Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Carbohydr Polym ; 296: 119941, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36087990

ABSTRACT

Homogalacturonan (HG)-type pectin has been considered suitable for the formation of hydrogel, but it is unknown whether the less side chain will limit the properties of hydrogel. The current study successfully obtained low methoxyl HG-type hawthorn pectin (LMHP) from hawthorn by sequential hot water extraction and alkaline de-esterification. The proportion of HG domain, the proportion of rhamnogalacturonan-I (RG-I) domain, molecular weight, and particle size of LMHP were 81.13 %, 4.04 %, 348.43 kDa, and 1386.92 nm, respectively. Compared with commercial citrus pectin (CP), LMHP was more suitable for the preparation of hydrogel. The hydrogel with the densest network structure and relatively stable performance in digestion simulation environment can be obtained as the concentration of LMHP increases to 2.5 %, which is lower than the consumption of commercial citrus pectin. Overall, these findings highlight the potential of hawthorn pectin as a novel hydrogel raw material.


Subject(s)
Crataegus , Esters , Hydrogels , Pectins/chemistry
2.
Materials (Basel) ; 14(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201757

ABSTRACT

Amino-acids, peptides, and protein hydrolysates, together with their coordinating compounds, have various applications as fertilizers, nutritional supplements, additives, fillers, or active principles to produce hydrogels with therapeutic properties. Hydrogel-based patches can be adapted for drug, protein, or peptide delivery, and tissue healing and regeneration. These materials have the advantage of copying the contour of the wound surface, ensuring oxygenation, hydration, and at the same time protecting the surface from bacterial invasion. The aim of this paper is to describe the production of a new type of hydrogel based on whey protein isolates (WPI), whey protein hydrolysates (WPH), and gelatin. The hydrogels were obtained by utilizing a microwave-assisted method using gelatin, glycerol, WPI or WPH, copper sulfate, and water. WPH was obtained by enzymatic hydrolysis of whey protein isolates in the presence of bromelain. The hydrogel films obtained have been characterized by FT-IR and UV-VIS spectroscopy. The swelling degree and swelling kinetics have also been determined.

3.
Food Chem ; 293: 429-437, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31151631

ABSTRACT

To achieve a low methoxy-pectin nanocomposite film with maximum resistance to water and acceptable mechanical properties, the interactions of different glycerol concentrations and Ca2+ ions in both steps of crosslinking on the swelling degree (SD) and mechanical properties of prepared films were investigated using response surface methodology (RSM). Accordingly, quadratic second-order models were fitted to the SD and tensile strength responses; while the cubic model demonstrated a good relation between independent variables and elongation at break respectively. As a compromise between water resistance and mechanical properties of the prepared films, the use of 0.5% Ca2+, 0.75% Gly1 and 7.5% Gly2 is suggested as the optimum condition. Generally, crosslinking of pectin polymer with Ca2+ cations in the second step along with incorporation of nanocellulose into pectin film led to the formation of more flexible and completely water insoluble pectin nanocomposite film in comparison to the other polymers crosslinked with Ca2+ cations.


Subject(s)
Calcium/chemistry , Glycerol/chemistry , Nanocomposites/chemistry , Pectins/chemistry , Water/chemistry , Cations/chemistry , Cellulose/chemistry , Polymers , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL