Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Chem Biodivers ; 21(6): e202400588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651315

ABSTRACT

Trillium govanianum, a medicinal herb, exhibiting diverse morphometric traits and phytochemicals across developmental stages of plants. The changes in the chemical profile and steroidal saponin levels in the rhizome of T. govanianum across different developmental stages were previously unknown. This study categorizes rhizomes into three types based on scar presence: juvenile (5-10 scars, Type I), young (11-19 scars, Type II), and mature (21-29 scars, Type III). Rhizomes show varying sizes (length 1.2-4.7 cm, girth 0.3-1.6 cm), weight (0.18-5.0 g), and extractive yields (9.7-16.1 % w w-1), with notable differences in saponin content (5.95-21.9 mg g-1). Ultra-high performance liquid chromatography-MS/MS (UHPLC-QTOF-MS/MS)-based chemical profiling identifies 31 phytochemicals, mainly including diverse saponins. Ultra-high performance liquid chromatography coupled with evaporative light scattering detection (UHPLC-ELSD)-based quantitative analysis of seven key saponins reveals stage-specific accumulation patterns, with protodioscin (P) and dioscin (DS) predominant in mature rhizomes. Statistical analysis confirms significant variation (p=0.001) in saponin levels across developmental stages with chemical constituent protodioscin (P=4.03±0.03-15.76±0.14 mg g-1, PAve=9.79±3.03 mg g-1) and dioscin (DS=1.23±0.06-3.93±0.07 mg g-1, DSAve=2.59±0.70 mg g-1), with acceptable power (p=0.738; |δ|>0.5) statistics for effective sample size (n=27 samples used in the study) of T. govanianum. Principal Component Analysis (PCA) and Euclidean clustering further highlighted chemotype distinctions.


Subject(s)
Rhizome , Saponins , Steroids , Trillium , Trillium/chemistry , Saponins/chemistry , Saponins/isolation & purification , Rhizome/chemistry , Chromatography, High Pressure Liquid , Steroids/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Tandem Mass Spectrometry , Humans
2.
Phytomedicine ; 128: 155432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518645

ABSTRACT

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Subject(s)
Antineoplastic Agents, Phytogenic , Saponins , Steroids , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Humans , Steroids/pharmacology , Steroids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Neoplasms/drug therapy , Animals , Apoptosis/drug effects
3.
Molecules ; 29(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338446

ABSTRACT

Ophiopogonis Radix (OR) is a traditional Chinese medicine. In recent years, in order to achieve the purpose of drying, bleaching, sterilizing and being antiseptic, improving appearance, and easy storage, people often use sulfur fumigation for its processing. However, changes in the chemical composition of medicinal herbs caused by sulfur fumigation can lead to the transformation and loss of potent substances. Therefore, the development of methods to rapidly reveal the chemical transformation of medicinal herbs induced by sulfur fumigation can guarantee the safe clinical use of medicines. In this study, a combined full scan-parent ions list-dynamic exclusion acquisition-diagnostic product ions analysis strategy based on UHPLC-LTQ-Orbitrap MS was proposed for the analysis of steroidal saponins and their transformed components in sulfur-fumigated Ophiopogonis Radix (SF-OR). Based on precise mass measurements, chromatographic behavior, neutral loss ions, and diagnostic product ions, 286 constituents were screened and identified from SF-OR, including 191 steroidal saponins and 95 sulfur-containing derivatives (sulfates or sulfites). The results indicated that the established strategy was a valuable and effective analytical tool for comprehensively characterizing the material basis of SF-OR, and also provided a basis for potential chemical changes in other sulfur-fumigated herbs.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Saponins , Humans , Chromatography, High Pressure Liquid/methods , Sulfur/chemistry , Plants, Medicinal/chemistry , Fumigation/methods , Sulfites
4.
Fitoterapia ; 174: 105833, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301935

ABSTRACT

Five new steroidal saponins, paripolins D-H (1-5), and 6 known compounds (6-11) were isolated from the aerial parts of Paris polyphylla var. yunnanensis. The structures of 1-5 were determined using spectroscopic analyses in conjunction with acid hydrolysis. It is for the first time to report the 12-hydroxysteroidal saponins from the genus Paris. The effect of all isolated compounds on blood coagulation was determined in vitro using the plasma recalcification time method. Compounds 1 and 2 showed potent procoagulant activity, and 5-11 exhibited significant anticoagulant activity.


Subject(s)
Liliaceae , Saponins , Liliaceae/chemistry , Rhizome/chemistry , Molecular Structure , Saponins/pharmacology , Saponins/chemistry , Blood Coagulation
5.
Phytochem Anal ; 35(4): 621-633, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38191170

ABSTRACT

INTRODUCTION: Steroidal saponins characterised by intricate chemical structures are the main active components of a well-known traditional Chinese medicine (TCM) Rhizoma Paridis. The metabolic profiles of steroidal saponins in vivo remain largely unexplored, despite their renowned antitumor, immunostimulating, and haemostatic activity. OBJECTIVE: To perform a comprehensive analysis of the chemical constituents of Rhizoma Paridis total saponins (RPTS) and their metabolites in rats after oral administration. METHOD: The chemical constituents of RPTS and their metabolites were analysed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). RESULTS: A reliable UPLC-Q-TOF-MS/MS method was established, and a total of 142 compounds were identified in RPTS. Specifically, diosgenin-type saponins showed the diagnostic ions at m/z 415.32, 397.31, 283.25, 271.21, and 253.20, whereas pennogenin-type saponins exhibited the diagnostic ions at m/z 413.31, 395.30, and 251.20. Based on the characteristic fragments and standard substances, 15 specific metabolites were further identified in the faeces, urine, plasma, and bile of rats. The metabolic pathways of RPTS, including phase I reactions (de-glycosylation and oxidation) and phase II reactions (glucuronidation), were explored and summarised, and the enrichment of metabolites was characterised by multivariate statistical analysis. CONCLUSION: The intricate RPTS could be transformed into relatively simple metabolites in rats through de-glycosylation, which provides a reference for further metabolic studies and screening of active ingredients for TCM.


Subject(s)
Rats, Sprague-Dawley , Saponins , Tandem Mass Spectrometry , Animals , Saponins/analysis , Saponins/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Male , Rats , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Steroids/analysis
6.
Nat Prod Res ; 38(1): 169-173, 2024.
Article in English | MEDLINE | ID: mdl-36190791

ABSTRACT

The rhizome of Rohdea chinensis (Baker) N.Tanaka (RRc) is a famous folk medicine for the treatment of carbuncles and pharyngitis. Steroidal saponins (SSs) were considered to be the most abundant active constituents in RRc. However, to date, the in-depth study of SSs is still lacking. This study was aimed to investigate the SSs profiles of RRc extract by HPLC-ESI-QTOF-MS/MS. Analysis was performed on an Agilent poroshell 120 EC-C18 column (2.1 mm × 100 mm, i.d., 2.7 µm) with 0.1% formic acid aqueous solution and acetonitrile as the mobile phase under gradient conditions. The results showed that 32 SSs including 20 furospirostanol, 11 spirostanol and 1 pseudo-spirostanol saponins were identified, 5 of which were reported in this plant for the first time. This is the first report on the analysis of SSs in RRc. This novel analysis method may stimulate further research regarding the identification of SSs in other plant species.


Subject(s)
Asparagaceae , Saponins , Spirostans , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Saponins/chemistry
7.
Front Plant Sci ; 14: 1293411, 2023.
Article in English | MEDLINE | ID: mdl-38046616

ABSTRACT

Polysaccharides and saponins are the main active components of Polygonati Rhizoma. Studying the molecular mechanism of their synthesis pathway is helpful in improving the content of active components at the molecular level. At present, transcriptome analysis of three Polygonatum species (Polygonatum sibiricum Red., Polygonatum cyrtonema Hua, Polygonatum kingianum Coll. et Hemsl.) has been reported, but no comparative study has been found on the transcriptome data of the three species. Transcriptome sequencing was performed on the rhizomes of three Polygonatum species based on high-throughput sequencing technology, and all transcripts were assembled. A total of 168,108 unigenes were generated after the removal of redundancy, of which 121,642 were annotated in seven databases. Through differential analysis and expression analysis of key enzyme genes in the synthesis pathway of three Polygonatum polysaccharides and steroidal saponins, 135 differentially expressed genes encoding 18 enzymes and 128 differentially expressed genes encoding 28 enzymes were identified, respectively. Numerous transcription factors are involved in the carbohydrate synthesis pathway. Quantitative real-time PCR was used to further verify the gene expression level. In this paper, we present a public transcriptome dataset of three medicinal plants of the genus Polygonatum, and analyze the key enzyme genes of polysaccharide and steroidal saponins synthesis pathway, which lays a foundation for improving the active component content of Polygonati Rhizoma by molecular means.

8.
Front Pharmacol ; 14: 1277395, 2023.
Article in English | MEDLINE | ID: mdl-37954839

ABSTRACT

Background: P. polyphylla var. yunnanensis, as a near-threatened and ethnic medicine in China, used to be a key ingredient in traditional Chinese medicine in treatment of traumatic injuries, sore throat, snakebites, and convulsions for thousands of years. However, there were no reports on the inverse relationship between the contents of heavy metals and saponins and its anti-breast cancer pharmacological activity in P. polyphylla var. yunnanensis. Methods: The present study aimed to reveal the characteristics of heavy metal contents and saponins and its anti-breast cancer pharmacological activity and their interrelationships in P. polyphylla var. yunnanensis from different production areas. The contents of heavy metal and steroidal saponins in P. polyphylla var. yunnanensis were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and the high-performance liquid chromatography technique, respectively. The Pearson correlation was used to study the correlation between saponins and heavy metals. 4T1 mouse mammary tumor cells were selected and cultivated for antitumor studies in vitro. Cell Counting Kit-8 (CCK-8) assay, Hoechst staining, and flow cytometry analysis were used for the examination of the proliferation and apoptosis of 4T1 tumor cells. Mouse breast cancer 4T1 cells were subcutaneously injected into BALB/c mice to construct a tumor model to explore the in vivo inhibitory effect on breast cancer. TUNEL assay and immunohistochemistry were used for the examination of the effect of P. polyphylla var. yunnanensis from different origins on cancer cell proliferation and apoptosis induction in 4T1 tumor mice. Results: Heavy metal contents were highly correlated with the content of steroidal saponins. The overall content of 10 metals in the three producing origins was of the order C3 >C2 >C1. The total content of eight steroidal saponins in the extracts of P. polyphylla var. yunnanensis from three different origins was C1 >C2 >C3. The Pearson correlation study showed that in all of the heavy metals, the contents of Cd and Ba were positively correlated with the main steroidal saponins in P. polyphylla var. yunnanensis, while Al, Cr, Cu, Fe, Zn, As, Hg, and Pb showed a negative correlation. In vitro experiments showed that the extracts of P. polyphylla var. yunnanensis from three origins could inhibit the proliferation and induce cell apoptosis of 4T1 cells in a concentration- and time-dependent manner, especially in the C1 origin. In vivo experiments showed that the extract of P. polyphylla var. yunnanensis from the three origins could inhibit the growth of tumors and induce the apoptosis of tumor cells. In the three origins, C1 origin had the lowest total heavy metal level but the highest total steroidal saponin level. Therefore, it showed a better effect in reducing the expression of the human epidermal growth factor receptor 2 (HER2) and Kiel 67 (Ki67) and increasing the expression of p53 in tumor tissues compared to the other origins. In conclusion, in the three origins, C1 origin exhibits antitumor pharmacological effects in vivo and in vitro which are better than those in the other origins. Conclusion: In this study, we found that with the increase of the heavy metal content, the content of steroid saponins and anti-breast cancer activity decreased. The results showed that the high content of the total heavy metals may not be conducive to the accumulation of steroidal saponins in P. polyphylla var. yunnanensis and lead to the low anti-breast cancer activity. The results of this study suggest that the content of heavy metals should be controlled in the artificial cultivation process of P. polyphylla var. yunnanensis.

9.
Acta Pharm Sin B ; 13(11): 4638-4654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37969733

ABSTRACT

Sugar-sugar glycosyltransferases play important roles in constructing complex and bioactive saponins. Here, we characterized a series of UDP-glycosyltransferases responsible for biosynthesizing the branched sugar chain of bioactive steroidal saponins from a widely known medicinal plant Paris polyphylla var. yunnanensis. Among them, a 2'-O-rhamnosyltransferase and three 6'-O-glucosyltrasferases catalyzed a cascade of glycosylation to produce steroidal diglycosides and triglycosides, respectively. These UDP-glycosyltransferases showed astonishing substrate promiscuity, resulting in the generation of a panel of 24 terpenoid glycosides including 15 previously undescribed compounds. A mutant library containing 44 variants was constructed based on the identification of critical residues by molecular docking simulations and protein model alignments, and a mutant UGT91AH1Y187A with increased catalytic efficiency was obtained. The steroidal saponins exhibited remarkable antifungal activity against four widespread strains of human pathogenic fungi attributed to ergosterol-dependent damage of fungal cell membranes, and 2'-O-rhamnosylation appeared to correlate with strong antifungal effects. The findings elucidated the biosynthetic machinery for their production of steroidal saponins and revealed their potential as new antifungal agents.

10.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4589-4597, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802798

ABSTRACT

The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(1),(25R)-26-O-ß-D-glucopyranosyl-furost-5-en-3ß,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(2),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(3),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Tandem Mass Spectrometry , Saponins/analysis , Liliaceae/chemistry , Chromatography, High Pressure Liquid , Rhizome/chemistry , Molecular Structure
11.
Metabolomics ; 19(11): 89, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37864615

ABSTRACT

INTRODUCTION: Twisted-leaf garlic (Allium obliquum L.) is a wild Allium species, which is traditionally used as aroma plant for culinary purposes due to its unique, garlic-like flavor. It represents an interesting candidate for domestication, breeding and cultivation. OBJECTIVES: The objective of this work was to explore and comprehensively characterize polar and semi-polar phytochemicals accumulating in leaves and bulbs of A. obliquum. METHOD: Plant material obtained from a multiyear field trial was analyzed using a metabolite profiling workflow based on ultra-high performance liquid chromatography-coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) and two chromatographic methods. For annotation of metabolites, tandem mass spectrometry experiments were carried out and the resulting accurate-mass collision-induced dissociation (CID) mass spectra interpreted. Onion and garlic bulb extracts were used as reference samples. RESULTS: Important metabolite classes influencing nutritional, sensory and technological properties were detected and structurally characterized including fructooligosaccharides with a degree of polymerization of 3-5, S-alk(en)ylcysteine sulfoxides and other S-substituted cysteine conjugates, flavonoids including O- and C-glycosylated flavones as well as O-glycosylated flavonols, steroidal saponins, hydroxycinnamic acid conjugates, phenylethanoids and free sphingoid bases. In addition, quantitative data for non-structural carbohydrates, S-alk(en)ylcysteine sulfoxides and flavonoids are provided. CONCLUSION: The compiled analytical data including CID mass spectra of more than 160 annotated metabolites provide for the first time a phytochemical inventory of A. obliquum and lay the foundation for its further use as aroma plant in food industry.


