Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Agric Food Chem ; 72(15): 8372-8379, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579274

ABSTRACT

Self-assembling peptides are rapidly gaining attention as novel biomaterials for food and biomedical applications. Peptides self-assemble when triggered by physical or chemical factors due to their versatile physicochemical characteristics. Peptide self-assembly, when combined with the health-promoting bioactivity of peptides, can also result in a plethora of biofunctionalities of the biomaterials. This perspective highlights current developments in the use of food-derived self-assembling peptides as biomaterials, bioactive nutraceuticals, and potential dual functioning bioactive biomaterials. Also discussed are the challenges and opportunities in the use of self-assembling bioactive peptides in designing biocompatible, biostable, and bioavailable multipurpose biomaterials.


Subject(s)
Biocompatible Materials , Peptides , Hydrogels , Dietary Supplements
2.
Food Chem ; 448: 139054, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552465

ABSTRACT

Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.


Subject(s)
Caseins , Fatty Acids , Quercetin , Quercetin/chemistry , Quercetin/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Caseins/chemistry , Caseins/metabolism , Drug Stability , Biological Availability , Humans , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Dietary Fats/metabolism
3.
Mol Pharm ; 21(3): 1526-1536, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38379524

ABSTRACT

Tumoral thermal defense mechanisms considerably attenuate the therapeutic outcomes of mild-temperature photothermal therapy (PTT). Thus, developing a simple, efficient, and universal therapeutic strategy to sensitize mild-temperature PTT is desirable. Herein, we report self-delivery nanomedicines ACy NPs comprising a near-infrared (NIR) photothermal agent (Cypate), mitochondrial oxidative phosphorylation inhibitor (ATO), and distearoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE-PEG2000), which have a high drug-loading efficiency that can reverse tumoral thermal resistance, thereby increasing mild-temperature PTT efficacy. ACy NPs achieved targeted tumor accumulation and performed NIR fluorescence imaging capability in vivo to guide tumor PTT for optimized therapeutic outcomes. The released ATO reduced intracellular ATP levels to downregulate multiple heat shock proteins (including HSP70 and HSP90) before PTT, which reversed the thermal resistance of tumor cells, contributing to the excellent results of mild-temperature PTT in vitro and in vivo. Therefore, this study provides a simple, biosafe, advanced, and universal heat shock protein-blocking strategy for tumor PTT.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Nanomedicine , Phototherapy/methods , Temperature , Hyperthermia, Induced/methods , Neoplasms/pathology , Cell Line, Tumor
4.
ACS Appl Mater Interfaces ; 16(7): 9210-9223, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38330192

ABSTRACT

Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded ß-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.


Subject(s)
Fibroins , Nanostructures , Silk/chemistry , Fibroins/chemistry , Polysaccharides , Pectins , Biocompatible Materials/chemistry
5.
J Colloid Interface Sci ; 663: 111-122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38394816

ABSTRACT

Fluorescent bioimaging and photothermal therapy (PTT) techniques have potential significance in cancer diagnosis and treatment and have been widely applied in biomedical and practical clinical trials. This study proposes the molecular design and biofabrication of a two-dimensional (2D) nanoplatform, exhibiting promising prospects for synergistic bioimaging and PTT of tumors. First, biocompatible 2D peptide nanosheets (PNSs) were designed and prepared through peptide self-assembly. These served as a support matrix for assembling polyethylene glycol-modified Ag2S quantum dots (PEG-Ag2SQDs) to form a 2D nanoplatform (PNS/PEG-Ag2SQDs) with unique fluorescent and photothermal properties. The designed 2D nanoplatform not only showed improved photothermal efficacy and an elevated photothermal conversion efficiency of 52.46 %, but also demonstrated significant lethality against tumors in both in vitro and in vivo cases. Additionally, it displays excellent imaging effects in the near-infrared II region, making it suitable for synergistic fluorescent imaging-guided PTT of tumors. This study not only provides a facile approach for devising and synthesizing 2D peptide assemblies but also presents new biomimetic strategies to create functional 2D organic/inorganic nanoplatforms for biomedical applications.


Subject(s)
Nanoparticles , Neoplasms , Quantum Dots , Humans , Phototherapy/methods , Photothermal Therapy , Nanoparticles/chemistry , Biomimetics , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/pathology , Peptides , Cell Line, Tumor
6.
Biosens Bioelectron ; 252: 116146, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38417286

ABSTRACT

Staphylococcus aureus contamination in food supplements poses substantial challenges to public health and large-scale production but the sensitive detection in a timely manner remains a bottleneck. Drawing inspiration from the sea hedgehog, gold nanostars (AuNSs) were leveraged to design an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the determination of Staphylococcus aureus in food supplements. Besides the surface enhancement furnished by the AuNSs, Raman reporter molecules and specific aptamers sequentially self-assembled onto these AuNSs to construct the "three-in-one" SERS biosensor probe for label-based quantitation of Staphylococcus aureus. Following incubation with contaminated health product samples, the gold nanostars@Raman reporter-aptamer specifically recognize and assemble around Staphylococcus aureus cells, forming a distinctive sea hedgehog structure. This unique configuration results in an amplified Raman signal at 1338 cm-1 and an enhancement factor of up to 6.71 × 107. The entire quantitative detection process can be completed within 30 min, boasting an exceptional limit of detection as low as 1.0 CFU mL-1. The method exhibits a broad working range for the determination of Staphylococcus aureus, with concentrations spanning 2.15 CFU mL-1 to 2.15 × 105 CFU mL-1. Furthermore, it demonstrates outstanding precision, with relative standard deviation values consistently below 5.0%. As a showcase to validate the practicality of the SERS method, we conducted tests on determining Staphylococcus aureus in a herbal food supplement, i.e., Ginkgo Biloba extract (GBE); the results align closely with those obtained through the conventional lysogeny broth agar plate method, pointing to the potential applicability in real-world scenarios.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Animals , Staphylococcus aureus , Metal Nanoparticles/chemistry , Hedgehogs , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Gold/chemistry , Aptamers, Nucleotide/chemistry , Dietary Supplements
7.
Adv Sci (Weinh) ; 11(16): e2310012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359060

ABSTRACT

Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.


Subject(s)
Polyphenols , Skin , Polyphenols/pharmacology , Animals , Mice , Skin/drug effects , Skin/metabolism , Nanoparticles/chemistry , Zanthoxylum/chemistry , Apoptosis/drug effects , Plant Extracts/pharmacology , Disease Models, Animal , Humans
8.
Angew Chem Int Ed Engl ; 63(18): e202400249, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38372669

ABSTRACT

The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.


Subject(s)
Membrane Proteins , Neoplasms , Humans , Cell Membrane/chemistry , Membrane Proteins/metabolism , Phototherapy , Neoplasms/metabolism
9.
J Sci Food Agric ; 104(7): 4242-4250, 2024 May.
Article in English | MEDLINE | ID: mdl-38288644

ABSTRACT

BACKGROUND: Phytosterols (PS) have various beneficial effects on human health, especially the property of reducing blood cholesterol. However, the low solubility and bioaccessibility of PS have greatly limited their application in functional food ingredients. RESULTS: To improve the bioaccessibility and stability of PS, chitosan-coated PS nanoparticles (CS-PNP) were successfully prepared by self-assembly. The properties of CS-PNP, including size, zeta potential, encapsulation efficiency (EE) and loading amount (LA) were characterised. The optimisation of CS concentration (0.4 mg mL-1) and pH (3.5) resulted in the formation of CS-PNP with an EE of over 90% and a particle size of 187.7 nm. Due to the special properties of CS chitosan, the interaction between CS and soybean protein isolate (SPI)/lecithin (SL) led to the formation of a soluble complex. CS-PNP exhibited good stability to temperature variations but was more sensitive to salt ions. During in vitro digestion, CS efficiently maintained the stability of nanoparticles against the hydrolysis of SPI by pepsin under acidic conditions. However, these nanoparticles tended to aggregate in a neutral intestinal environment. After 3 h of in vitro digestion, the bioaccessibility of PS increased from 18.2% of free PS to 63.5% of CS-PNP. CONCLUSION: Overall, these results highlight the potential of chitosan-coated nanoparticles as effective carriers for the oral administration of PS. This multilayer construction may serve as a promising for applications in food products as delivery vehicles for nutraceuticals. © 2024 Society of Chemical Industry.


Subject(s)
Chitosan , Nanoparticles , Phytosterols , Humans , Lecithins , Chitosan/chemistry , Soybean Proteins/chemistry , Phytosterols/chemistry , Nanoparticles/chemistry , Particle Size , Drug Carriers/chemistry
10.
J Control Release ; 366: 798-811, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184236

ABSTRACT

Oral cancer is a disease with high morbidity and mortality worldwide and greatly impacts the quality of life, especially in patients with advanced stages. Photodynamic therapy (PDT) is one of the most effective clinical treatments for oral cancers. However, most clinically applied photosensitizers have several deficiencies, including oxygen dependence, poor aqueous solubility, and a lack of tumor-targeting ability. Herein, the carrier-free multifunctional Sorafenib (Sor), chlorin e6 (Ce6), and Fe3+ self-assembly co-delivery nanoparticles (Sor-Ce6 NPs) were constructed via combining a ferroptosis inducer Sor and a photosensitizer Ce6 for synergetic therapy. The as-synthesized Sor-Ce6 NPs presented excellent colloidal stability and water dispersity with good in vivo tumor-targeting ability. More significantly, the low dose of Sor-Ce6 NPs had little dark toxicity but produced significantly enhanced ROS and supplied O2 sustainably to increase phototoxicity through ferroptosis pathway. Notably, the Sor-Ce6 NPs showed significantly higher in vitro and in vivo anti-tumor efficacy than the Sor/Ce6 mixture due to the improvement of cellular uptake and the incorporation of foreign Fe ions in the system, which also confer the T1 magnetic resonance-guided imaging ability to the formed Sor-Ce6 NPs. Our study demonstrates a promising self-assembled strategy for overcoming hypoxia-related PDT resistance for oral cancer treatment.


Subject(s)
Chlorophyllides , Ferroptosis , Mouth Neoplasms , Nanoparticles , Photochemotherapy , Porphyrins , Humans , Sorafenib , Quality of Life , Mouth Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Cell Line, Tumor
11.
Adv Healthc Mater ; 13(11): e2303667, 2024 04.
Article in English | MEDLINE | ID: mdl-38178648

ABSTRACT

Currently, cisplatin resistance has been recognized as a multistep cascade process for its clinical chemotherapy failure. Hitherto, it remains challenging to develop a feasible and promising strategy to overcome the cascade drug resistance (CDR) issue for achieving fundamentally improved chemotherapeutic efficacy. Herein, a novel self-assembled nanoagent is proposed, which is constructed by Pt(IV) prodrug, cyanine dye (cypate), and gadolinium ion (Gd3+), for systematically conquering the cisplatin resistance by employing near-infrared (NIR) light activated mild-temperature hyperthermia in tumor targets. The proposed nanoagents exhibit high photostability, GSH/H+-responsive dissociation, preferable photothermal conversion, and enhanced cellular uptake performance. In particular, upon 785-nm NIR light irradiation, the generated mild temperature of ≈ 43 °C overtly improves the cell membrane permeability and drug uptake, accelerates the disruption of intracellular redox balance, and apparently enhances the formation of Pt-DNA adducts, thereby effectively overcoming the CDR issue and achieves highly improved therapeutic efficacy for cisplatin-resistant tumor ablation.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Hyperthermia, Induced , Indoles , Propionates , Cisplatin/pharmacology , Cisplatin/chemistry , Drug Resistance, Neoplasm/drug effects , Humans , Animals , Hyperthermia, Induced/methods , Mice , Cell Line, Tumor , Infrared Rays , Gadolinium/chemistry , Gadolinium/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Mice, Inbred BALB C , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Mice, Nude , Carbocyanines/chemistry , Carbocyanines/pharmacology
12.
Protoplasma ; 261(1): 111-124, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37542569

ABSTRACT

The aim of this study was to investigate in detail the pollen wall ontogeny in Impatiens glandulifera, with emphasis on the substructure and the underlying mechanisms of development. Sporopollenin-containing pollen wall, the exine, consists of two parts, ectexine and endexine. By determining the sequence of developing substructures with TEM, we have in mind to understand in which way the exine substructure is connected with function. We have shown earlier that physical processes of self-assembly and phase separation are universally involved in ectexine development; currently, we try to clear up whether these processes participate in endexine development. The data received were compared with those on other species. The ectexine ontogeny of I. glandulifera followed the main stages observed in many other species, including the late tetrad stage named "Golden gates". It turned out that the same physico-chemical processes act in endexine development, especially expressed in aperture sites. Another peculiar phenomenon observed in exine development was the recurrency of micellar sequence at near-aperture and aperture sites where the periplasmic space is widened. It should be noted that, in the whole, the developmental substructures observed during the tetrad and early post-tetrad period are similar in species with columellate exines. Evidently, these basic physical processes proceed, reiterating again and again in different species, resulting in an enormous variety of exine structures on the base of a relatively modest number of genes. Granular and alveolar exines emerge on the base of the same basic processes but are arrested at spherical and cylindrical micelle mesophases correspondingly.


Subject(s)
Impatiens , Pollen
13.
Chemistry ; 30(7): e202303194, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37967312

ABSTRACT

Developing peptide-based materials with controlled morphology is a critical theme of soft matter research. Herein, we report the formation of a novel, patterned cross-ß structure formed by self-assembled C3 -symmetric peptide amphiphiles based on diphenylalanine and benzene-1,3,5-tricarboxamide (BTA). The cross-ß motif is an abundant structural element in amyloid fibrils and aggregates of fibril-forming peptides, including diphenylalanine. The incorporation of topological constraints on one edge of the diphenylalanine fragment limits the number of ß-strands in ß-sheets and leads to the creation of an unconventional offset-patterned cross-ß structure consisting of short 3×2 parallel ß-sheets stabilized by phenylalanine zippers. In the reported assembly, two patterned cross-ß structures bind parallel arrays of BTA stacks in a superstructure within a single-molecule-thick nanoribbon. In addition to a threefold network of hydrogen bonds in the BTA stack, each molecule becomes simultaneously bound by hydrogen bonds from three ß-sheets and four phenylalanine zippers. The diffuse layer of alkyl chains with terminal polar groups prevents the nanoribbons from merging and stabilizes cross-ß-structure in water. Our results provide a simple approach to the incorporation of novel patterned cross-ß motifs into supramolecular superstructures and shed light on the general mechanism of ß-sheet formation in C3 -symmetric peptide amphiphiles.


Subject(s)
Amyloid , Peptides , Protein Structure, Secondary , Peptides/chemistry , Amyloid/chemistry , Protein Conformation, beta-Strand , Phenylalanine
14.
Int J Biol Macromol ; 254(Pt 2): 127836, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931859

ABSTRACT

Green nanotechnology is considered a promising method to construct functional materials with significant anticancer activity, while overcoming the shortcomings of traditional synthesis process complexity and high organic solvents consumption. Thus, in this study, we report for the first time the rational design and green synthesis of functionalized 5-fluorouracil and curcumin co-loaded lysozyme-hyaluronan composite colloidal nanoparticles (5-Fu/Cur@LHNPs) for better targeted colorectal cancer therapy with minimized side effects. The functionalized 5-Fu/Cur@LHNPs exhibit stabilized particle size (126.1 nm) with excellent homogeneity (PDI = 0.1), favorable colloidal stabilities, and excellent re-dispersibility. In vitro cell experiments illustrate that the cellular uptake of 5-Fu/Cur@LHNPs was significantly improved and further promoted a higher apoptosis ratio of HCT-116 cells. Compared with the control group, the 5-Fu/Cur@LHNPs formulation group achieved effective inhibition (60.1 %) of colorectal tumor growth. The alcohol-free self-assembly method to construct 5-Fu/Cur@LHNPs is simple and safe for a translational chemotherapy drug, also to promote more robust delivery systems for treating colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Curcumin , Nanoparticles , Humans , Fluorouracil , Drug Delivery Systems/methods , Hyaluronic Acid/therapeutic use , Drug Carriers/therapeutic use , Muramidase , Colorectal Neoplasms/drug therapy , Hydrogen-Ion Concentration , Particle Size , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
15.
Int J Biol Macromol ; 254(Pt 2): 127822, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926302

ABSTRACT

Our aim was to investigate the preparation of self-assembled garlic essential oil-amylose inclusion complexes (SGAs) using garlic essential oil (GEO) and corn starch (CS), and evaluated their release properties. SGAs were fabricated by pre-gelatinization coupling with high-speed shear at different GEO-CS mass ratios. When the mass ratio of GEO to pre-gelatinized corn starch was set at 15 % (SGA-15 %), with a fixed shear rate of 9000 rpm and a shear time of 30 min, the allicin content was 0.573 ± 0.023 mg/g. X-ray diffraction (XRD) results revealed a starch V-type crystalline structure in SGAs with peaks at 13.0°, 18.0°, and 20.0° (2θ). Fourier Transform Infrared (FTIR) spectra of SGAs displayed a shift in the characteristic peak of diallyl trisulfide from 987.51 cm-1 to 991.45 cm-1. Scanning electron microscope (SEM) images revealed that SGAs exhibited lamellar structures covered with small granules. SGAs exhibited higher residual mass (approximately 12 %) than other samples. The resistant starch content of SGAs increased from 10.1 % to 18.4 % as GEO contents varied from 5 % to 15 %. In vitro digestion tests showed that about 53.21 % of allicin remained in SGA-15 % after 8 h. Therefore, this dual treatment can be a new method for fabricating controlled-release inclusion complexes of guest molecules.


Subject(s)
Amylose , Garlic , Amylose/chemistry , Starch/chemistry , Disulfides , X-Ray Diffraction
16.
Angew Chem Int Ed Engl ; 63(2): e202312119, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37996999

ABSTRACT

The kinetics of heterogeneous polymerization is determined directly using small-angle X-ray scattering (SAXS). This important advancement is exemplified for the synthesis of sterically-stabilized diblock copolymer nanoparticles by reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) in mineral oil at 90 °C. The principle of mass balance is invoked to derive a series of equations for the analysis of the resulting time-resolved SAXS patterns. Importantly, there is a continuous change in the X-ray scattering length density for the various components within the reaction mixture. This enables the volume fraction of unreacted BzMA monomer to be calculated at any given time point, which enables the polymerization kinetics to be monitored in situ directly without relying on supplementary characterization techniques. Moreover, SAXS enables the local concentration of both monomer and solvent within the growing swollen nanoparticles to be determined during the polymerization. Data analysis reveals that the instantaneous rate of BzMA polymerization is proportional to the local monomer concentration within the nanoparticles. In principle, this powerful new time-resolved SAXS approach can be applicable to other heterogeneous polymerization formulations.

17.
Adv Mater ; 36(9): e2307006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37924225

ABSTRACT

The ferroptosis pathway is recognized as an essential strategy for tumor treatment. However, killing tumor cells in deep tumor regions with ferroptosis agents is still challenging because of distinct size requirements for intratumoral accumulation and deep tumor penetration. Herein, intelligent nanocapsules with size-switchable capability that responds to acid/hyperthermia stimulation to achieve deep tumor ferroptosis are developed. These nanocapsules are constructed using poly(lactic-co-glycolic) acid and Pluronic F127 as carrier materials, with Au-Fe2 C Janus nanoparticles serving as photothermal and ferroptosis agents, and sorafenib (SRF) as the ferroptosis enhancer. The PFP@Au-Fe2 C-SRF nanocapsules, designed with an appropriate size, exhibit superior intratumoral accumulation compared to free Au-Fe2 C nanoparticles, as evidenced by photoacoustic and magnetic resonance imaging. These nanocapsules can degrade within the acidic tumor microenvironment when subjected to laser irradiation, releasing free Au-Fe2 C nanoparticles. This enables them to penetrate deep into tumor regions and disrupt intracellular redox balance. Under the guidance of imaging, these PFP@Au-Fe2 C-SRF nanocapsules effectively inhibit tumor growth when exposed to laser irradiation, capitalizing on the synergistic photothermal and ferroptosis effects. This study presents an intelligent formulation based on iron carbide for achieving deep tumor ferroptosis through size-switchable cascade delivery, thereby advancing the comprehension of ferroptosis in the context of tumor theranostics.


Subject(s)
Carbon Compounds, Inorganic , Ferroptosis , Hyperthermia, Induced , Iron Compounds , Nanocapsules , Nanoparticles , Neoplasms , Humans , Cell Line, Tumor , Neoplasms/therapy , Sorafenib , Hyperthermia/therapy , Hyperthermia, Induced/methods , Tumor Microenvironment
18.
Acta Pharmaceutica Sinica ; (12): 94-104, 2024.
Article in Chinese | WPRIM | ID: wpr-1005431

ABSTRACT

Decoction is the most commonly used dosage form in the clinical treatment of traditional Chinese medicine (TCM). During boiling, the violent movement of various active ingredients in TCM creates molecular forces such as hydrogen bonding, π-π stacking, hydrophobic interactions and electrostatic interactions, which results in the formation of self-assembled aggregates in decoction (SADs), including particles, gels, fibers, etc. It was found that SADs widely existed in decoction with biological activities superior to both effective monomers and their physical mixtures, providing a new idea to reveal the pharmacodynamic material basis of Chinese herbal medicine from the perspective of component interactions-phase structure. Recently, SADs have become a novel focus of research in TCM. This paper reviewed their relevant studies in recent years and found some issues to be concerned in the research, such as the polydispersity of decoction system, instability of active ingredient interactions during boiling, uncertainty of the aggregates self-assembly rules, and stability, purity, yield of the products. In this regard, some solutions and new ideas were presented for the integrated development and clinical application of SADs.

19.
ACS Nano ; 18(1): 713-727, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38117769

ABSTRACT

Porphyrins and their derivatives are widely used as photosensitizers and sonosensitizers in tumor treatment. Nevertheless, their poor water solubility and low chemical stability reduce their singlet oxygen (1O2) yield and, consequently, their photodynamic therapy (PDT) and sonodynamic therapy (SDT) efficiency. Although strategies for porphyrin molecule assembly have been developed to augment 1O2 generation, there is scope for further improving PDT and SDT efficiencies. Herein, we synthesized ordered manganese porphyrin (SM) nanoparticles with well-defined self-assembled metalloporphyrin networks that enabled efficient energy transfer for enhanced photocatalytic and sonocatalytic activity in 1O2 production. Subsequently, Au nanoparticles were grown in situ on the SM surface by anchoring the terminal alkynyl of porphyrin to form plasmonic SMA heterostructures, which showed the excellent near-infrared-II (NIR-II) region absorption and photothermal properties, and facilitated electron-hole pair separation and transfer. With the modification of hyaluronic acid (HA), SMAH heterostructure nanocomposites exhibited good water solubility and were actively targeted to cancer cells. Under NIR-II light and ultrasound (US) irradiation, the SMAH generates hyperthermia, and a large amount of 1O2, inducing cancer cell damage. Both in vitro and in vivo studies confirmed that the SMAH nanocomposites effectively suppressed tumor growth by decreasing GSH levels in SDT-augmented PDT/PTT. Moreover, by utilizing the strong absorption in the NIR-II window, SMAH nanocomposites can achieve NIR-II photoacoustic imaging-guided combined cancer treatment. This work provides a paradigm for enhancing the 1O2 yield of metalloporphyrins to improve the synergistic therapeutic effect of SDT/PDT/PTT.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Photoacoustic Techniques , Photochemotherapy , Porphyrins , Humans , Manganese , Porphyrins/pharmacology , Porphyrins/therapeutic use , Gold/chemistry , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Phototherapy , Neoplasms/therapy , Water , Cell Line, Tumor
20.
Biomaterials ; 305: 122455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38160626

ABSTRACT

The therapeutic efficacy of cuproptosis combined with phototheranostics is still hindered by easy copper efflux, nonspecific accumulation and limited light penetration depth. Here, a high-performance NIR-II semiconductor polymer was first synthesized through dual-donor engineering. Then a biomimetic cuproptosis amplifier (PCD@CM) was prepared by Cu(II)-mediated coordinative self-assembly of NIR-II ultrasmall polymer dots and the chemotherapeutic drug DOX, followed by camouflaging of tumor cell membranes. After homologous targeting delivery to tumor cells, overexpressed GSH in the tumor microenvironment (TME) triggers the disassembly of the amplifier and the release of therapeutic components through the reduction of Cu(II) to Cu(I), which enable NIR-II fluorescence/photoacoustic imaging-guided NIR-II photothermal therapy (PTT) and chemotherapy. The released Cu(I) induces the aggregation of lipoylated mitochondrial proteins accompanied by the loss of iron-sulfur proteins, leading to severe proteotoxic stress and eventually cuproptosis. NIR-II PTT and GSH depletion render tumor cells more sensitive to cuproptosis. The amplified cuproptosis sensitization provokes significant immune surveillance, triggering the immunogenic cell death (ICD) to promote cytotoxic T lymphocyte infiltration together with aPD-L1-mediated immune checkpoint blockade. This work proposes a new strategy to develop cuproptosis sensitization systems enhanced by NIR-II phototheranostics with homologous targeting and anti-tumor immune response capabilities.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Phototherapy , Copper/therapeutic use , Biomimetics , Polymers/therapeutic use , Neoplasms/therapy , Immunotherapy , Nanoparticles/therapeutic use , Cell Line, Tumor , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL