cough (0.437 ± 0.589 vs 2.435 ± 0.662; P < 0.05), chest CT evaluation (82.6% vs 43.4%; P < 0.05), and virological clearance (60.8% vs 8.7%; P < 0.05) in patients of the experimental group compared with patients in the control group. Further observation in as-treated population reported that cough (0.742 ± 0.463 vs 1.862 ± 0.347; P < 0.05) and fatigue (78.5% vs 33.3%; P < 0.05) were significantly relieved after adding FuXi-Tiandi-Wuxing Decoction to the existing treatment. Conclusion: An early treatment with combination therapy of FuXi-Tiandi-Wuxing Decoction and anti-viral drugs significantly relieves the clinical symptoms of NCP, shows improvement in chest CT scan, improves virological clearance, shortens average length of hospital stay, and reduces the risk of severe illness. The effect of FuXi-Tiandi-Wuxing Decoction in NCP may be clinically important and require further consideration.

8.
Nat Prod Res ; 36(22): 5884-5888, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36411530

ABSTRACT

Natural products from Nigerian plants are significant in the search for drug compounds, as they contribute new compounds with biological properties to the fight against resistant pathogens, hence the study. Fresh leaves of M. indica were prepared for fungal isolation, identification, fermentation, and secondary metabolites extraction. The extract, subjected to HPLC analysis revealed the presence of two bioactive compounds: p-Hydroxylbenzoic acid, and Protocatechuic acid. The extract exhibited antibacterial activity against P. aeruginosa and E. coli producing IZD of 4 mm respectively at 1 mg/ml. It produced an interesting antioxidant activity in the DPPH assay with 86.7% activity at 0.5 mg/ml. At 0.01 mg/ml, the extract showed 85.3% cytotoxic activity against L5178Y mouse lymphoma cells and showed 96.5% ± 0.173 HIV-1 reverse transcriptase inhibition activity at 0.25 mg/ml. This study confirms Aspergillus sp. from M. indica produces bioactive compounds that could serve as novel drug molecules in the fight against drug resistance.


Subject(s)
Mangifera , Animals , Mice , Chromatography, High Pressure Liquid , Escherichia coli , Aspergillus/chemistry , Plant Extracts/pharmacology
9.
J Family Med Prim Care ; 11(2): 480-486, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35360801

ABSTRACT

Context: Repurposed povidone iodine (PVP-I) has been suggested as an effective adjuvant against coronavirus disease-2019 (COVID-19). Aim: The aim of this study was to assess the changes in RT-PCR cycle threshold (Ct) values of severe acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2) genes with PVP-I intranasal and oral application. Settings and Design: A longitudinal (repeated measures) single-arm open-label interventional study was conducted for 200 samples of ten COVID-19 patients in South India. Methods and Material: Demographic and clinical information were collected. Intranasal application and oral gargle with 1% PVP-I solution was done four times a day for seven days. Nasopharyngeal and oropharyngeal samples were taken for RT-PCR test at hour-0, hour-2, hour-4 on Day-0, Day-3, Day-6, and hour-0 on Day-9. Methods and Material: STATA analysis software version 14.2 was used. McNemar Test was applied for paired samples. Skilling Mack Test was used to assess the association between PVP-I use (intra-day and inter-day) and E gene/N gene Ct values. Pearson correlation coefficients and Bland-Altman plots were used for further analyses. Results: Mean (SD) age of the patients was 41.5 (±8.82) years. A total of 100 pairs of nasopharyngeal and oropharyngeal samples were analysed. No significant difference was observed in the Ct values of asymptomatic and symptomatic patients. E gene Ct values (nasopharyngeal) at Hour-0 increased from Day-0 to Day-9 (P = 0.005). Ct value was higher at Hour-2 for most of the samples. Conclusions: RT-PCR results (qualitative) differed at various testing points in the same patients. Lower Ct values were found in the nasopharyngeal samples. Successive increase in E gene Ct values indicates reduced viral load with natural course of COVID-19. PVP-I may have an optimal impact within 2 h of usage. Clinical trial registration number: CTRI/2020/05/024962.

10.
Bioresour Technol ; 345: 126542, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34906707

ABSTRACT

The impact of different substrates on N2O dynamics and gene expression of marker enzymes (nirS, nirK and nosZ) involved in denitrifying enhanced biological phosphorus removal (d-EBPR) was investigated. Aerobic granular sludge fed with VFAs led to an anoxic P-uptake (27.7 ± 1.2 mg PO43--P.gVSS-1) and N2O emissions up to 80.7 ± 3.4% N2O-N. A decisive role of Accumulibacter in N2O formation was observed. Dosage of amino acids (12.0 ± 1.2 mg PO43--P.gVSS-1) and glucose (1.5 ± 0.9 mg PO43--P.gVSS-1) as sole substrate did not support d-EBPR activity. Presence of NO2- resulted in higher N2O formation in comparison to nitrate and a nosZ/(nirS + nirK) ratio lower than 0.3. A linear correlation (R2 > 0.95) between the nosZ/(nirS + nirK) ratio and the N2O reductase rate was found only when dosing the same type of substrate. This suggests an interplay between the microbial community composition and different polyhydroxyalkanoates derivatives, when dosing different substrates.


Subject(s)
Phosphorus , Sewage , Bioreactors , Carbon , Denitrification , Nitrogen , Nitrous Oxide/analysis
11.
Pharm Biol ; 59(1): 1517-1527, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34714196

ABSTRACT

CONTEXT: Chinese herbs such as Cortex Mori [Morus alba L. (Moraceae)] may inhibit human immunodeficiency virus (HIV), but active compounds are unknown. OBJECTIVE: Screening of Cortex Mori and other herbs for anti-HIV active compounds. MATERIALS AND METHODS: HIV-1 virus (multiplicity of infection: 20), and herbs (dissolved in dimethyl sulfoxide, working concentrations: 10, 1, and 0.1 mg/mL) such as Cortex Mori, etc., were added to 786-O cells (105 cell/well). Zidovudine was used as a positive control. Cell survival and viral inhibition rates were measured. The herb that was the closest inactivity to zidovudine was screened. Mass spectrometry identified the active compounds in herbs (mobile phase: 0.05% formic acid aqueous solution and acetonitrile, gradient elution, detection wavelength: 210 nm). The effect of the compounds on reverse transcriptase (RT) products were evaluated by real-time PCR. Gene enrichment was used to analyse underlying mechanisms. RESULTS: With a dose of 1 mg/mL of Cortex Mori, the cell survival rate (57.94%) and viral inhibition rate (74.95%) were closest to the effect of zidovudine (87.87%, 79.81%, respectively). Neochlorogenic acid, one of the active ingredients, was identified by mass spectrometry in Cortex Mori. PCR discovery total RT products of neochlorogenic acid group (mean relative gene expression: 6.01) significantly inhibited (control: 35.42, p < 0.0001). Enrichment analysis showed that neochlorogenic acid may act on haemopoietic cell kinase, epidermal growth factor receptor, sarcoma, etc., thus inhibiting HIV-1 infection. CONCLUSIONS: For people of low socioeconomic status affected by HIV, Chinese medicine (such as Cortex Mori) has many advantages: it is inexpensive and does not easily produce resistance. Drugs based on active ingredients may be developed and could have important value.


Subject(s)
Anti-HIV Agents/pharmacology , Chlorogenic Acid/analogs & derivatives , Morus/chemistry , Plant Extracts/pharmacology , Quinic Acid/analogs & derivatives , Anti-HIV Agents/chemistry , Anti-HIV Agents/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/pharmacology , Dose-Response Relationship, Drug , HEK293 Cells , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Plant Extracts/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology , Zidovudine/pharmacology
12.
Int J Mol Med ; 48(5)2021 11.
Article in English | MEDLINE | ID: mdl-34515324

ABSTRACT

Telomeres, the protective caps of chromosomes, shorten with age, as telomerase, the enzyme responsible for the compensation of telomere erosion, is inactive in the majority of cells. Telomere shortening and subsequent cell senescence lead to tissue aging and age­related diseases. Neurodegenerative disorders, characterized by the progressive loss of neurons among other hallmarks of aged tissue, and poor cognitive function, have been associated with a short telomere length. Thus, telomerase activity has emerged as a therapeutic target, with novel agents being under investigation. The present study aimed to examine the effects of a novel natural telomerase activator, 'Reverse™', containing Centella asiatica extract, vitamin C, zinc and vitamin D3 on the brains of 18­month­old rats. The administration of the 'Reverse™' supplement for 3 months restored telomerase reverse transcriptase (TERT) expression in the brains of rats, as revealed by ELISA and immunohistochemistry. In addition, the findings from PCR­ELISA demonstrated an enhanced telomerase activity in the cerebellum and cortex cells in the brains of rats treated with the 'Reverse™' supplement. The histopathological findings confirmed a structural reversibility effect close to the differentiation observed in the young control group of rats treated with two capsules/kg body weight of the 'Reverse™' supplement. On the whole, the findings of the present study provide a strong indication that an increased telomerase activity and TERT expression may be achieved not only in the postnatal or embryonic period, but also in the brains of middle­aged rats through nutraceutical supplementation. The use of the 'Reverse™' supplement may thus contribute to the potential alleviation of a number of central nervous system diseases.


Subject(s)
Aging/pathology , Brain/pathology , Dietary Supplements , Telomerase/antagonists & inhibitors , Animals , Cerebral Cortex/pathology , Male , Rats, Sprague-Dawley , Telomerase/metabolism
13.
Phytother Res ; 35(10): 5767-5780, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34374127

ABSTRACT

Studies have found that salidroside, isolated from Rhodiola rosea L, has various pharmacological activities, but there have been no studies on the effects of salidroside on brain hippocampal senescence. The purpose of this study was to investigate the mechanistic role of salidroside in hippocampal neuron senescence and injury. In this study, long-term cultured primary rat hippocampal neurons and naturally aged C57 mice were treated with salidroside. The results showed that salidroside increased the viability and MAP2 expression, reduced ß-galactosidase (ß-gal) levels of rat primary hippocampal neurons. Salidroside also improved cognition dysfunction in ageing mice and alleviated neuronal degeneration in the ageing mice CA1 region. Moreover, salidroside decreased the levels of oxidative stress and p21, p16 protein expressions of hippocampal neurons and ageing mice. Salidroside promoted telomerase reverse transcriptase (TERT) protein expression via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway. In conclusion, our findings suggest that salidroside has the potential to be used as a therapeutic strategy for anti-ageing and ageing-related disease treatment.


Subject(s)
Neuroprotective Agents , Proto-Oncogene Proteins c-akt , Aging , Animals , Glucosides , Hippocampus/metabolism , Mice , Neurons , Neuroprotective Agents/pharmacology , Phenols , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats
14.
BMC Complement Med Ther ; 21(1): 151, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34039320

ABSTRACT

BACKGROUND AND OBJECTIVES: The use of herbal concoctions is very popular in South Africa, including Limpopo Province. The herbal concoctions are claimed to be capable of treating numerous illnesses such as ulcers, cancer, HIV/AIDS, diabetes, certain STDs, blood cleansing to mention but a few. The focus of this study was to evaluate the anti-HIV 1 reverse transcriptase, anti-inflammatory and anti-cancerous activities as well as cytotoxic effects of 2 fermented herbal concoctions used for the treatment of the related ailments in Limpopo province of South Africa. METHOD: Two fermented herbal concoctions obtained from a herbalist in Polokwane were extracted with 80% acetone. The anti-HIV activity of the herbal concoctions was determined using the anti-HIV reverse transcriptase assay. The anti-cancer and cytotoxic effects of the herbal concoctions were evaluated using cancerous Human Colon (HT-29) cells and the normal human Hepatoma cells (C3A) respectively. RESULTS: Notable anti-HIV reverse transcriptase activity was observed from the 80% acetone fraction of herbal concoction 1 (IC50 38.031 µg/mL) which exhibited better activity than the positive control Lamivudine (IC50 40.90 µg/mL). There was variation in the anti-inflammation activity as determined by the sPL2, 15-LOX and COX enzyme assays. The only concerning matter was the high COX-1 activity in some of the extracts, which is not desirable due to the mucosal protection action of COX-1 enzyme. The herbal concoctions did not exhibit cytotoxic effects on normal human cells, however, toxicity against cancerous cells was observed. CONCLUSION: The herbal concoctions displayed some considerable pharmacological effects against various ailments as claimed by the herbalist. More work to ascertain the toxicity of both concoctions against cancerous cells need to be followed as this could lead to the discovery of anticancer drugs.


Subject(s)
Anti-HIV Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Plant Preparations/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Fermentation , HT29 Cells , Humans , South Africa
15.
Exp Ther Med ; 21(5): 503, 2021 May.
Article in English | MEDLINE | ID: mdl-33791012

ABSTRACT

Treatment for higher-risk patients with myelodysplastic syndrome (MDS) should aim to modify the disease course by avoiding progression to acute myeloid leukemia and improving survival. When a patient is not eligible for intensive chemotherapy and lacks a donor hematopoietic cell source, or for a patient in a poor economic situation, consideration can be given to the use of Chinese herbal medicine. Numerous plant extracts, such as camptothecin, vinblastine and paclitaxel, have been reported to display antitumor effects, serving as potential therapeutic strategies for cancer. In the present study, the ultra-performance liquid chromatography-tandem mass spectrometry system (Waters Corporation) was used to detect the main chemical components of HDE, CCK-8 assay to detect the effects of HDE and BIIB021 on the proliferation of SKM-1 cells; and designed hTERT-small interfering (si)RNAs to detect the effects of HDE and BIIB021 on SKM-1 cell apoptosis after HTERT gene knockdown. The present study investigated a newly extracted coumarin HDE, the active component in Oldenlandia diffusa Willd, which efficiently inhibited SKM-1 (MDS cell line) proliferation and induced apoptosis, as determined by performing Cell Counting Kit-8 and flow cytometry assays, respectively. The effect of HDE was associated with decreased telomerase activity. Moreover, heat shock protein 90 inhibitor BIIB021 significantly enhanced the antitumor effects of HDE on SKM-1 cells. In addition, SKM-1 cell apoptosis was increased in human telomerase reverse transcriptase (hTERT)-knockdown cells compared with the negative control group. Cell apoptosis in hTERT-knockdown SKM-1 cells was further enhanced following HDE, BIIB021 or combination treatment, as evidenced by increased levels of cleaved caspase 3, cleaved caspase 8 and cleaved poly ADP ribose polymerase. Collectively, the results indicated synergistic antitumor effects of HDE and BIIB021, providing a novel therapeutic combination for higher-risk MDS.

16.
J Enzyme Inhib Med Chem ; 36(1): 749-757, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33715562

ABSTRACT

Bioassay-guided fractionation of the ethyl acetate extract from Teucrium flavum subsp. glaucum, endowed with inhibitory activity towards the HIV-1 reverse transcriptase-associated RNase H function, led to the isolation of salvigenin (1), cirsimaritin (2) and cirsiliol (3) along with the neo-clerodanes teuflavin (4) and teuflavoside (5). Acid hydrolysis of the inactive teuflavoside provided three undescribed neo-clerodanes, flavuglaucins A-C (7-9) and one known neo-clerodane (10). Among all neo-clerodanes, flavuglaucin B showed the highest inhibitory activity towards RNase H function with a IC50 value of 9.1 µM. Molecular modelling and site-directed mutagenesis analysis suggested that flavuglaucin B binds into an allosteric pocket close to RNase H catalytic site. This is the first report of clerodane diterpenoids endowed with anti-reverse transcriptase activity. Neo-clerodanes represent a valid scaffold for the development of a new class of HIV-1 RNase H inhibitors.


Subject(s)
Diterpenes, Clerodane/pharmacology , Flavonoids/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , Plant Extracts/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Ribonuclease H/antagonists & inhibitors , Teucrium/chemistry , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/isolation & purification , Dose-Response Relationship, Drug , Flavonoids/chemistry , Flavonoids/isolation & purification , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Molecular Conformation , Mutagenesis, Site-Directed , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/isolation & purification , Ribonuclease H/genetics , Ribonuclease H/metabolism , Structure-Activity Relationship
17.
Int J Biol Macromol ; 174: 309-318, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33524481

ABSTRACT

Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is the key enzyme for the virus gene replication and the most important target for antiviral therapy. Toxicity, drug resistance and side effects have led to search for new antiviral agents. Farnesiferol C (FC) is a well-known biologically active sesquiterpene coumarin derivative from genus Ferula. The current study was designed to examine the impacts of FC on the structure and function of HIV-1 RT, using some theoretical and experimental methods. FC inhibited HIV-1RT activity via mixed inhibition mechanism (IC50 = 30 µM). Spectroscopic data showed some conformational changes in the secondary as well as tertiary structure of HIV-1RT following the interaction with FC. Results showed that FC could quench the intrinsic fluorescence emission of HIV-1RT through static quenching mechanism. Thermodynamic parameters revealed that hydrogen bondings and van der Waals forces are the major forces in the binding reaction and the low equilibrium constants (KD) value obtained from surface plasmon resonance data, confirmed the high affinity of FC for HIV-1RT. Molecular docking studies indicated that FC interacts with enzyme through hydrophobic pocket. Taken together, the outcomes of this research revealed that, sesquiterpene coumarines can be used to design natural remedies as anti-HIV agents.


Subject(s)
Coumarins/pharmacology , Ferula/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Reverse Transcriptase Inhibitors/pharmacology , Coumarins/chemistry , HIV Reverse Transcriptase/chemistry , HIV-1/drug effects , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/pharmacology , Protein Structure, Secondary/drug effects , Protein Structure, Tertiary/drug effects , Reverse Transcriptase Inhibitors/chemistry , Surface Plasmon Resonance
18.
BMC Pediatr ; 21(1): 24, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413203

ABSTRACT

BACKGROUND: Telomeres play a crucial role in cellular survival and its length is a predictor for onset of chronic non-communicable diseases. Studies on association between telomeres and obesity in children have brought discrepant results and the underlying mechanisms and influential factors are to be elucidated. This study aimed to investigate changes in telomere length and telomerase reverse transcriptase (TERT) DNA methylation, and further to determine their correlation with n-3 polyunsaturated fatty acids (PUFAs) in preschool children with obesity. METHODS: Forty-six preschool children with obesity aged 3 to 4 years were included in the study, with equal numbers of age- and gender-matched children with normal weight as control. Leukocyte telomere length was determined by the ratio of telomeric product and single copy gene obtained using real-time qPCR. DNA methylation of TERT promoter was analyzed by bisulfite sequencing. Fatty acids in erythrocytes were measured by gas chromatography with a total of 15 fatty acids analyzed. The total saturated fatty acids (SFAs), total n-6 PUFAs, total n-3 PUFAs, and the ratio of arachidonic acid (AA) to docosahexaenoic acid (DHA) were calculated. Then the correlation between leukocyte telomere length, TERT promoter methylation and fatty acids was determined. RESULTS: In preschool children with obesity, leukocyte telomeres were shortened and had a negative association with the body mass index. The methylated fractions in 13 of 25 CpG sites in the TERT promoter were increased by approximately 3 to 35% in the children with obesity compared to the normal weight children. Erythrocyte lauric acid and total SFAs, lenoleic acid and total n-6 PUFAs were higher, and DHA was lower in the children with obesity than those in the children with normal weight. Correlative analysis showed that leukocyte telomere length had a positive association with total SFAs and DHA, and a negative association with the AA/DHA ratio. However, no association between erythrocyte DHA and the TERT promoter methylation was found. CONCLUSION: These data indicate that the reduced body DHA content and increased AA/DHA ratio may be associated with shortened leukocyte telomeres in child obesity, which is probably not involved in the TERT promoter methylation.


Subject(s)
Fatty Acids, Omega-3 , Pediatric Obesity , Telomerase , Child, Preschool , DNA Methylation , Humans , Pediatric Obesity/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
19.
Chem Biol Drug Des ; 97(1): 157-166, 2021 01.
Article in English | MEDLINE | ID: mdl-32757477

ABSTRACT

The HIV-1 reverse transcriptase (HIV-1 RT), which is responsible for transcription of viral RNA genomes into DNA genomes, has become an important target for the treatment of patients with HIV infection. Hydrolyzed peptides from plants are considered a new source of potential drugs. In order to develop new effective inhibitors, peptides extracted from 111 Asian medicinal plants were screened against the HIV-1 RT. The crude hydrolyzed peptides from the fruit peel of Quercus infectoria were selected for purification and peptide sequence determination by HPLC and LC-MS. Two peptides of interest were synthesized, and an IC50 test was performed to determine their ability to inhibit the HIV-1 RT. The IC50 values of the peptides AIHIILI and LIAVSTNIIFIVV were determined to be 274 ± 5.10 nm and 236.4 ± 7.07 nm, respectively. This indicated that these peptides could be further developed as potential HIV-1 RT inhibitors.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/enzymology , Peptides/chemistry , Plant Proteins/metabolism , Quercus/chemistry , Reverse Transcriptase Inhibitors/chemistry , Amino Acid Sequence , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/metabolism , HIV Reverse Transcriptase/metabolism , Hydrolysis , Peptides/isolation & purification , Peptides/metabolism , Plant Extracts/metabolism , Plant Proteins/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Quercus/metabolism , Reverse Transcriptase Inhibitors/metabolism , Tandem Mass Spectrometry
20.
Biotechnol Rep (Amst) ; 28: e00557, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294405

ABSTRACT

Cordycepin is a crucial bioactive compound produced by the fungus Cordyceps spp. Its therapeutic potential has been recognized for a wide range of biological properties such as anticancer, anti-diabetic, antidepressant, antioxidant, immunomodulation, etc. Moreover, its human random clinical trials depicted a promising anti-inflammatory activity that reduced the airway inflammation remarkably in asthmatic patients. But its overexploitation and low production of cordycepin in naturally growing biomass are insufficient to meet its existing market demand for its therapeutic use. Therefore, strategies for enhancement of cordycepin production in Cordyceps spp. are warranted. However, specifically, wild type Ophiocordyceps sinensis possesses a very low content of cordycepin and has restricted growth in natural mycelial biomass. To overcome these limitations, this study attempted to enhance cordycepin production in its mycelial biomass in vitro under submerged conditions by adding various growth supplements. The effect of these growth supplements was evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) which demonstrated that among nucleosides- hypoxanthine and adenosine; amino acids-glycine and glutamine; plant hormones- 1-naphthaleneacetic acid (NAA) and 3-indoleacetic acid (IAA); vitamin-thiamine (B1) from each group of growth supplements yielded a higher amount of cordycepin with 466.48 ±â€¯3.88, 380.23 ±â€¯1.78, 434.97 ±â€¯2.32, 269.78 ±â€¯2.92, 227.61 ±â€¯2.34, 226.02 ±â€¯1.69 and 185.26 ±â€¯2.35 mg/L respectively as compared to control with 13.66 ±â€¯0.64 mg/L. Further, at the transcriptional level, quantitative real time-polymerase chain reaction (qRT-PCR) analysis of genes associated with metabolism and cordycepin biosynthesis depicted significant upregulation of major downstream genes- NT5E, RNR, purA, and ADEK which corroborated well with RP-HPLC analysis. Taken together, the present study identified growth supplements as potential precursors to activate the cordycepin biosynthesis pathway leading to improved cordycepin production in O. sinensis.

SELECTION OF CITATIONS
SEARCH DETAIL