Subject(s)
Garlic , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Garlic/chemistry , Garlic/metabolism , Metabolomics , Chromatography, Liquid , Flavonoids/analysis , Sulfoxides/chemistry , Sulfoxides/metabolism , Plant Leaves/metabolism , Antioxidants/metabolism , Phytochemicals , Receptor Protein-Tyrosine Kinases/metabolism
12.
Heliyon ; 9(7): e18230, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539281

ABSTRACT

Paris polyphylla Sm. is a vulnerable medicinal plant distributed in the Himalayan countries. This plant has numerous pharmacological benefits, including anticancer, anti-inflammatory, analgesic, and antipyretic properties. The distribution, conservation status, and traditional usage of this species are fairly known in Nepal. However, its diversity and population structure at the molecular level are unexplored. This study analyzes, the genetic diversity and population structure of 32 P. polyphylla germplasms collected from Central, Eastern and Western regions of Nepal using 15 simple sequence repeat (SSR) markers. All the SSR primers were polymorphic and amplified 60 alleles ranging from 50 bp to 900 bp. The polymorphic information content (PIC) value ranged from 0 to 0.75. The average value of the observed heterozygosity (Ho), expected heterozygosity (He), Shannon's information index (I), and total heterozygosity (Ht) were 0.63, 0.53, 0.92 and 0.32, respectively. The analysis of molecular variance (AMOVA), showed a maximum variation of 74% within the individual in a population and only 26% variation among the population. In the population STRUCTURE analysis two clusters were formed where Eastern germplasms (EN) were separated far from the Central and Western germplasms (CWN), this clustering was in complete correspondence to the unweighted pair group method based on arithmetic average (UPGMA) and principle coordinate analysis (PCoA). Furthermore, in the UPGMA and PCoA, germplasms collected from the same or relatively similar geographic origin were closer. These findings are critical for developing conservation policies, facilitating evolutionary research, sustainable utilization and commercial cultivation of this pharmacologically important and threatened species.

13.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511246

ABSTRACT

Identifying novel phytochemical secondary metabolites following classical pharmacognostic investigations is tedious and often involves repetitive chromatographic efforts. During the past decade, Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight-Tandem Mass Spectrometry (UHPLC-QToF-MS/MS), in combination with molecular networking, has been successfully demonstrated for the rapid dereplication of novel natural products in complex mixtures. As a logical application of such innovative tools in botanical research, more than 40 unique 3-oxy-, 3, 6-dioxy-, and 3, 6, 27-trioxy-steroidal saponins were identified in aerial parts and rhizomes of botanically verified Smilax sieboldii. Tandem mass diagnostic fragmentation patterns of aglycones, diosgenin, sarsasapogenin/tigogenin, or laxogenin were critical to establishing the unique nodes belonging to six groups of nineteen unknown steroidal saponins identified in S. sieboldii. Mass fragmentation analysis resulted in the identification of 6-hydroxy sapogenins, believed to be key precursors in the biogenesis of characteristic smilaxins and sieboldins, along with other saponins identified within S. sieboldii. These analytes' relative biodistribution and characteristic molecular networking profiles were established by analyzing the leaf, stem, and root/rhizome of S. sieboldii. Deducing such profiles is anticipated to aid the overall product integrity of botanical dietary supplements while avoiding tedious pharmacognostic investigations and helping identify exogenous components within the finished products.


Subject(s)
Saponins , Smilax , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Tissue Distribution , Saponins/chemistry , Plant Extracts
14.
Phytother Res ; 37(7): 3009-3024, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36877123

ABSTRACT

Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumors and cancer recurrence. In this study, we demonstrated that the total steroidal saponins from Solanum nigrum L. (SN) had broad-spectrum cytotoxic activity against various human leukemia cancer cell lines, especially in adriamycin (ADR)-sensitive and resistant K562 cell lines. Moreover, SN could effectively inhibit the expression of ABC transporter in K562/ADR cells in vivo and in vitro. In vivo, by establishing K562/ADR xenograft tumor model, we demonstrated that SN might overcome drug resistance and inhibit the proliferation of tumors by regulating autophagy. In vitro, the increased LC3 puncta, the expression of LC3-II and Beclin-1, and the decreased expression of p62/SQSTM1 in SN-treated K562/ADR and K562 cells demonstrated autophagy induced by SN. Moreover, using the autophagy inhibitors or transfecting the ATG5 shRNA, we confirmed that autophagy induced by SN was a key factor in overcoming MDR thereby promoting cell death in K562/ADR cells. More importantly, SN-induced autophagy through the mTOR signaling pathway to overcome drug resistance and ultimately induced autophagy-mediated cell death in K562/ADR cells. Taken together, our findings suggest that SN has the potential to treat multidrug-resistant leukemia.


Subject(s)
Leukemia , Saponins , Solanum nigrum , Humans , Drug Resistance, Neoplasm , Drug Resistance, Multiple , Doxorubicin/pharmacology , K562 Cells , Saponins/pharmacology , Cell Death , Autophagy
15.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770712

ABSTRACT

The tuberous root of Ophiopogon japonicus (Thunb.) Ker-Gawl. is a well-known Chinese medicine also called Maidong (MD) in Chinese. It could be divided into "Chuanmaidong" (CMD) and "Zhemaidong" (ZMD), according to the geographic origins. Meanwhile, the root of Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma (SMD) is occasionally used as a substitute for MD in the market. In this study, a reliable pressurized liquid extraction and HPLC-DAD-ELSD method was developed for the simultaneous determination of nine chemical components, including four steroidal saponins (ophiopojaponin C, ophiopogonin D, liriopesides B and ophiopogonin D'), four homoisoflavonoids (methylophiopogonone A, methylophiopogonone B, methylophiopogonanone A and methylophiopogonanone B) and one sapogenin (ruscogenin) in CMD, ZMD and SMD. The method was validated in terms of linearity, sensitivity, precision, repeatability and accuracy, and then applied to the real samples from different origins. The results indicated that there were significant differences in the contents of the investigated compounds in CMD, ZMD and SMD. Ruscogenin was not detected in all the samples, and liriopesides B was only found in SMD samples. CMD contained higher ophiopogonin D and ophiopogonin D', while the other compounds were more abundant in ZMD. Moreover, the anticancer effects of the herbal extracts and selected components against A2780 human ovarian cancer cells were also compared. CMD and ZMD showed similar cytotoxic effects, which were stronger than those of SMD. The effects of MD may be due to the significant anticancer potential of ophiopognin D' and homoisoflavonoids. These results suggested that there were great differences in the chemical composition and pharmacological activity among CMD, ZMD and SMD; thus, their origins should be carefully considered in clinical application.


Subject(s)
Drugs, Chinese Herbal , Ophiopogon , Ovarian Neoplasms , Saponins , Spiro Compounds , Humans , Female , Ophiopogon/chemistry , Cell Line, Tumor , Saponins/pharmacology , Saponins/chemistry , Drugs, Chinese Herbal/chemistry
16.
Molecules ; 27(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36364204

ABSTRACT

Zhejiang Ophiopogonjaponicus (ZOJ) is a specific variety of Ophiopogon japonicus with characteristic steroidal saponins and homoisoflavonoids, which are also main pharmacodynamic constituents with clinical effects, including curing inflammation and cardiovascular diseases. However, few analysis methods were applied to simultaneously and quantitatively determine two kinds of its constituents, and hazardous organic solvents are mostly used for extraction. In this study, a new validated simultaneous extraction and determination method for four characteristic steroidal saponins and homoisoflavonoids in ZOJ was established by ionic liquid-ultrasonic extraction (IL-UAE) combined with HPLC-DAD-ELSD analysis, which can be used for the quality control of ZOJ. Chromatographic separation was performed with a DAD wavelength at 296 nm, and the ELSD parameters of the drift tube temperature (DTT), atomizer temperature (AT), and nitrogen gas pressure (NGP) were set at 20% heating power, 70 °C, and 25 psi, respectively. The optimal IL-UAE conditions were 1 mol/L [Bmim]CF3SO3 aqueous solution, a liquid-material ratio of 40 mL/g, and an ultrasonic time of 60 min. The proposed method is reliable, reproducible, and accurate, which were verified with real sample assays. Consequently, this work will be helpful for the quality control of ZOJ. It can also present a promising reference for the simultaneous extraction and determination of different kinds of constituents in other medicinal plants.


Subject(s)
Drugs, Chinese Herbal , Ophiopogon , Saponins , Ophiopogon/chemistry , Drugs, Chinese Herbal/chemistry , Saponins/chemistry , Chromatography, High Pressure Liquid/methods
17.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4863-4876, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164896

ABSTRACT

Steroidal saponins, important natural organic compounds in Paris polyphylla var. yunnanensis, have good biological activity. Structural modification of steroidal saponins by microbial transformation could produce a large number of products with novel structures and excellent bioactivity, which can provide functional compounds for the research and development of steroidal drugs. This study summarized the research progress in steroidal saponins and their microbial transformation in P. polyphylla var. yunnanensis. P. polyphylla var. yunnanensis contains 112 steroidal saponins, 8 of which are used as substrates in 35 transformation reactions by 25 microbial species, with the highest transformation rate of 95%. Diosgenin is the most frequently used substrate. Furthermore, the strains, culture medium, reaction conditions, transformation rate, transformation reaction characteristics, and biological activities of the transformed products were summarized. This review may provide reference for the further research on microbial transformation of steroidal saponins in P. polyphylla var. yunnanensis.


Subject(s)
Diosgenin , Liliaceae , Melanthiaceae , Saponins , Diosgenin/analysis , Liliaceae/chemistry , Melanthiaceae/chemistry , Rhizome/chemistry , Saponins/analysis
18.
Nat Prod Res ; : 1-5, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36152001

ABSTRACT

The present study was conducted to compare leaf extracts of Y. gloriosa, Y. treculeana, Y. filamentosa and Y. aloifolia. Plant extracts were obtained by sequential extraction with 50% and 100% methanol using the pressurized liquid extraction method. General comparative analysis of Yucca extracts was performed by 2 D-NMR. The presence of various biologically active components in the extracts was shown, among which steroid saponins predominate. The use of LC-MS and LC-HRMS methods with electrospray ionization made it possible to conduct a comparative analysis of Yucca steroidal saponins. The 33 steroidal saponins of various structures were found. The presence of three characteristic saponins in all Yucca species was shown: yuccaloeside C, yuccaloeside E and yuccaloeside B. The results obtained can be used to control the quality of plant materials and products.

19.
Phytomedicine ; 104: 154335, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35858515

ABSTRACT

BACKGROUND: In recent years, the T-cell therapy and immune checkpoint inhibitors toward CTLA-4 and PD-1/PD-L1 axis antibody therapy have acquired encouraging success. However, most of patients were still not benefited with lots of troubles, such as low penetration of tissues/cells, strong immunogenicity and cytokine release syndrome, and long manufacturing process and expensive costs. By contrast, the immune-modulating small molecules possessed natural advantages to overcome these obstacles and might achieve greater success. PURPOSE: Exploring the potent immune-modulating natural small molecules and revealing what kinds of molecules or structures with the immunomodulatory activity against cancers. METHODS: A novel non-cytotoxic T-cell immunomodulating screening model was used to identify the cytotoxic/selective/immunomodulatory bioactivity for 148 natural steroidal saponins. The structure-activity relationships (SARs) research was used to reveal the key groups for immunomodulation/cytotoxicity/selectivity. The negative selection was used to isolate and purify the T-cell. The cell viability assay was used to measure the anti-cancer effect in vitro. The ELISA assay was used to detect the cytokines for IL-1ß, IL-6, TNF-α, IFN-γ, IL-12, perforin and granzyme B (GZMB). The western blotting assay was used to research the immunomodulatory mechanism. The siRNA knockdown was used to generate the IFN-γ resistant melanoma cells. The NOG immune-deficient mice were used to evaluate the anti-tumor efficacy in vivo. The peripheral blood samples from 10 cancer patients were used to detect the broad population anti-tumor efficacy. RESULTS: It was reported that the correlation among structures and immunomodulation/ cytotoxicity/selectivity, in which opening ring-F with 26-O-glucopyranosyl, disaccharide and trisaccharide chains at C-3, steric hindrance and polarity of C-22 were key immunomodulatory groups. Moreover, taccaoside A was identified as the most potent candidate against cancer cells, including non-small cell lung cancer, triple negative breast cancer, and the IFN-γ resistant melanoma, partly through enhancing T lymphocyte mTORC1-Blimp-1 signal to secrete GZMB. Besides, 10 patients derived T-cell also would be modulated against cancer cells in vitro. Moreover, the overall survival was great extended (>140 days vs 93 days) with nearly 100% tumor burden disappearance (0 mm3vs 1006 ± 79.5 mm3) in mice. CONCLUSION: This work demonstrated one possibility for this concerned purpose, and identified a potent immune-modulating natural molecule taccaoside A, which might contribute to cancer immunotherapy in future.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Melanoma , Saponins , Animals , Cell Line, Tumor , Melanoma/drug therapy , Mice , Saponins/pharmacology
20.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2623-2633, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718480

ABSTRACT

To investigate the responses of key enzymes involved in steroidal saponin biosynthesis of Dioscorea zingiberensis to low phosphorus stress, we designed three treatments of severe phosphorus stress, moderate phosphorus stress, and normal phosphorus level. The D. zingiberensis plants were collected at the early, middle, and late stages of treatment. The content of total steroidal saponins in different tissues of D. zingiberensis was determined by spectrophotometry for the identification of the critical stage in response to low phosphorus stress. BGI 500 sequencing platform was employed to obtain the transcript information of D. zingiberensis samples at the critical stage of low phosphorus stress, and then a transcriptome library was constructed. The correlation between the expression of genes involved in steroidal saponin biosynthesis and the content of total steroidal saponins was analyzed for the screening of the key enzyme genes in response to low phosphorus stress. Further, the expression patterns of these genes were analyzed by real-time fluorescence PCR(qRT-PCR). The content of total steroidal saponins in D. zingiberensis had obvious tissue specificity under low phosphorus stress, and the early stage of stress was particularly important for D. zingiberensis to respond to low phosphorus stress. A total of 101 593 unigenes were obtained by transcriptome sequencing, of which 77.35% were annotated in NT, NR, SwissProt, KOG, GO, and KEGG. A total of 256 transcripts of known key enzyme genes in the biosynthetic pathway of steroidal saponins were identified. The expression levels of 69 transcripts encoding 18 catalytic enzymes were significantly correlated with the content of total steroidal saponins. The qRT-PCR results showed that several key enzyme genes presented different expression patterns in four tissues under low phosphorus stress. The results indicated that the content of total steroidal saponins and the expression of key enzyme genes regulating steroidal saponin biosynthesis in D. zingensis changed under low phosphorus stress. This study provides the biological information for elucidating the molecular mechanism of steroidal saponin biosynthesis in D. zingensis exposed to low phosphorus stress.


Subject(s)
Dioscorea , Saponins , Dioscorea/genetics , Phosphorus , Saponins/genetics , Steroids , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL