Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Sci Food Agric ; 104(7): 4189-4200, 2024 May.
Article in English | MEDLINE | ID: mdl-38349054

ABSTRACT

BACKGROUND: We investigated the impact of using canola meal (CM) or corn distillers dried grain soluble (cDDGS) in place of soybean meal (SBM) in low-crude-protein diets supplemented with amino acids (AA) on AA digestibility, gut morphometrics, and AA transporter genes in broiler chicken. On day 0, 540 Cobb 500 male broilers were allocated to six diets in 36-floor pens. The positive control (PC) was a corn-SBM diet with adequate crude protein (CP). The CP level of negative control (NC) was decreased by 45 and 40 g kg-1 relative to PC for grower and finisher phases, respectively. The subsequent two diets had the same CP levels as NC but with cDDGS added at 50 or 125 g kg-1. The last two diets had the same CP as NC but with CM added at 50 or 100 g kg-1. RESULTS: Dietary CP reduction in corn-SBM diets increased (P < 0.05) the digestibility of Lys (88.5%), Met (90.7%), Thr (77.4%), Cys (80.7%), and Gly (84.7%). Increasing levels of cDDGS linearly decreased (P < 0.05) the digestibility of Asp, Cys, Glu, and Ser, whereas increasing CM level linearly decreased (P < 0.05) the digestibility of Cys, Pro, and Ser. The CP reduction in corn-SBM diets produced downward expression of peptide transporter1 and decreased (P < 0.05) absolute pancreas and ileum weight and length of jejunum and ileum. CONCLUSIONS: Partial replacement of SBM with alternative protein feedstuffs (cDDGS or CM) in low-CP diets had minimal effects on AA digestibility and mRNA levels of peptides and AA transporters. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Amino Acids , Brassica napus , Animals , Male , Amino Acids/metabolism , Chickens/metabolism , Zea mays/genetics , Zea mays/metabolism , Flour , Digestion , Animal Feed/analysis , Diet/veterinary , Diet, Protein-Restricted , Ileum/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Peptides/metabolism , Glycine max , Gene Expression , Animal Nutritional Physiological Phenomena
2.
Br Poult Sci ; 65(2): 137-143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265055

ABSTRACT

1. Two experiments were conducted to explore the effects of an exogenous sfericase protease on the apparent ileal nutrient digestibility of soybean meal (SBM) and rapeseed meal (RSM) in broiler chickens.2. In each experiment, a total of 256 sixteen-day-old male Cobb 500 broilers were fed one of four semi-purified experimental diets, comprising two different batches (A and B) of samples for either SBM (Exp. 1) or RSM (Exp. 2) without or with an exogenous sfericase (0 or 30,000 NFP/kg). Each experimental diet was fed to eight replicate pens of broiler chickens from 16 to 21 d of age (eight birds per cage), and ileal digesta were collected for measuring the digestibility coefficients.3. In Exp. 1, the amino acid digestibility was greater (P < 0.05) in SBM B compared with SBM A for Arg and Val, and a similar trend (P < 0.1) was observed for Tyr, Leu and Thr. Exogenous sfericase increased (P < 0.10) digestibility of most of amino acids except Gly, His and Trp. There was an interaction between SBM source and sfericase, whereby digestibility of P, N and Asp was increased by sfericase for SBM B but not for SBM A. In Exp. 2, there was no interaction (P > 0.05) between RSM source and sfericase for ileal nutrient digestibility. Digestibility was greater in RSM A compared to RSM B for all non-essential AA and most essential AA (except for Trp), while the reverse was noted for Ca and P (P < 0.05). Exogenous sfericase increased (P < 0.1) digestibility for all amino acids except Cys and Met.4. In conclusion, the current studies showed that both SBM and RSM batches influenced amino acid digestibility. Sfericase protease supplementation increased amino acid digestibility for both SBM and RSM. The digestibility effects were greater in the SBM batch with low digestibility for N and Asp which was in line with an increase in P digestibility.


Subject(s)
Brassica napus , Brassica rapa , Serine Endopeptidases , Animals , Male , Amino Acids/metabolism , Brassica napus/metabolism , Chickens/metabolism , Peptide Hydrolases/metabolism , Flour , Digestion , Diet/veterinary , Brassica rapa/metabolism , Ileum/metabolism , Glycine max , Animal Feed/analysis , Nutrients , Animal Nutritional Physiological Phenomena
3.
Anim Nutr ; 16: 45-61, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38144431

