Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36768834

ABSTRACT

Potatoes are developed vegetatively from tubers, and therefore potato virus transmission is always a possibility. The potato leafroll virus (PLRV) is a highly devastating virus of the genus Polerovirus and family Luteoviridae and is regarded as the second-most destructive virus after Potato virus Y. Multiple species of aphids are responsible for the persistent and non-propagating transmission of PLRV. Due to intrinsic tuber damage (net necrosis), the yield and quality are drastically diminished. PLRV is mostly found in phloem cells and in extremely low amounts. Therefore, we have attempted to detect PLRV in both potato tuber and leaves using a highly sensitive, reliable and cheap method of one-step reverse transcription-recombinase polymerase amplification (RT-RPA). In this study, an isothermal amplification and detection approach was used for efficient results. Out of the three tested primer sets, one efficiently amplified a 153-bp product based on the coat protein gene. In the present study, there was no cross-reactivity with other potato viruses and the optimal amplification reaction time was thirty minutes. The products of RT-RPA were amplified at a temperature between 38 and 42 °C using a simple heating block/water bath. The present developed protocol of one-step RT-RPA was reported to be highly sensitive for both leaves and tuber tissues equally in comparison to the conventional reverse transcription-polymerase chain reaction (RT-PCR) method. By using template RNA extracted employing a cellular disc paper-based extraction procedure, the method was not only simplified but it detected the virus as effectively as purified total RNA. The simplified one-step RT-RPA test was proven to be successful by detecting PLRV in 129 samples of various potato cultivars (each consisting of leaves and tubers). According to our knowledge, this is the first report of a one-step RT-RPA performed using simple RNA extracted from cellular disc paper that is equally sensitive and specific for detecting PLRV in potatoes. In terms of versatility, durability and the freedom of a highly purified RNA template, the one-step RT-RPA assay exceeds the RT-PCR assay, making it an effective alternative for the certification of planting materials, breeding for virus resistance and disease monitoring.


Subject(s)
Luteoviridae , Solanum tuberosum , Virus Diseases , Reverse Transcription , Recombinases/genetics , Solanum tuberosum/genetics , Plant Breeding , Luteoviridae/genetics , RNA , Nucleotidyltransferases/genetics
2.
Mol Cell Probes ; 58: 101743, 2021 08.
Article in English | MEDLINE | ID: mdl-34051280

ABSTRACT

Potato virus X (PVX), is a serious threat to global potato production. A simple and rapid detection method is imperative for PVX diagnosis and early management. In this study, an isothermal one-step reverse transcription-recombinase polymerase amplification (RT-RPA) method was optimized for the quick and convenient detection of PVX in potato leaves and tubers. Our results revealed that this one-step RT-RPA method was highly efficient than the conventional reverse transcription-polymerase chain reaction (RT-PCR). The amplification reaction was free from cross-reactivity with other common potato viruses and completed within 30 min. Moreover, this RT-RPA assay did not require a thermocycler based specific temperature phase amplification and can be easily performed using a simple heating block or water bath at a temperature range of 39-42 °C. The sensitivity assay demonstrated that the developed one-step RT-RPA method was 100 times more sensitive than a routine one-step RT-PCR. Initially, the purified total RNA as the template isolated from infected leaves of potato was used for the detection of PVX. One-step RT-RPA was later performed using cellular disc paper-based simple RNA extract as a template that could detect the virus more efficiently than purified total RNA. The performance of the one-step RT-RPA assay was further evaluated using 500 field samples of leaves and tubers representing different cultivars and geographical regions. To our knowledge, this is the first report of rapid, sensitive, and reliable detection of PVX infection by one-step RT-RPA using cellular disc paper-based simple RNA extract from leaves and dormant tubers of potato. It is superior to the common RT-PCR assay in terms of its versatility, quickness, and independence of highly purified RNA template and can be adopted as a substitute to RT-PCR as an effective technique for seed potato certification, quarantine, breeding, and field surveys.


Subject(s)
Potexvirus , Solanum tuberosum , Nucleic Acid Amplification Techniques , Plant Leaves , Potexvirus/genetics , Recombinases/genetics , Reverse Transcription , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL