Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Comput Biol Chem ; 110: 108037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460436

ABSTRACT

Cancer is the most prevalent disease globally, which presents a significant challenge to the healthcare industry, with breast and lung cancer being predominant malignancies. This study used RNA-seq data from the TCGA database to identify potential biomarkers for lung and breast cancer. Tumor Necrosis Factor (TNFAIP8) and Sulfite Oxidase (SUOX) showed significant expression variation and were selected for further study using structure-based drug discovery (SBDD). Compounds derived from the Euphorbia ammak plant were selected for in-silico study with both TNFAIP8 and SUOX. Stigmasterol had the greatest binding scores (normalized scores of -8.53 kcal/mol and -9.69 kcal/mol) with both proteins, indicating strong stability in their binding pockets throughout the molecular dynamics' simulation. Although Stigmasterol first changed its initial conformation (RMSD = 0.5 nm with the starting conformation) in SUOX, it eventually reached a stable conformation (RMSD of 1.5 nm). The compound on TNFAIP8 showed a persistent shape (RMSD of 0.35 nm), indicating strong protein stability. The binding free energy of the complex was calculated using the MM/GBSA technique; TNFAIP8 had a ΔGTOTAL of -24.98 kcal/mol, with TYR160 being the most significant residue, contributing -2.52 kcal/mol. On the other hand, the SUOX complex had a binding free energy of -16.87 kcal/mol, with LEU151 being the primary contributor (-1.17 kcal/mol). Analysis of the complexes' free energy landscape unveiled several states with minimum free energy, indicating robust interactions between the protein and ligand. In its conclusion, this work emphasises the favourable ability of Stigmasterol to bind with prospective targets for lung and breast cancer, indicating the need for more experimental study.


Subject(s)
Breast Neoplasms , Euphorbia , Lung Neoplasms , Stigmasterol , Euphorbia/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Stigmasterol/chemistry , Stigmasterol/pharmacology , Stigmasterol/analogs & derivatives , Stigmasterol/isolation & purification , Female , Molecular Dynamics Simulation , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Thermodynamics , Molecular Docking Simulation
2.
Inflammopharmacology ; 32(2): 1187-1201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367124

ABSTRACT

Atriplex crassifolia (A. crassifolia) is a locally occurring member of Chenopodiaceae family that has been used in folk medicine for the treatment of joint pain and inflammation. The present study was focused to determine the analgesic and anti-inflammatory potential of the plant. n-hexane (ACNH) and methanol (ACM) extracts of A. crassifolia were evaluated for in vitro anti-inflammatory potential using protein denaturation inhibition assay. In vivo anti-inflammatory potential was determined by oral administration of 250, 500, and 1000 mg/kg/day of extracts against carrageenan and formalin-induced paw edema models. Inflammatory mediators such as TNF-α, IL-10, IL-1ß, NF-kB, IL-4, and IL-6 were estimated in blood samples of animals subjected to formalin model of inflammation. Analgesic activity was determined using acetic acid-induced writhing and tail flick assay model. Phytochemical profiling was done by GC-mass spectrophotometer. The results of in vitro anti-inflammatory activity revealed that both ACNH and ACM displayed eminent inhibition of protein denaturation in concentration-dependent manner. In acute in vivo carrageenan-induced paw edema model, both extracts reduced inflammation at 5th and 6th hour of study (p < 0.05). A. crassifolia extracts exhibited significant inhibition against formalin-induced inflammation with maximum effect at 1000 mg/kg. ACNH and ACM significantly augmented the inflammatory mediators (p < 0.05). Levels of TNF-α, IL-6, IL-1ß, and NF-kB were reduced, while those of IL-4 and IL-10 were upregulated. ACNH displayed maximum analgesic effect at 1000 mg/kg, while ACM showed potent activity at 500 and 1000 mg/kg. The extracts restored the CBC, TLC and CRP toward normal. GC-MS analysis revealed the presence of compounds like n-hexadecanoic acid, Phytol, (9E,11E)-octadecadienoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, 1-hexacosene, vitamin E, campesterol, stigmasterol, gamma sitosterol in both extracts. These compounds have been reported to suppress inflammation by inhibiting inflammatory cytokines. The current study concludes that A. crassifolia possesses significant anti-nociceptive and anti-inflammatory potential owing to the presence of phytochemicals.


Subject(s)
Atriplex , Interleukin-10 , Animals , Carrageenan , Atriplex/metabolism , Plant Extracts , Gas Chromatography-Mass Spectrometry , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , Interleukin-4 , Interleukin-6 , Anti-Inflammatory Agents , Analgesics , Inflammation/drug therapy , Inflammation/chemically induced , Pain/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Formaldehyde , Inflammation Mediators/metabolism
3.
Phytother Res ; 38(1): 265-279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37871970

ABSTRACT

(Switching from the microglial M1 phenotype to the M2 phenotype is a promising therapeutic strategy for neuropathic pain (NP). This study aimed to investigate the potential use of stigmasterol for treating NP. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, chronic constriction injury (CCI) group, CCI + ibuprofen group, and CCI + stigmasterol group. We performed behavioral tests, enzyme-linked immunosorbent assay, hematoxylin-esoin staining (H&E) staining and immunohistochemistry, immunofluorescence, and Western blotting. In cell experiments, we performed flow cytometry, immunofluorescence, Western blotting, and qRT-PCR. Stigmasterol reduced thermal and mechanical hyperalgesia and serum IL-1ß and IL-8 levels and increased serum IL-4 and TGF-ß levels in CCI rats. Stigmasterol reduced IL-1ß, COX-2, and TLR4 expression in the right sciatic nerve and IL-1ß expression in the spinal cord. Stigmasterol reduced the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, COX-2, IL-1ß, and CD32 in the spinal cord of CCI rats while increasing the expression of IL-10 and CD206. Stigmasterol decreased M1 polarization markers and increased M2 polarization markers in lipopolysaccharide (LPS)-induced microglia and decreased the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, iNOS, COX-2, and IL-1ß in LPS-treated microglia while increasing the expression of Arg-1 and IL-10. Stigmasterol regulates microglial M1/M2 polarization via the TLR4/NF-κB pathway to alleviate NP.


Subject(s)
NF-kappa B , Neuralgia , Rats , Male , Animals , NF-kappa B/metabolism , Interleukin-10/metabolism , Interleukin-10/therapeutic use , Microglia/metabolism , Toll-Like Receptor 4/metabolism , Stigmasterol/pharmacology , Rats, Sprague-Dawley , Lipopolysaccharides/metabolism , Cyclooxygenase 2/metabolism , Myeloid Differentiation Factor 88/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism
4.
Chin Herb Med ; 15(4): 533-541, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38094013

ABSTRACT

Objective: Secondary metabolites and polyphenolic compounds from medicinal plants have been demonstrated to have multiple biological functions with promising research and development prospects. This study examined the effect of ß-stigmasterol (with ergosterol) and xylopic acid isolated from Anchomanes difformis on liver mitochondrial permeability transition pore (mPTP). Methods: The compounds were isolated by vacuum liquid chromatography. Mitochondrial swelling was assessed as changes in absorbance under succinate-energized conditions. Results: 1H and 13C NMR spectroscopic elucidation of the isolates affirmed the presence of ß-stigmasterol with ergosterol (1:0.3) and xylopic acid. The isolates reversed the increase in lipid peroxidation and inhibited the opening of mitochondrial permeability transition pores caused by calcium and glucose. Pharmacological inhibition of mPTP offers a promising therapeutic target for the treatment of mitochondrial-associated disorders. Conclusion: Reduction in the activity of calcium ATPase and the expression of Caspase-3 and -9 were observed, suggesting that they could play a role in protecting physicochemical properties of membrane bilayers from free radical-induced severe cellular damage and be useful in the management of diseases where much apoptosis occurs.

5.
Iran J Basic Med Sci ; 26(9): 979-986, 2023.
Article in English | MEDLINE | ID: mdl-37605731

ABSTRACT

Hygrophila schulli which is known as "Neermulli'' in the vernacular is an herbaceous plant native to Sri Lanka. Ancient medicinal literature suggests the use of H. schulli whole plant or its parts for the treatment of different communicable and non-communicable diseases including diabetes mellitus and tuberculosis. Active constituents and secondary metabolites including alkaloids, tannins, steroids, proteins, flavonoids, and glycosides are identified to possess antimicrobial, antitumor, antioxidant, hepatoprotective, anthelmintic, nephroprotective, antidiabetic, anticataract, anti-inflammatory, anti-nociceptive, hematopoietic, diuretic, antiurolithiatic, antipyretic, neuroprotection, and anti-endotoxin activities. In this review, we reviewed clinical studies, patents, and analytical studies from the earliest found examples from 1886 to the end of 2021. We critically analyzed and attempt to summarize the information based on bioactivities and chemical composition of H. schulli plant extracts which will be of future use for researchers in this field.