ABSTRACT

A 12-week feeding trial with juvenile red drum (Sciaenops ocellatus) fed high-soybean meal (SBM) diets was conducted to investigate a putative biomarker of nutritional imbalance, N-formimino-L-glutamate (FIGLU). Three fishmeal-free, 60% SBM pelleted diets (named B12, Fol, and Met, respectively) were tested to evaluate the effects on growth performance and tissue metabolite profiles of supplementation of vitamin B12 (0.012 mg/kg), folate (10 mg/kg), methionine (1 g/kg) respectively, above basal supplementation levels. A fourth SBM-based diet (named B12/Fol/Met) was formulated with a combination of B12, folate, and methionine to attain the above-mentioned target concentrations. A fifth 60% SBM diet (named FWS) with methionine supplementation (1 g/kg above basal supplementation levels), enriched with taurine, lysine and threonine as well as minerals, was also tested. This diet contained formulation targets and additives which have allowed for replacing fishmeal with plant proteins in rainbow trout feeds. Control diets included a fishmeal-based diet (named FM), an unsupplemented basal 60% SBM diet (named SBM60), and a "natural" diet (named N) made up of equal parts of fish (cigar minnows), squid and shrimp as a positive reference for growth performance. Formulated feeds contained approximately 37% total crude protein, approximately 14% total crude lipid and were energetically balanced. Standard growth performance metrics were measured, and tissues (liver, muscle) were collected at week 12 to evaluate diet-induced metabolic changes using nuclear magnetic resonance (NMR)-based metabolomics. Our results show that the FWS diet outperformed all other SBM diets and the FM diet under all performance metrics (P < 0.05). FIGLU was not detected in fish fed the N diet but was detected in those fed the SBM diets and the FM diet. Fish fed the FWS diet and the Met diet showed lower hepatic levels of FIGLU compared with the other SBM-based diets (P < 0.05), suggesting that among the different supplementation regimes, methionine supplementation was associated with lower FIGLU levels. The FWS diet produced tissue metabolite profiles that were more similar to those of fish fed the N diet. Based on our results, the FWS diet constitutes a promising SBM-based alternative diet to fishmeal for red drum.

4.
Anim Biosci ; 36(11): 1718-1726, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402448

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the effect of supplementation with enzymolytic soybean meal (ESBM) on broilers fed low crude protein (CP) diets. METHODS: A total of 360 one-day-old broilers were randomly assigned to six treatments with 6 replicates per treatment and 10 chicks per replicate for a period of 42 days. Chicks were fed a basal standard high-CP diet as a positive control (PC), a low-CP diet (reducing 10 g/kg CP from the PC) as a negative control (NC), or an NC + 0.5%, 1.0%, 1.5%, or 2.0% ESBM diet. RESULTS: Compared to chicks fed the PC, chicks fed the NC had a decreased body weight gain (BWG, p<0.05) from 1 to 42 days, but supplementation with 2.0% ESBM restored BWG (p<0.05) and even linearly improved the feed conversion rate (FCR, p<0.05). Digestibility of CP and ether extract was increased (p<0.05) in chicks fed a 1.0% ESBM diet compared to the PC. With increasing levels of ESBM, nitrogen (N) excretion decreased (p<0.05). The addition of ESBM to the diet did not affect (p>0.05) serum concentrations of total protein, albumin and total cholesterol but led to a descending trend in triglycerides and an ascending trend in calcium and urea N at 42 days (p<0.10). There were no differences (p>0.05) in villus height (VH), crypt depth (CD), and VH/CD (V/C) of the duodenum and jejunum between the PC and NC at both 21 days and 42 days, while increasing dietary ESBM levels linearly (p<0.05) decreased CD and increased V/C of the duodenum and jejunum at both 21 days and 42 days. CONCLUSION: The findings indicated that ESBM could be used in broiler low-CP diets to improve production performance, decrease N excretion, and enhance intestinal health.

5.
Front Immunol ; 14: 1197767, 2023.
Article in English | MEDLINE | ID: mdl-37435065

ABSTRACT

Antibacterial peptide has been widely developed in cultivation industry as feed additives. However, its functions in reducing the detrimental impacts of soybean meal (SM) remain unknown. In this study, we prepared nano antibacterial peptide CMCS-gcIFN-20H (C-I20) with excellent sustained-release and anti-enzymolysis, and fed mandarin fish (Siniperca chuatsi) with a SM diet supplemented with different levels of C-I20 (320, 160, 80, 40, 0 mg/Kg) for 10 weeks. 160 mg/Kg C-I20 treatment significantly improved the final body weight, weight gain rate and crude protein content of mandarin fish and reduced feed conversion ratio. 160 mg/Kg C-I20-fed fish maintained appropriate goblet cells number and mucin thickness, as well as improved villus length, intestinal cross-sectional area. Based on these advantageous physiological changes, 160 mg/Kg C-I20 treatment effectively reduced multi-type tissue (liver, trunk kidney, head kidney and spleen) injury. The addition of C-I20 did not change the muscle composition and muscle amino acids composition. Interestingly, dietary 160 mg/Kg C-I20 supplementation prevented the reduction in myofiber diameter and change in muscle texture, and effectively increased polyunsaturated fatty acids (especially DHA + EPA) in muscle. In conclusion, dietary C-I20 in a reasonable concentration supplementation effectively alleviates the negative effects of SM by improving the intestinal mucosal barrier. The application of nanopeptide C-I20 is a prospectively novel strategy for promoting aquaculture development.


Subject(s)
Flour , Intestinal Mucosa , Animals , Nutrients , Goblet Cells , Muscles , Anti-Bacterial Agents , Fishes
6.
Front Immunol ; 14: 1140678, 2023.
Article in English | MEDLINE | ID: mdl-37266423

ABSTRACT

To investigate the effects of dietary tributyrin (TB) and alanyl-glutamine (AGn) on the intestinal health of largemouth bass (Micropterus salmoides) fed with high-level soybean meal (SM) diet, six isonitrogenous (41.36%) and isolipidic (10.25%) diets were formulated and fed to largemouth bass (initial body weight 25.5 ± 0.5g) for 8 weeks. The two control diets contained 34.8% peanut meal (PM) and 41.3% SM, while the other four experimental diets supplemented TB at 0.1% (TB0.1), 0.2% (TB0.2) and AGn at 1% (AGn1), 2% (AGn2) in SM, respectively. The results showed that there were no significant differences in weight gain, survival rate, and hepatosomatic index among all groups (P>0.05), while feed coefficient rate in AGn1, AGn2 and TB0.2 groups was significantly lower than that in SM group (P< 0.05). Compared with the PM group, the intestinal inflammation of largemouth bass in SM group were obvious, accompanied by the damage of intestinal structure, the decrease of digestive enzyme activity, and the up-regulation of proinflammatory cytokines. Compared with the SM group, the activities of intestinal trypsin, lipase and foregut amylase in TB and AGn groups increased significantly (P<0.05), and the gene expression levels of acetyl-CoA carboxylase (ACC), caspase-3, caspase-8, caspase-9, tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1ß) were down-regulated, while the gene expression levels of target of rapamycin (TOR) and eIF4E-binding protein (4E-BP) were up-regulated in all experimental groups (P<0.05). It can be concluded that supplementation of 1%-2% AGn and 0.1%-0.2% TB can alleviate enteritis caused by high-level soybean meal, and the recommend level is 2% AGn and 0.2% TB.


Subject(s)
Bass , Animals , Bass/genetics , Flour , Diet , Dipeptides , Glycine max
7.
Poult Sci ; 102(6): 102684, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37116283

ABSTRACT

Reducing the dependency on soybean meal (SBM) is necessary to improve the sustainability of the poultry industry. Moreover, the recommendations for minimum contents of dietary Gly+Ser require further research. Two parallel studies were executed to determine the effects of replacing SBM with crystalline amino acids (CAA) to meet the amino acid requirements and to determine whether a minimum content of Gly+Ser is necessary for broiler diets. In study 1, 1,860 one-day-old male chicks were fed a common starter phase diet (22.8% CP). During the grower-1, grower-2, and finisher phases, the control CP content was reduced (up to 2.1%) with the stepwise addition of CAA (treatments 1-5). Within each feeding phase, AME, standardized ileal digestible Lys, and the minimum Met, Thr, Val, Gly+Ser, Ile, Arg, and Trp to Lys ratios were similar. In study 2, 1,488 male chickens were used in a 2 × 2 factorial design with the Gly+Ser content and feed ingredients used as main factors. Performance was monitored during 41 d in both studies. Reduction in CP content linearly increased (P < 0.05) BW, ADG, and ADFI in the grower-1, grower-2, and finisher phases. When the overall FCR was adjusted considering the BW differences (FCRadj); FCRadj linearly decreased with the weighted average CP (WACP) content (P < 0.001). In the lowest CP treatment, estimated dietary N utilization efficiency was improved by 10%, and the overall N excretion was reduced by 16% compared with the control (P < 0.001). The overall SBM and soybean oil intakes were linearly reduced relative to WACP (-12.0 and -20.2% in control vs. treatment 5, respectively; P < 0.001). Formulating with a minimum Gly+Ser content in the starter phase improved the FCR (P < 0.05) only in the corn-SBM-based diet. In grower-1, increasing Gly+Ser content improved the FCR independent of the feed ingredients used (P < 0.05). Crystalline amino acids can be used to partially replace intact protein reducing the dependency on SBM. Young birds may not synthesize enough Gly endogenously and a minimum content should be provided in the early phases.


Subject(s)
Amino Acids , Glycine , Animals , Male , Amino Acids/metabolism , Serine , Chickens/metabolism , Dietary Supplements , Diet/veterinary , Dietary Proteins/metabolism , Glycine max/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
8.
Food Chem ; 421: 136130, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37116444

ABSTRACT

The study aims to enhance the functional properties of soybean meal (SBM) using potent proteolytic Bacillus strains isolated from kinema, a traditional fermented soybean product of Sikkim Himalaya. Selected Bacillus species; Bacillus licheniformis KN1G, B. amyloliquifaciens KN2G, B. subtilis KN36D, B. subtilis KN2B, and B. subtilis KN36D were employed for solid state fermentation (SSF) of SBM samples. The water and methanol extracts of SBM hydrolysates presented a significant increase in antioxidant activity. The water-soluble extracts of B. subtilis KN2B fermented SBM exhibited the best DPPH radical scavenging activity of 2.30 mg/mL. In contrast, the methanol-soluble extract of B. licheniformis KN1G fermented SBM showed scavenging activity of 0.51 mg/mL. Proteomic analysis of fermented soybean meal revealed several common and unique peptides produced by applying different starter cultures. Unique antioxidant peptides (HFDSEVVFF and VVDMNEGALFLPH) were identified from FSBM via LC/MS. B. subtilis KN36D showed the highest diversity of peptides produced during fermentation. The results indicate the importance of specific strains for fermentation to upgrade the nutritional value of raw fermented biomass.


Subject(s)
Bacillus , Fermented Foods , Methanol , Proteomics , Glycine max/chemistry , Peptides , Peptide Hydrolases , Fermentation , Plant Extracts
9.
Poult Sci ; 102(5): 102578, 2023 May.
Article in English | MEDLINE | ID: mdl-36933528

ABSTRACT

The development of a healthy gut during prestarter and starter phases is crucial to drive chicken's productivity. This study aimed to evaluate the effects of a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal (pYSM) on growth performance, organ weights, leg health, and gut development in broiler chickens. A total of 576 as-hatched broiler chicks were randomly allotted to 3 dietary treatments (8 replicates/treatment, 24 chickens/replicate): a control group (C) without the pYSM, a treatment group 1 (T1), in which the pSYM was included at 20, 10, 5, 0, and 0% levels in the prestarter, starter, grower, finisher I, and finisher II feeding phases, respectively, and a treatment group 2 (T2), in which the pSYM was included at 5, 5, 5, 0, and 0% levels in each feeding phase. On d 3 and 10, 16 broilers/treatment were euthanized. The T1 broilers tended to show higher live weight (d 3 and 7) and average daily gain (prestarter and starter phases) than the other groups (P ≤ 0.10). Differently, pYSM-based diets did not influence the growth performance of the other feeding phases and the whole experimental period (P > 0.05). Relative weights of pancreas and liver were also unaffected by pYSM utilization (P > 0.05). Litter quality tended to have higher average scores in C group (P = 0.079), but no differences were observed for leg health (P > 0.05). Histomorphometry of gut, liver, and bursa of Fabricius was not affected by diet (P > 0.05). Gut immunity was driven to an anti-inflammatory pattern, with the reduction of IL-2, INF-γ, and TNF-α in the duodenum of treated birds (d 3, P < 0.05). Also, MUC-2 was greater in the duodenum of C and T2 group when compared to T1 (d 3, P = 0.016). Finally, T1-fed chickens displayed greater aminopeptidase activity in the duodenum (d 3 and 10, P < 0.05) and jejunum (d 3, P < 0.05). Feeding high levels of pYSM (10-20%) to broilers in the first 10 d tended to improve growth performance in the prestarter and starter phases. It also positively downregulated proinflammatory cytokines during the first 3 d, as well as stimulated the aminopeptidase activity in the prestarter and starter periods.


Subject(s)
Chickens , Dietary Supplements , Animals , Saccharomyces cerevisiae , Flour , Diet/veterinary , Glycine max , Aminopeptidases , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
10.
J Dairy Sci ; 106(3): 1803-1814, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36710188

ABSTRACT

This research aimed to investigate the effects of replacing soybean meal with high-oil pumpkin seed cake (HOPSC) on ruminal fermentation, lactation performance, milk fatty acid, and ruminal bacterial community in Chinese dairy cows. Six multiparous Chinese Holstein cows at 105.50 ± 5.24 d in milk (mean ± standard deviation) and 36.63 ± 0.74 kg/d of milk yield were randomly allocated, in a 3 × 3 Latin square design, to 3 dietary treatments in which HOPSC replaced soybean meal. Group 1 was the basal diet with no HOPSC (0HOPSC); group 2 was a 50% replacement of soybean meal with HOPSC and dried distillers grains with solubles (DDGS; 50HOPSC), and group 3 was a 100% replacement of soybean meal with HOPSC and DDGS (100HOPSC). We found no difference in the quantity of milk produced or milk composition among the 3 treatment groups. Feed efficiency tended to increase linearly as more HOPSC was consumed. In addition, rumen fermentation was not influenced when soybean meal was replaced with HOPSC and DDGS; the relative abundance of ruminal bacteria at the phylum and genus levels was altered. We also observed that as the level of HOPSC supplementation increased, the relative abundance of Firmicutes and Tenericutes linearly increased, whereas that of Bacteroidetes decreased. However, with increasing HOPSC supplementation, the relative abundance of Ruminococcus decreased linearly at the genus level in the rumen, and the relative abundance of Prevotella showed a linear downward tendency. Changes in dietary composition and rumen bacteria had no significant effect on the fatty acid composition of milk. In conclusion, our results indicated that replacing soybean meal with a combination of HOPSC and DDGS can meet the nutritional needs of high-yielding dairy cows without adversely affecting milk yield and quality; however, the composition of rumen bacteria could be modified. Further study is required to investigate the effects of long-term feeding of HOPSC on rumen fermentation and performance of dairy cows.


Subject(s)
Cucurbita , Milk , Female , Cattle , Animals , Lactation , Fatty Acids , Rumen , Flour , Animal Feed/analysis , Diet/veterinary , Bacteria , Seeds , Zea mays
11.
Anim Biosci ; 36(2): 275-283, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36108691

ABSTRACT

OBJECTIVE: This study was to evaluate standardized ileal digestibility (SID) of amino acids (AA) in fermented soybean meal (FSBM) for nursery pigs using both direct procedure and difference procedure when FSBM was added at 20% in diets. METHODS: Forty-eight pigs at 9.2±0.9 kg body weight (BW) were individually housed and allotted to 4 treatments. Treatments included NFD (a semi-purified N free diet), FSD (a diet with 20% FSBM), CBD (corn basal diet), and CFD (corn basal diet:FSBM at 80:20). The FSD was used to measure AA digestibility in FSBM using the direct procedure, whereas CBD and CFD were used in the difference procedure. Pigs were fed for 10 days (0.09×BW0.75 kg per day) and euthanized to collect ileal digesta for TiO2 and AA. RESULTS: Total endogenous AA loss was 12.1 g/kg of dry matter intake. The apparent ileal digestibility (AID) Thr was greater (p<0.05) and AID His (p = 0.073) and Leu (p = 0.052) tended to be greater using the direct procedure compared with the difference procedure. The SID Thr were greater (p<0.05) in FSBM for nursery pigs calculated using a direct procedure compared with a difference procedure. In addition, SID Lys in FSBM was about 83% to 88% for nursery pigs higher than SID Lys described in National Research Council (2012). CONCLUSION: The SID of AA in FSBM when included at practical levels using the direct procedure were similar to those from the difference procedure. Considering the SID of AA obtained using both direct and difference procedures, FSBM is an effective protein supplement providing highly digestible AA to nursery pigs. The SID of AA from this study was considerably higher than those previous reported. This study also indicates the importance of including the test feedstuffs at practical levels when evaluating digestibility.

12.
Front Nutr ; 9: 1001412, 2022.
Article in English | MEDLINE | ID: mdl-36245477

ABSTRACT

To overcome the problems with current mineral supplements for laying hens including low absorption, mineral antagonism, and high cost, we developed mineral element fermentation complexes (MEFC) by synergistically fermenting bean dregs and soybean meal with strains and proteases and complexing with mineral elements. The fermentation complexation process was optimized based on the small peptide and organic acid contents and the complexation rate of mineral elements after fermentation. The optimal conditions were as follows: the total inoculum size was 5% (v/w), 15% (w/w) wheat flour middling was added to the medium, and mineral elements (with 4% CaCO3) were added after the completion of aerobic fermentation, fermentation at 34°C and 11 days of fermentation. Under these conditions, the complexation rates of Ca, Fe, Cu, Mn, and Zn were 90.62, 97.24, 73.33, 94.64, and 95.93%, respectively. The small peptide, free amino acid, and organic acid contents were 41.62%, 48.09 and 183.53 mg/g, respectively. After 60 days of fermentation, 82.11% of the Fe in the MEFC was ferrous ions, indicating that fermentation had a good antioxidant effect on ferrous ion, and the antioxidant protection period was at least 60 days. Fourier transform infrared spectroscopy showed that the mineral ions were complexed with amino and carboxyl groups. The added mineral elements promoted microbial growth, protein degradation, and organic acid secretion and significantly improved fermentation efficiency. Animal experiments showed that MEFC had positive effects on several parameters, including production performance (average daily feed intake, P < 0.05; egg production rate, P < 0.05; and average egg weight, P < 0.05), mineral absorption, intestinal morphology (villus height to crypt depth ratio in the jejunum and ileum, P < 0.05), and blood routine and biochemical indexes (red blood cells, P < 0.05; hemoglobin, P < 0.05). This study provides theoretical support for the development of mineral complexes for laying hens via fermentation.

13.
Fish Shellfish Immunol ; 128: 651-663, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36028056

ABSTRACT

A 56-day feeding trial was conducted to examine the preventive and reparative functions of host-associated probiotics against high soybean meal (SM)-induced negative effects in Japanese seabass (Lateolabrax japonicus). Fish continuously fed low SM (containing 16% SM) and high SM (containing 40% SM) diets were named as positive (PC) and negative (C) control, respectively. Preventive functions of probiotics were evaluated by continuously feeding diets LF3 (Lactococcus petauri LF3 supplemented in high SM diet, group PLF3) and LF4 (Bacillus siamensis LF4 supplemented in high SM diet, group PLF4), while reparative functions were estimated by feeding the high SM diet during 0-28 days, then feeding diets LF3 (group RLF3) and LF4 (group RLF4) until day 56. Compared with the group PC, suppressed growth and immunity, and damaged intestinal health were observed in the group C on days 28 and 56. Fish in groups PLF3 and PLF4, rather than in groups RLF3 and RLF4, showed higher growth compared with the group C and displayed similar immune status to the group PC, indicating that the initial and continued application of probiotic LF3 and LF4 can efficiently improve high SM induced growth and immune deficiency in Japanese seabass, but probiotics had limited reparative benefits when they were administrated at the middle of the feeding trial (28 d). Furthermore, probiotics showed good preventive functions and limited reparative functions on gut health via improving intestinal morphology and inflammation markers, for example, decreasing diamine oxidase activity and d-lactate content, while up-regulating anti-inflammatory TGF-ß1 expression and down-regulating pro-inflammatory TNF-α, IL-1ß, and IL-8 expressions. Moreover, dietary supplementation of probiotics (especially on day 56) could effectively shape the gut microbiota, such as significantly decreasing abundances of opportunistic pathogens (phylum Actinobacteria, genera Pseudomonas and Moheibacter on day 28, phylum Proteobacteria, genus Plesiomonas on day 56), significantly increasing gut microbial diversity and abundances of possible beneficial bacteria (phylum Bacteroidetes and genus Lactobacillus on day 28, phyla Firmicutes, Bacteroidetes and Cyanobacteria, genera Bacillus, Lactobacillus and Bacteroides on day 56). In conclusion, we evidenced for the first time that host-associated L. petauri LF3 and B. siamensis LF4 can provide effectively preventive and certain reparative functions against high SM-induced adverse effects in L. japonicus.


Subject(s)
Amine Oxidase (Copper-Containing) , Probiotics , Animal Feed/analysis , Animals , Diet/veterinary , Interleukin-8 , Lactates , Lactobacillus , Probiotics/pharmacology , Glycine max , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha
14.
Poult Sci ; 101(8): 101978, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35793599

ABSTRACT

This study measured the metabolizable energy of soybean meal (SBM) and evaluated effects of soybean meal specific enzymes supplementation in corn-soybean diets on growth performance, intestinal digestion properties and energy values of 28-day-old broilers. A total of 336 one-day-old male AA broiler chickens were distributed to 7 groups in a completely random design. The birds were given 7 diets containing 6 diets with different combined soybean meals and a fasting treatment, 8 replicates per treatment and 6 birds per replicate (Trial 1). A total of 672 one-day-old male AA broiler chickens were randomly allocated to 7 dietary treatments including a control diet and 6 diets supplemented with 300 mg/kg α-galactosidase, 200 mg/kg ß-mannanase, and 300 mg/kg protease individually or in combination (Trial 2). Apparent metabolizable energy (AME) of broilers was measured from d 25 to 27 in both trial 1 and trial 2. The results showed that AME values of combined soybean meals averaged 2,894 kcal/kg. Dietary ß-mannanase and protease supplementation increased body weight gain (P < 0.05) during d 0 to 14, whereas did not affect the growth performance (P > 0.05) during d 14 to 28. Addition of ß-mannanase in combination with other enzymes significantly increased lipase and trypsin content (P < 0.05) in ileum. In addition, dietary ß-mannanase and protease supplementation individually or in combination enhanced trypsin enzyme content in jejunum (P < 0.05). The ß-mannanase enzyme enhanced villus height and villus height to crypt depth ratio (P < 0.05) of ileum compared with control diet. Moreover, supplementation of enzyme except for protease enhanced raffinose and stachyose degradation ratio (P < 0.05). Dietary ß-mannanase supplementation individually or in combination enhanced AME and AMEn values (P < 0.05). This study demonstrated that dietary enzyme supplementation especially ß-mannanase improved intestinal digestion properties and contributed to high energy values.


Subject(s)
Chickens , Glycine max , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Digestion , Male , Meals , Glycine max/metabolism , Trypsin/metabolism , Trypsin/pharmacology , beta-Mannosidase/metabolism
15.
Anim Biosci ; 35(12): 1881-1891, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35760407

ABSTRACT

OBJECTIVE: The present study aimed to quantify the effects of fermented soybean meal (FSBM) on broiler chickens' performance by employing a meta-analysis approach. METHODS: A total of 16 studies were included in the database after being systematically selected using a PRISMA protocol. Hedges' g effect size was used to quantify pooled standardized mean difference (SMD) using random-effects models at 95% confidence intervals (95% CI). Publication bias among studies was computed with Egger's test and visualized using funnel plots. RESULTS: Results indicated that dietary FSBM inclusion increased final body weight (BW) (SMD = 0.586, 95% CI: 0.221 to 0.951, p = 0.002) of broiler chickens, particularly in starter period (SMD = 0.691, 95% CL: 0.149 to 1.233, p = 0.013) while in the finisher period, the effect was weaker (SMD = 0.509, 95% CI: 0.015 to 1.004, p = 0.043). Average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR) were not affected with FSBM inclusion when compared to control. Subgroup analysis revealed that FI increased in starter period (SMD = 0.582, 95% CI: 0.037 to 1.128, p = 0.036). When considering types of microorganism as moderating variables in the subgroup analysis, we found that Aspergillus oryzae, mixed probiotics+bromelain protease, Bacillus subtilis, and Lactobacillus bacteria significantly increased ADG and FI (p<0.01). Additionally, either Bacillus subtilis+protease or Bacillus subtilis alone decreased FCR (p<0.001). However, meta-regression analysis showed that levels of FSBM inclusion had no effects on final BW (p = 0.502), ADG (p = 0.588), FI (p = 0.861), and FCR (p = 0.462). CONCLUSION: Substituting SBM in broiler chickens' diet with FSBM improved BW of broiler chickens, especially in the starter period whereas the effects on ADG, FI, and FCR were mostly dependent on microbial strains used for fermentation.

16.
Antioxidants (Basel) ; 11(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35624815

ABSTRACT

Aiming to optimize soymeal-based diets for Japanese seabass (Lateolabrax japonicas), a 105-day feeding trial was conducted to evaluate the effects of functional additives, including antioxidants (ethoxyquin, thymol and carvacrol) and chelated trace elements (Cu, Mn and Zn), on the growth, immunity, antioxidant capacity and disease resistance of fish fed diets with conventional soybean meal replacing 50% of fishmeal. Three isonitrogenous (45%) and isolipidic (11%) diets were formulated: (1) standard reference diet (FM, 42% fishmeal); (2) soymeal-based diet (SBM, 21% fishmeal and 30% conventional soybean meal); (3) SBM diet supplemented 0.0665% functional additives (FAS). Each experimental diet was randomly fed to quadruplicate groups of forty feed-trained Japanese seabass (initial average body weight = 125.6 ± 0.6 g) stocked in a saltwater floating cage. Upon the conclusion of the feeding trial, lower feed intake was observed in fish fed SBM compared to those fed FM and FAS. Fish fed FM showed the highest growth performance, estimated as the weight gain rate. Notably, FAS supported faster growth of fish than those fed SBM, indicating the optimal growth performance of dietary functional additives. The feed conversion rate showed the opposite trend among dietary treatments, with the highest value in fish fed SBM. Regarding immunity, fish fed soymeal-based diets suppressed the serum alternative complement pathway activities compared to FM, whereas the respiratory burst activity in macrophages of head kidneys showed a similar picture, but no statistical differences were observed. Further, fish fed soymeal-based diets had lower serum Cu-Zn SOD, CAT and GPx activities as well as liver vitamin E levels and scavenging rates of hydroxyl radical but higher liver MDA contents compared to the FM-fed group. Fish fed FAS had higher serum Cu-Zn SOD and GPx activities and liver vitamin E levels than those fed SBM, suggesting the enhancement of antioxidant capacity of dietary functional additives. For the disease resistance against Vibrio harveyi infection, fish fed SBM had the highest cumulative mortality, followed by the FAS and FM groups. Additionally, the biomarkers related to the immune and antioxidant capacities had a positive correlation with the relative abundance of Paracoccus and Pseudomonas, while liver MDA levels had a negative correlation with the relative abundance of Pseudomonas and Psychrobacter. Collectively, soymeal replacing 50% of fishmeal suppressed the growth, immunity, antioxidant capacity and disease resistance of Japanese seabass, while dietary supplementation of antioxidants and chelated trace elements could mitigate soymeal-induced adverse effects on growth and disease resistance through the improvement in antioxidant capacity and regulation of gut microbiota.

17.
Trop Anim Health Prod ; 54(3): 162, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35428944

ABSTRACT

The objective of this study was to investigate the effects of soybean meal (SBM) treated with acetic or citric acids on growth performance, microbial population, digestive enzyme activities, nutrient digestibility, and jejunal morphology in broiler chickens. A total of 350 one-day-old male broiler chicks (Ross 308) were randomly distributed into 7 experimental groups with 5 replicates per each. Experimental treatments were diets containing untreated SBM (control) and SBM treated with two acid sources and their concentrations including 5, 10, and 15% acetic acid (A1, A2, and A3) or 0.25, 0.50, and 0.75% citric acid (C1, C2, and C3). Results showed that trypsin inhibitors and lectins as the main SBM anti-nutrients significantly reduced in acid-treated SBM compared with untreated SBM (P < 0.05). During 1-24 days, body weight gain increased in chicks fed the C2 diet (P < 0.05). Feeding of the C2 diet increased feed intake compared with A1, A2, and C3 groups (P < 0.05). Feed conversion ratio improved in chicks fed with C2, C3, and A2 diets compared with the control group (P < 0.05). The greatest villus length, villus length to crypt depth ratio, and villus surface area were observed in the C2 diet (P < 0.05). A significant increase in protease and lipase activity was found in broilers which received a C2 diet compared with the control group (P < 0.05). Broiler chickens fed with the C2 diet had a higher organic matter and crude protein digestibility than the chicks which received the control diet (P < 0.05) and dry matter digestibility was the lowest in broilers fed with the A3 diet (P < 0.05). In conclusion, the acid hydrolyzing process had a beneficial effect on the nutritional value of SBM. In addition, data showed that acid-hydrolyzed SBM had the potential to exert positive influences on growth performance, jejunal morphology, and nutrient utilization in broiler chickens.


Subject(s)
Chickens , Glycine max , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Male , Nutrients
18.
Animals (Basel) ; 12(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35327085

ABSTRACT

Eight dual-flow continuous culture fermenters were used in three periods to study the effects of diets containing heat-treated soyabean meal (HSBM) or corn gluten meal (CGM) on ruminal microbial fermentation and the degradation of individual amino acids (AA). Treatments were a mix of non-protein nitrogen (N; urea and tryptone) that were progressively substituted (0, 33, 67 and 100%) for HSBM or CGM. Ruminal escape of AA was calculated with the slope ratio technique. Total volatile fatty acids (95.0 mM) and molar proportions (mol/100 mol) of acetate (59.3), propionate (21.8) and butyrate (10.5) were not affected by the treatments. As the level of HSBM or CGM increased, the concentration of ammonia-N and the degradation of protein decreased (p < 0.01), and the flows of nonammonia and dietary N increased (p < 0.01) quadratically. Compared with HSBM, CGM provided the highest flow (g/d) of total (20.6 vs. 18.3, p < 0.01), essential (9.04 vs. 8.25, p < 0.04) and nonessential (11.5 vs. 10.0, p < 0.01) AA, and increased linearly (p < 0.01) as the level of supplemental protein increased. Ruminal degradation of essential AA was higher (p < 0.04) than nonessential AA in CGM, but not in HSBM. Degradation of lysine was higher (p < 0.01) in both proteins, and degradation of methionine was higher in CGM. Ruminal degradation of individual AAs differ within and between protein sources and needs to be considered in precision feeding models.

19.
Mol Neurobiol ; 59(3): 1649-1664, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35001354

ABSTRACT

Age-related degenerative brain diseases frequently manifest as memory deficits. Dietary interventions or nutraceuticals may provide efficacious treatments through prevention and cure. Soybean meal, a byproduct of soy oil refining, has health benefits, but its effect on memory function is unknown. Therefore, we evaluated the effect of the oral administration of soybean meal extract (SME) for 2 weeks on memory function using the Morris water maze (MWM) test in healthy rats and investigated the possible underlying mechanisms. First, analysis of the composition revealed that SME is rich in isoflavones; SME did not exhibit hepatotoxicity or renal toxicity at the different doses tested. The MWM results revealed that the escape latency and movement distance of rats were significantly shorter in the SME group than in the control group, indicating that SME can help in memory preservation. In addition, SME increased the levels of presynaptic proteins such as synaptophysin, synaptobrevin, synaptotagmin, syntaxin, synapsin I, and 25-kDa synaptosome-associated protein as well as protein kinases and their phosphorylated expression, including extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase C (PKC), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the hippocampal nerve terminals (synaptosomes). Transmission electron microscopy also indicated that SME increased the number of synaptic vesicles in hippocampal synaptosomes. Furthermore, SME rats exhibited altered microbiota composition compared with control rats. Therefore, our data suggest that SME can increase presynaptic function and modulate gut microbiota, thus aiding in memory preservation in rats.


Subject(s)
Gastrointestinal Microbiome , Glycine max , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hippocampus/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Rats , Glycine max/metabolism , Synaptosomes/metabolism
20.
J Agric Food Chem ; 70(2): 520-531, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34881880

ABSTRACT

Itaconate is a promising new candidate for anti-inflammatory and metabolic reprogramming, and 4-octyl itaconate (OI) is a cell-permeable itaconate derivative. To investigate the effect of OI in inflammatory response and glycolipid metabolism, we fed gibel carp with a 40% dietary soybean meal diet containing 0.1% OI (SBM + 0.1OI) or not (SBM) and compared these with fishmeal (FM) as reference. Compared with FM, dietary SBM decreased the growth performance, induced inflammation in the intestine and liver, and decreased the glucose utilization ability of the liver. However, 0.1% OI supplementation in SBM significantly increased the growth performance (from 20.11 ± 0.77 to 23.33 ± 0.45 g, P < 0.05), reduced inflammation in different organs through Nrf2 activation, and alleviated SBM-induced high plasma glucose (from 6.06 ± 0.23 to 4.37 ± 0.14 g, P < 0.05) and low crude body lipid (from 4.08 ± 0.17 to 4.91 ± 0.10 g, P < 0.05). Multi-omics revealed that OI had obvious effects on carbohydrate metabolism. OI regulates peroxisome proliferator-activated receptor gamma (ppar-γ), and its target genes (glut2 and gk) enhance liver glycolysis and lipid de novo lipogenesis, which are also dependent on Nrf2 activation. To conclude, dietary 0.1% OI can promote the growth of gibel carp and alleviate foodborne intestinal and hepatic inflammation and abnormal glycolipid metabolism by Nrf2-regulated Pparγ expression.


Subject(s)
Carps , Metabolic Diseases , Animal Feed , Animals , Carps/genetics , Carps/metabolism , Diet , Dietary Supplements , Glycolipids , Inflammation/drug therapy , Inflammation/genetics , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , PPAR gamma/genetics , Signal Transduction , Glycine max/metabolism , Succinates
SELECTION OF CITATIONS
SEARCH DETAIL