6.
J Agric Food Chem ; 71(32): 12280-12288, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37551652

ABSTRACT

In this study, we investigated the inhibitory effects of three soybean isoflavones and two soybean phytosterols on the formation of 3-chloropropane-1,2-diol fatty acid esters (3-MCPDE) and aldehydes in heated soybean oil model. 0.4 mM of genistin, genistein, daidzein, stigmasterol, and ß-sitosterol significantly reduced 3-MCPDE formation by 25.7, 51.4, 21.4, 61.6, and 55.7%, and total aldehydes formation by 42.03, 43.94, 28.36, 54.74, and 39.23%, respectively. Further study showed that stigmasterol reduced the content of glycidyl esters (GEs) and glycidol, two key intermediates of 3-MCPDE, and prevented fatty acids degradation in the oils. Moreover, the effects of continuous frying time on the content of stigmasterol and the migration of stigmasterol were evaluated in the fried dough sticks model system. The content of stigmasterol in soybean oil was found to be significantly decreased with prolonged heating time. The concentrations of stigmasterol in fried dough sticks and the migration rates of stigmasterol from soybean oil to fried dough sticks decreased with repeated frying sessions. In addition, stigmasterol undergoes oxidative changes during heat treatment, and the oxidation products including 5,6α-epoxystigmasterol, 5,6ß-epoxystigmasterol, 7α-hydroxystigmasterol, 7ß-hydroxystigmasterol, stigmasterlol-3ß,5α,6ß-triol, and 7-ketostigmasterol were identified in the frying oils but not in the fried dough sticks. Overall, stigmasterol could be added to soybean oil to reduce 3-MCPDE and aldehydes formation, and reacting with GEs/glycidol and protection of lipid acids from oxidation may be the mechanism of action of stigmasterol.


Subject(s)
Hot Temperature , Soybean Oil , Stigmasterol , Fatty Acids , Oils , Aldehydes , Esters
7.
Molecules ; 28(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241926

ABSTRACT

Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), ß-amyrin (5), and a mixture of stigmasterol and ß-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.


Subject(s)
Antineoplastic Agents , Asteraceae , Plant Extracts/chemistry , Bangladesh , Stigmasterol , Phytochemicals/pharmacology , Asteraceae/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Drug Discovery , Glucose
8.
Chin J Nat Med ; 21(2): 127-135, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36871980

ABSTRACT

Stigmasterol is a plant sterol with anti-apoptotic, anti-oxidative and anti-inflammatory effect through multiple mechanisms. In this study, we further assessed whether it exerts protective effect on human brain microvessel endothelial cells (HBMECs) against ischemia-reperfusion injury and explored the underlying mechanisms. HBMECs were used to establish an in vitro oxygen and glucose deprivation/reperfusion (OGD/R) model, while a middle cerebral artery occlusion (MCAO) model of rats were constructed. The interaction between stigmasterol and EPHA2 was detected by surface plasmon resonance (SPR) and cellular thermal shift assay (CETSA). The results showed that 10 µmol·L-1 stigmasterol significantly protected cell viability, alleviated the loss of tight junction proteins and attenuated the blood-brain barrier (BBB) damage induced by OGD/R in thein vitro model. Subsequent molecular docking showed that stigmasterol might interact with EPHA2 at multiple sites, including T692, a critical gatekeep residue of this receptor. Exogenous ephrin-A1 (an EPHA2 ligand) exacerbated OGD/R-induced EPHA2 phosphorylation at S897, facilitated ZO-1/claudin-5 loss, and promoted BBB leakage in vitro, which were significantly attenuated after stigmasterol treatment. The rat MCAO model confirmed these protective effects in vivo. In summary, these findings suggest that stigmasterol protects HBMECs against ischemia-reperfusion injury by maintaining cell viability, reducing the loss of tight junction proteins, and attenuating the BBB damage. These protective effects are at least meditated by its interaction with EPHA2 and inhibitory effect on EPHA2 phosphorylation.


Subject(s)
Reperfusion Injury , Stigmasterol , Humans , Animals , Rats , Phosphorylation , Endothelial Cells , Molecular Docking Simulation , Blood-Brain Barrier , Glucose , Microvessels , Oxygen
9.
Drug Des Devel Ther ; 17: 691-706, 2023.
Article in English | MEDLINE | ID: mdl-36915642

ABSTRACT

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease of the joints associated with systemic comorbidities. Sinomenium acutum is regarded as an effective traditional Chinese medicine (TCM) for the treatment of RA. Materials and Methods: Based on network pharmacology and Gene Expression Omnibus (GEO) database, 33 RA-related differentially-expressed genes (DEGs) targeting active compounds of Sinomenium acutum were initially screened in our investigation. Results: Gene Ontology (GO) and Kyoto encyclopaedia of genes and genome (KEGG) analyses found the important involvement of these DEGs in osteoclast differentiation, and finally 5 core DEGs, including NCF4, NFKB1, CYBA, IL-1ß and NCF1 were determined through protein-protein interaction (PPI) network. We also identified the related active component of Sinomenium acutum include Stigmasterol. Finally, in order to experimentally verify these results, a rat model of collagen-induced arthritis (CIA) was established, and subsequently treated with Stigmasterol solution. Conclusion: Similar to the healing effect of Indomethacin, Stigmasterol was observed to reduce the levels of inflammatory factors (IL-6 and IL-1ß) and osteoclast differentiation-related factors (RANKL, ACP5 and Cathepsin K), which can also reduce the arthritis index score and alleviate the degree of pathological injury of rat ankle joints. The predictions and experimental data uncover the involvement of Stigmasterol, an active component of Sinomenium acutum, in regulation of osteoclast differentiation, exerting great medicinal potential in the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Rats , Animals , Stigmasterol , Network Pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Protein Interaction Maps , Medicine, Chinese Traditional , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
10.
Phytomedicine ; 113: 154728, 2023 May.
Article in English | MEDLINE | ID: mdl-36898255

ABSTRACT

BACKGROUND: Glutamate, an excitatory neurotransmitter, was elevated in the brain of neurodegenerative disease (ND) patients. The excessive glutamate induces Ca2+ influx and reactive oxygen species (ROS) production which exacerbates mitochondrial function, leading to mitophagy aberration, and hyperactivates Cdk5/p35/p25 signaling leading to neurotoxicity in ND. Stigmasterol, a phytosterol, has been reported for its neuroprotective effects; however, the underlying mechanism of stigmasterol on restoring glutamate-induced neurotoxicity is not fully investigated. PURPOSE: We investigated the effect of stigmasterol, a compound isolated from Azadirachta indica (AI) flowers, on ameliorating glutamate-induced neuronal apoptosis in the HT-22 cells. STUDY DESIGN: To further understand the underlying molecular mechanisms of stigmasterol, we investigated the effect of stigmasterol on Cdk5 expression, which was aberrantly expressed in glutamate-treated cells. Cell viability, Western blot analysis, and immunofluorescence are employed. RESULTS: Stigmasterol significantly inhibited glutamate-induced neuronal cell death via attenuating ROS production, recovering mitochondrial membrane depolarization, and ameliorating mitophagy aberration by decreasing mitochondria/lysosome fusion and the ratio of LC3-II/LC3-I. In addition, stigmasterol treatment downregulated glutamate-induced Cdk5, p35, and p25 expression via enhancement of Cdk5 degradation and Akt phosphorylation. Although stigmasterol demonstrated neuroprotective effects on inhibiting glutamate-induced neurotoxicity, the efficiency of stigmasterol is limited due to its poor water solubility. We conjugated stigmasterol to soluble soybean polysaccharides with chitosan nanoparticles to overcome the limitations. We found that the encapsulated stigmasterol increased water solubility and enhanced the protective effect on attenuating the Cdk5/p35/p25 signaling pathway compared with free stigmasterol. CONCLUSION: Our findings illustrate the neuroprotective effect and the improved utility of stigmasterol in inhibiting glutamate-induced neurotoxicity.


Subject(s)
Azadirachta , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Down-Regulation , Stigmasterol/pharmacology , Stigmasterol/metabolism , Glutamic Acid/toxicity , Glutamic Acid/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/pharmacology , Reactive Oxygen Species/metabolism , Neurons , Signal Transduction , Phosphorylation , tau Proteins/metabolism , Flowers/metabolism , Water
11.
J Ethnopharmacol ; 302(Pt A): 115870, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36341819

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rubus idaeus Linnaeus (RI) is a Chinese herbal medicine that has been widely used in China for a long time to reinforce the kidney, nourish the liver, improve vision, and arrest polyuria. AIM OF THE STUDY: This work aims to evaluate the recent progress of the chemical composition, pharmacological activity, pharmacokinetics, metabolism, and quality control and of Rubus idaeus, which focuses on the insufficiency of existing research and will shed light on future studies of Rubus idaeus. METHODS: Literatures about "Rubus idaeus","Red raspberry" and "Fupenzi"are retrieved by browsing the database, such as Web of Science (http://www.webofknowledge.com/wos), Pubmed (https://pubmed.ncbi.nlm.nih.gov/), CNKI (http://www.cnki.net/), and Wanfang Data (http://www.wanfangdata.com.cn). In addition, related textbooks and digital documents are interrogated to provide a holistic and critical review of the topic. The period of the literature covered from 1981 to 2022. RESULTS: Approximately 194 compounds have been isolated from Rubus idaeus, which is rich in phenols, terpenoids, alkaloids, steroids, and fatty acids. Numerous investigations have demonstrated that Rubus idaeus exhibits many pharmacological activities, including hypoglycemic and hypolipidemic, anti-Alzheimer effect, anti-osteoporosis, hepatoprotective, anti-cancer, neuroprotective, anti-bacteria and skin care, etc. However, it is worth noting that most of the research is not associated with the conventional effect, such as reducing urination and treating opacity of the cornea. CONCLUSION: The effectiveness of Rubus idaeus has been proved by its long-term clinical application. The research on the pharmacological activity of Rubus idaeus has flourished. In many pharmacological experiments, only the high-dose group can achieve the corresponding efficacy, so the efficacy of Rubus idaeus needs to be further interrogated. Meanwhile, the relationship between pharmacological activity and specific compounds of Rubus idaeus has not been clarified yet. Last but not least, studies involving toxicology and pharmacokinetics are very limited. Knowledge of bioavailability and toxicological behavior of Rubus idaeus can help understand the herb's pharmacodynamic and safety profile.


Subject(s)
Ethnobotany , Rubus , Ethnopharmacology , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Quality Control , Phytotherapy
12.
J Ovarian Res ; 15(1): 46, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477469

ABSTRACT

BACKGROUND: The Ayurvedic system of medicine mentions the use of seeds of Bryonopsis laciniosa (L.) Naud. (also known as Shivlingi due to their unique structure resembling a 'Shivling') for treating sexual dysfunction, impaired fertility, and as a general virility-booster in both males and females. To investigate the scientific basis for such claims, the current study was designed for the chemical characterization of the super critical fluid extracted Shivlingi seed oil (SLSO), and subsequent evaluation of its reproductive fecundity in the zebrafish model of N-ethyl-N-nitrosourea induced infertility. RESULTS: Linoleic and linolenic acids were the major fatty acids in the SLSO, with trace amounts of ß-sitosterol and stigmasterol. Both male and female zebrafish, when fed orally with the SLSO infused pallets, showed a dose-dependent increase in fertility and fecundity rates. Microscopic observations revealed recovery in the gross ovarian anatomy and consequential improvement in egg production in infertile female zebrafish. Similarly, cytological studies exhibited increased sperm counts and motility in male zebrafish. SLSO exhibited effects similar to the human equivalent dose of Letrozole. CONCLUSION: Taken together, these observations demonstrated the fertility-boosting potentials of SLSO comparable to the widely used infertility drugs. As a whole, this research work has provided scientific evidence for the rationale behind the use of Shivlingi seeds in Ayurvedic treatment for infertility in humans. Finally, but importantly, this study warrants further scientific investigations into different aspects of SLSO on human reproductive health.


Subject(s)
Infertility , Zebrafish , Animals , Female , Fertility , Male , Plant Extracts/pharmacology , Seeds
13.
J Sci Food Agric ; 102(11): 4759-4769, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35218222

ABSTRACT

BACKGROUND: Phytosterols are considered to be one of the most promising gelators for obtaining oleogel because of their additional health benefits and natural coexist with vegetable oils. Previous studies have confirmed that individual phytosterols are not capable of structuring vegetable oils unless they act synergistically with other components. However, based on the self-assembly properties of stigmasterol (ST) in organic solvents, we speculate that it can also structure vegetable oils as a gelator alone. RESULTS: For the first time, the present study confirmed the feasibility of using ST alone as a gelator for structuring of vegetable oils, including rapeseed oil (RSO), olive oil (OLO) and flaxseed oil (FSO). RSO had the lowest ST gelation concentration (4%, w/w), and the oil-binding capacity and firmness value of the oleogels were the highest. The rheological results showed that all the samples were gelatinous (G' > G″). The results of differential scanning calorimeter and X-ray diffraction further confirmed that the properties of RSO-based oleogels are superior to those prepared by OLO and FSO. The microscopic results also confirmed that the crystal structure of RSO oleogels was more uniform, smaller and more densely distributed. CONCLUSION: The structural properties of the oleogels were positively correlated with the ST concentration, and various analysis indicators showed that the performance of the oleogel based on RSO was better than that of OLO and FSO. In summary, the present study used ST as a gelator to successfully prepare oleogels with excellent properties, which provides a feasible reference for researchers in related fields. © 2022 Society of Chemical Industry.


Subject(s)
Phytosterols , Stigmasterol , Organic Chemicals/chemistry , Plant Oils/chemistry
14.
Drug Des Devel Ther ; 16: 375-395, 2022.
Article in English | MEDLINE | ID: mdl-35210754

ABSTRACT

PURPOSE: Yin-Huo-Tang (YHT) is a classic traditional Chinese prescription, used to prevent lung adenocarcinoma (LUAD) relapse by "nourishing yin and clearing heat". In this study, the mechanism of YHT in LUAD recurrence was investigated. METHODS: Firstly, the bioactive compounds and targets of YHT, as well as related targets of LUAD recurrence, were collected from public databases. The protein-protein interaction network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to find the pivotal compounds, hub genes, functional annotation and main pathways. Subsequently, RNA sequencing of recurrent tumor tissues from Lewis lung carcinoma mice treated with YHT was used to explore the main pathways. At the same time, pathways screened by network pharmacology and RNA sequencing analysis were considered the most important pathways. Finally, liquid chromatography mass spectrometry was used to validate the pivotal active ingredients. Molecular docking technology was performed to validate the binding association between the hub genes and the pivotal active ingredients. PCR and WB analysis were used to validate the main pathways. RESULTS: There were 128 active compounds and 419 targets interacting with YHT and LUAD recurrence. Network analysis identified 4 pivotal compounds, 28 hub genes and 30 main pathways. Sphingolipid signaling pathway was the common main pathway in network pharmacology and RNA sequencing results. The hub gene related to the sphingolipid signaling pathway was S1PR5. Qualitative phytochemical analysis confirmed the presence of 3 pivotal compounds, namely stigmasterol, nootkatone and ergotamine. The molecular docking verified that the pivotal compounds could good affinity with S1PR5. The PCR and WB analysis verified YHT suppressed Lewis lung cancer cells proliferation and migration by inhibiting the sphingolipid signaling pathway. CONCLUSION: The potential mechanism and therapeutic effect of YHT against the recurrence of LUAD may be ascribed to inhibition of the sphingolipid signaling pathway.


Subject(s)
Adenocarcinoma of Lung , Drugs, Chinese Herbal , Lung Neoplasms , Adenocarcinoma of Lung/drug therapy , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Molecular Docking Simulation , Neoplasm Recurrence, Local/drug therapy , Network Pharmacology
15.
Pharmacol Res ; 175: 106000, 2022 01.
Article in English | MEDLINE | ID: mdl-34838694

ABSTRACT

Traditional Chinese medicine (TCM) has been long time used in China and gains ever-increasing worldwide acceptance. Er Miao San (EMS), a TCM formula, has been extensively used to treat inflammatory diseases, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we conducted an integrative approach of network pharmacology and experimental study to elucidate the underlying mechanisms of EMS in treating human rheumatoid arthritis (RA) and other inflammatory conditions. Quercetin, wogonin and rutaecarpine were probably the main active compounds of EMS in RA treatment as they affected the most RA-related targets, and TNF-α, IL-6 and IL-1ß were considered to be the core target proteins. The main compounds in EMS bound to these core proteins, which was further confirmed by molecular docking and bio-layer interferometry (BLI) analysis. Moreover, the potential molecular mechanisms of EMS predicted from network pharmacology analysis, were validated in vivo and in vitro experiments. EMS was found to inhibit the production of NO, TNF-α and IL-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells; reduce xylene-induced mouse ear edema; and decrease the incidence of carrageenan-induced rat paw edema. The carrageenan-induced up-regulation of TNF-α, IL-6 and IL-1ß mRNA expression in rat paws was down-regulated by EMS, consistent with the network pharmacology results. This study provides evidence that EMS plays a critical role in anti-inflammation via suppressing inflammatory cytokines, indicating that EMS is a candidate herbal drug for further investigation in treating inflammatory and arthritic conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Phytochemicals/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Carrageenan , Cytokines/genetics , Cytokines/metabolism , Drugs, Chinese Herbal/therapeutic use , Edema/chemically induced , Edema/drug therapy , Edema/genetics , Edema/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Network Pharmacology , Nitric Oxide/metabolism , Phytochemicals/therapeutic use , RAW 264.7 Cells , Rats, Sprague-Dawley , Xylenes
16.
J Ethnopharmacol ; 286: 114839, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34896208

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: F.parviflora Lam. is a plant widely used in traditional medicine systems like Unani, Ayurveda, and folk medicines in Iraq and Turkey. It is known as Shahatraj in Arabic, which is derived from Shahatra and called Shajaratuddam. In the ancient Unani system, it is called Shajaratuddam. The term derived from Sajarat means tree, and Dam means blood since it has a potent blood purifier property. AIM OF THE STUDY: This review focused on comprehensive, updated information on the F.parviflora Lam. about the traditional uses, phytochemical and pharmacology and provided insights into potential opportunities for future research. MATERIALS AND METHODS: The classical literature of Shahatra for its temperament (Mizaj), medicinal properties and traditional therapeutic uses were gathered from nearly 15 classical Unani books, eight local and foreign books on ethnomedicines and ethnobotany in English. The information of pharmacognosy, phytochemical and pharmacological activities of F.parviflora Lam was collected by browsing the Internet (PubMed, ScienceDirect, Wiley online library, Google Scholar, ResearchGate). The relevant primary sources were probed, analysed, and included in this review. The keywords used to browse were F.parviflora Lam, shahatra, pitpapda, and fine fumitory. Relevant Sources were gathered up to April 2021, and the chemical structures were drawn using Chemsketch software. The species name was checked with http://www.theplantlist.org ("F.parviflora Lam. - The Plant List," n.d.). The materials published in both Urdu and English were included in the review. RESULTS: F.parviflora Lam was found to possess an excess of bioactive compounds and broad pharmacological properties, including antimicrobial activity, antioxidant activity, antiprotozoal activity, anthelmintic activity, antidiarrheal, antispasmodic and bronchodilator activities, antidiabetic activity, hepatoprotective activity, anticancer activity (cytotoxicity)of nanoparticle, antipruritic activity, dermatological effect, reproductive effect, anti-inflammatory and anti-nociceptive activity. CONCLUSION: In this review, the botany, traditional uses, phytochemistry and pharmacology of F.parviflora were reviewed. It showed a broad scope of application, and its benefits had been extended far beyond the initial conventional uses of its parts. It consists of numerous chemical constituents and reported various pharmacological activities such as antimicrobial activity, antioxidant activity, antidiabetic activity, hepatoprotective activity, anticancer activity etc. Though it is widely studied using several in-vitro and in-vivo models and tested clinically for skin diseases, several gaps and research priorities have been identified that need to be addressed in the future, such as active ingredients and their mechanism of action applications in immunomodulation and hepatic diseases.


Subject(s)
Fumaria/chemistry , Medicine, Traditional/methods , Plant Extracts/pharmacology , Animals , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
17.
Nutrients ; 13(7)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34371875

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) have been recognized to cause neurobehavioral dysfunctions and disorder of cognition and behavioral patterns in childhood. Momordica charantia L. (MC) has been widely known for its nutraceutical and health-promoting properties. To date, the effect of MC for the prevention and handling of PAHs-induced neurotoxicity has not been reported. In the current study, the neuroprotective effects of MC and its underlying mechanisms were investigated in mouse hippocampal neuronal cell line (HT22); moreover, in silico analysis was performed with the phytochemicals MC to decipher their potential function as neuroprotectants. MC was demonstrated to possess neuroprotective effect by reducing reactive oxygen species' (ROS') production and down-regulating cyclin D1, p53, and p38 mitogen-activated protein kinase (MAPK) protein expressions, resulting in the inhibition of cell apoptosis and the normalization of cell cycle progression. Additionally, 28 phytochemicals of MC and their competence on inhibiting cytochrome P450 (CYP: CYP1A1, CYP1A2, and CYP1B1) functions were resolved. In silico analysis of vitamin E and stigmasterol revealed that their binding to either CYP1A1 or CYP1A2 was more efficient than the binding of each positive control (alizarin or purpurin). Together, MC is potentially an interesting neuroprotectant including vitamin E and stigmasterol as probable active components for the prevention for PAHs-induced neurotoxicity.


Subject(s)
Hippocampus/drug effects , Momordica charantia , Neurons/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Polycyclic Aromatic Hydrocarbons/toxicity , Stigmasterol/pharmacology , Vitamin E/pharmacology , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Line , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Mice , Momordica charantia/chemistry , Neurons/metabolism , Neurons/pathology , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Protein Binding , Reactive Oxygen Species/metabolism , Stigmasterol/isolation & purification , Vitamin E/isolation & purification
18.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443479

ABSTRACT

Cannabis sativa L. has been used for a long time to obtain food, fiber, and as a medicinal and psychoactive plant. Today, the nutraceutical potential of C.sativa is being increasingly reappraised; however, C. sativa roots remain poorly studied, despite citations in the scientific literature. In this direction, we identified and quantified the presence of valuable bioactives (namely, ß-sitosterol, stigmasterol, campesterol, friedelin, and epi-friedelanol) in the root extracts of C. sativa, a finding which might pave the way to the exploitation of the therapeutic potential of all parts of the C. sativa plant. To facilitate root harvesting and processing, aeroponic (AP) and aeroponic-elicited cultures (AEP) were established and compared to soil-cultivated plants (SP). Interestingly, considerably increased plant growth-particularly of the roots-and a significant increase (up to 20-fold in the case of ß-sitosterol) in the total content of the aforementioned roots' bioactive molecules were observed in AP and AEP. In conclusion, aeroponics, an easy, standardized, contaminant-free cultivation technique, facilitates the harvesting/processing of roots along with a greater production of their secondary bioactive metabolites, which could be utilized in the formulation of health-promoting and health-care products.


Subject(s)
Cannabis/chemistry , Cannabis/growth & development , Hydroponics , Cholesterol/analogs & derivatives , Cholesterol/analysis , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Phytosterols/analysis , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/growth & development , Sitosterols/analysis , Stigmasterol/analysis , Triterpenes/analysis
19.
Phytomedicine ; 90: 153646, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34280827

ABSTRACT

BACKGROUND: Gamma-aminobutyric acid A (GABAA) receptors have been implicated in anxiety and epileptic disorders. HYPOTHESIS/PURPOSE: This study aimed to investigate the effects of stigmasterol, a plant sterol (phytosterol) isolated from Artemisia indica Linn on neurological disorders. METHODS: Stigmasterol was evaluated on various recombinant GABAA receptor subtypes expressed in Xenopus laevis oocytes and its anxiolytic and anticonvulsant potential was assessed using the elevated plus maze (EPM), light-dark box (LDB) test, and pentylenetetrazole- (PTZ-) induced seizure paradigms. Furthermore, computational modeling of α2ß2γ2L, α4ß3δ, and α4ß3 subtypes was performed to gain insights into the GABAergic mechanism of stigmasterol. For the first time, a model of GABAδ subtype was generated. Stigmasterol was targeted to all the binding sites (neurotransmitters, positive and negative modulator binding sites) of GABAA α2ß2γ2L, α4ß3, and α4ß3δ complexes by in silico docking. RESULTS: Stigmasterol enhanced GABA-induced currents at ternary α2ß2γ2L, α4ß3δ, and binary α4ß3 GABAAR subtypes. The potentiation of GABA-induced currents at extrasynaptic α4ß3δ was significantly higher compared to the binary α4ß3 subtype, indicating that the δ subunit is important for efficacy. Stigmasterol was found to be a potent positive modulator of the extrasynaptic α4ß3δ subtype, which was also confirmed by computational analysis. The computational analysis reveals that stigmasterol preferentially binds at the transmembrane region shared by positive modulators or a binding site constituted by the M2-M3 region of α4 and M1-M2 of ß3 at α4ß3δ complex. In in vivo studies, Stigmasterol (0.5-3.0 mg/kg, i.p.) exerted significant anxiolytic and anticonvulsant effects in an identical manner of allopregnanolone, indicating the involvement of a GABAergic mechanism. CONCLUSION: To our knowledge, this is the first study reporting the positive modulation of GABAA receptors, anxiolytic and anticonvulsant potential of stigmasterol. Thus, stigmasterol is considered to be a candidate steroidal drug for the treatment of neurological disorders due to its positive modulation of GABA receptors.


Subject(s)
Anti-Anxiety Agents , Anticonvulsants/pharmacology , GABA Modulators/pharmacology , Stigmasterol , Animals , Anti-Anxiety Agents/pharmacology , Oocytes , Receptors, GABA-A , Seizures/drug therapy , Stigmasterol/pharmacology , Xenopus laevis
20.
J Complement Integr Med ; 18(2): 339-345, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-34187118

ABSTRACT

OBJECTIVES: Mesua ferrae, from the family of Calophyllaceae, is traditionally used for the treatment of piles, fever and renal disorders. The present study was aimed to examine the antibacterial compounds from the leaves of M. ferrae and their ß-lactam antibiotic potentiate activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Stigmasterol (1) and ß-caryophyllene oxide (2) were isolated from the n-hexane fraction of the leaves of M. ferrae using a bioassay-guided fractionation approach. RESULTS: The isolated compounds displayed anti-Staphylococcus and anti-MRSA activities. It is worth to note that both compounds demonstrated synergism with ß-lactam antibiotics against S. aureus and MRSA. Gas chromatography-mass spectrometry (GC-MS) analysis indicated the n-hexane fraction was dominated by triterpenes and sesquiterpenes, suggesting the total antibacterial activity exhibited by the fraction. CONCLUSION: Based on the findings, it could conclude that M. ferrae is a promising natural source for the discovery of new anti-MRSA lead compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Staphylococcus aureus/drug effects , beta-Lactams/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Malaysia , Molecular Structure , Plant Extracts/chemistry , Plant Leaves , Stigmasterol/pharmacology , beta-Lactams/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL