Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631280

ABSTRACT

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Subject(s)
Copper , Hyaluronic Acid , Magnetic Resonance Imaging , Manganese Compounds , Oxides , Photochemotherapy , Tumor Microenvironment , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Tumor Microenvironment/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Oxides/chemistry , Oxides/pharmacology , Humans , Copper/chemistry , Copper/pharmacology , Particle Size , Nanostructures/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phototherapy , Nanoparticles/chemistry , Cell Survival/drug effects , Surface Properties , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Drug Screening Assays, Antitumor , Animals
2.
Int Immunopharmacol ; 132: 111948, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38554445

ABSTRACT

Cancer is attributed to uncontrolled cell growth and is among the leading causes of death with no known effective treatment while complex tumor microenvironment (TME) and multidrug resistance (MDR) are major challenges for developing an effective therapeutic strategy. Advancement in cancer immunotherapy has been limited by the over-activation of the host immune response that ultimately affects healthy tissues or organs and leads to a feeble response of the patient's immune system against tumor cells. Besides, traditional herbal medicines (THM) have been well-known for their essential role in the treatment of cancer and are considered relatively safe due to their compatibility with the human body. Yet, poor solubility, low bio-availability, and lack of understanding about their pathophysiological mechanism halt their clinical application. Moreover, considering the complex TME and drug resistance, the most precarious and least discussed concerns for developing THM-based nano-vaccination, are identification of specific biomarkers for drug inhibitory protein and targeted delivery of bioactive ingredients of THM on the specific sites in tumor cells. The concept of THM-based nano-vaccination indicates immunomodulation of TME by THM-based bioactive adjuvants, exerting immunomodulatory effects, via targeted inhibition of key proteins involved in the metastasis of cancer. However, this concept is at its nascent stage and very few preclinical studies provided the evidence to support clinical translation. Therefore, we attempted to capsulize previously reported studies highlighting the role of THM-based nano-medicine in reducing the risk of MDR and combating complex tumor environments to provide a reference for future study design by discussing the challenges and opportunities for developing an effective and safe therapeutic strategy against cancer.


Subject(s)
Cancer Vaccines , Immunotherapy , Nanovaccines , Neoplasms , Tumor Microenvironment , Animals , Humans , Cancer Vaccines/immunology , Drug Resistance, Multiple , Drug Resistance, Neoplasm/drug effects , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
3.
J Genet Eng Biotechnol ; 22(1): 100339, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494270

ABSTRACT

BACKGROUND: Breast cancer (BC) has transcended lung cancer as the most common cancer in the world. Due to the disease's aggressiveness, rapid growth, and heterogeneity, it is crucial to investigate different therapeutic approaches for treatment. According to the World Health Organization (WHO), Plant-based therapeutics continue to be utilized as safe/non-toxic complementary or alternative treatments for cancer, even in developed countries, regardless of how cutting-edge conventional therapies are. Despite their low bioavailability, curcumin (CUR) and green tea (GT) represent safer therapeutic options. Due to their potent molecular-modulating properties on various cancer-related molecules and signaling pathways, they are considered gold-standard therapeutic agents and have been incorporated into the development of one or more therapeutic strategies of BC treatment. METHODS: We investigated the modulatory role of CUR and GT extracts on significant multi molecular targets in MCF-7 BC cell line to assess their potential as BC multi-targeting agents. We analyzed the phytocompounds in GT leaves using High-performance liquid chromatography (HPLC) and Gas chromatography-mass spectrometry (GC-MS) techniques. The mRNA expression levels of Raf-1, Telomerase, Tumor necrosis factor alpha (TNF-α) and Interleukin-8 (IL-8) genes in MCF-7 cells were quantified using quantitative real-time PCR (qRT-PCR). The cytotoxicity of the extracts was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the released Lactate dehydrogenase (LDH), a valuable marker for identifying the programmed necrosis (necroptosis). Additionally, the concentrations of the necroptosis-related proinflammatory cytokines (TNF-α and IL-8) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: In contrast to the GT, the results showed the anticancer and cytotoxic properties of CUR against MCF-7 cells, with a relatively higher level of released LDH. The CUR extract downregulated the oncogenic Raf-1, suppressed the Telomerase and upregulated the TNF-α and IL-8 genes. Results from the ELISA showed a notable increase in IL-8 and TNF-α cytokines levels after CUR treatment, which culminated after 72 h. CONCLUSIONS: Among both extracts, only CUR effectively modulated the understudy molecular targets, achieving multi-targeting anticancer activity against MCF-7 cells. Moreover, the applied dosage significantly increased levels of the proinflammatory cytokines, which represent a component of the cytokines-targeting-based therapeutic strategy. However, further investigations are recommended to validate this therapeutic approach.

4.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542407

ABSTRACT

This review is intended to demonstrate that the local production of acute phase proteins (termed local acute phase response (lAPR)) and especially fibrin/fibrinogen (FN) is a defense mechanism of cancer cells to therapy, and inhibition of the lAPR can augment the effectiveness of cancer therapy. Previously we detected a lAPR accompanying tumor cell death during the treatment of triple-negative breast cancer (TNBC) with modulated electro-hyperthermia (mEHT) in mice. We observed a similar lAPR in in hypoxic mouse kidneys. In both models, production of FN chains was predominant among the locally produced acute phase proteins. The production and extracellular release of FN into the tumor microenvironment is a known method of self-defense in tumor cells. We propose that the lAPR is a new, novel cellular defense mechanism like the heat shock response (HSR). In this review, we demonstrate a potential synergism between FN inhibition and mEHT in cancer treatment, suggesting that the effectiveness of mEHT and chemotherapy can be enhanced by inhibiting the HSR and/or the lAPR. Non-anticoagulant inhibition of FN offers potential new therapeutic options for cancer treatment.


Subject(s)
Hyperthermia, Induced , Neoplasms , Animals , Mice , Fibrinogen , Acute-Phase Proteins , Hyperthermia, Induced/methods , Neoplasms/therapy , Neoplasms/pathology , Tumor Microenvironment
5.
J Transl Med ; 22(1): 62, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229160

ABSTRACT

Metastasis is the leading cause of high mortality in colorectal cancer (CRC), which is not only driven by changes occurring within the tumor cells, but is also influenced by the dynamic interaction between cancer cells and components in the tumor microenvironment (TME). Currently, the exploration of TME remodeling and its impact on CRC metastasis has attracted increasing attention owing to its potential to uncover novel therapeutic avenues. Noteworthy, emerging studies suggested that tumor-associated macrophages (TAMs) within the TME played important roles in CRC metastasis by secreting a variety of cytokines, chemokines, growth factors and proteases. Moreover, TAMs are often associated with poor prognosis and drug resistance, making them promising targets for CRC therapy. Given the prognostic and clinical value of TAMs, this review provides an updated overview on the origin, polarization and function of TAMs, and discusses the mechanisms by which TAMs promote the metastatic cascade of CRC. Potential TAM-targeting techniques for personalized theranostics of metastatic CRC are emphasized. Finally, future perspectives and challenges for translational applications of TAMs in CRC development and metastasis are proposed to help develop novel TAM-based strategies for CRC precision medicine and holistic healthcare.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Macrophages/metabolism , Colonic Neoplasms/pathology , Cytokines/metabolism , Prognosis , Tumor Microenvironment , Colorectal Neoplasms/pathology
6.
J Cancer ; 15(1): 30-40, 2024.
Article in English | MEDLINE | ID: mdl-38164278

ABSTRACT

Objective: To explore whether SLBZD can play a synergistic role in promoting the efficacy of PD-1 inhibitors in the treatment of colorectal cancer by influencing the intestinal microenvironment and Tumor microenvironment. Method: Shenling Baizhu Decoction (SLBZD) and tirelizumab (TLzmab) treated the colorectal mouse model. The tumor growth rate, tumor weight, and tumor growth inhibition rate were evaluated. Fecal microbiota was detected by 16S rDNA sequencing and immune cell was detected by the flow cytometry analysis. Result: Compared to tumor weight, there exist significant differences between each group among the three groups. Compared to tumor volume, there was no statistically significant difference in tumor size between the control group and the TLzmab group at 7 days. However, there was a statistical difference in tumor size among the three groups at 18 days. By analyzing the diversity of the Gut microbiota, the diversity decreased after TLzmab treatment with a statistically significant difference. Compared with the control group, the diversity of the TLzmab+SLBZD group increased. The proportion of lymphocytes in the blood was analyzed by flow cytometry. Compared with the control group, Myeloid-derived suppressor cells (MDSCs) decreased and T regulatory cells (Treg) increased significantly in the TLzmab group. Compared with the control group and TLzmab group, the TLzmab+SLBZD group showed a significant increase in M1 type macrophages, while the M2 type macrophages, MDSCs, and Treg showed a significant decrease. Conclusion: An imbalance of Gut microbiota and imbalance of tumor immune microenvironment will occur during TLzmab treatment, which will lead to poor therapeutic effect of TLzmab or drug resistance. SLBZD will increase the abundance of Gut microbiota, which will lead to the increase of M1 macrophages in the tumor immune microenvironment and the decrease of M2 macrophages and Treg cells, thus exerting the synergistic effect of TLzmab. This study provides a new way to explore the improvement of ICIs through traditional Chinese medicine.

7.
J Cancer Res Clin Oncol ; 149(20): 17897-17919, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37955686

ABSTRACT

BACKGROUND: The incidence of skin cutaneous melanoma (SKCM), one of the most aggressive and lethal skin tumors, is increasing worldwide. However, for advanced SKCM, we still lack an accurate and valid way to predict its prognosis, as well as novel theories to guide the planning of treatment options for SKCM patients. Lactylation (LAC), a novel post-translational modification of histones, has been shown to promote tumor growth and inhibit the antitumor response of the tumor microenvironment (TME) in a variety of ways. We hope that this study will provide new ideas for treatment options for SKCM patients, as well as research on the molecular mechanisms of SKCM pathogenesis and development. METHODS: At the level of the RNA sequencing set (TCGA, GTEx), we used differential expression analysis, LASSO regression analysis, and multifactor Cox regression analysis to screen for prognosis-related genes and calculate the corresponding LAC scores. The content of TME cells in the tumor tissue was calculated using the CIBERSORT algorithm, and the TME score was calculated based on its results. Finally, the LAC-TME classifier was established and further analyzed based on the two scores, including the construction of a prognostic model, analysis of clinicopathological characteristics, and correlation analysis of tumor mutation burden (TMB) and immunotherapy. Based on single-cell RNA sequencing data, this study analyzed the cellular composition in SKCM tissues and explored the role of LAC scores in intercellular communication. To validate the functionality of the pivotal gene CLPB in the model, cellular experiments were ultimately executed. RESULTS: We screened a total of six prognosis-related genes (NDUFA10, NDUFA13, CLPB, RRM2B, HPDL, NARS2) and 7 TME cells with good prognosis. According to Kaplan-Meier survival analysis, we found that the LAClow/TMEhigh group had the highest overall survival (OS) and the LAChigh/TMElow group had the lowest OS (p value < 0.05). In further analysis of immune infiltration, tumor microenvironment (TME), functional enrichment, tumor mutational load and immunotherapy, we found that immunotherapy was more appropriate in the LAClow/TMEhigh group. Moreover, the cellular assays exhibited substantial reductions in proliferation, migration, and invasive potentials of melanoma cells in both A375 and A2058 cell lines upon CLPB knockdown. CONCLUSIONS: The prognostic model using the combined LAC score and TME score was able to predict the prognosis of SKCM patients more consistently, and the LAC-TME classifier was able to significantly differentiate the prognosis of SKCM patients across multiple clinicopathological features. The LAC-TME classifier has an important role in the development of immunotherapy regimens for SKCM patients.


Subject(s)
Aspartate-tRNA Ligase , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/therapy , Prognosis , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Tumor Microenvironment/genetics , Biomarkers , Biomarkers, Tumor/genetics
8.
Cells ; 12(21)2023 11 04.
Article in English | MEDLINE | ID: mdl-37947651

ABSTRACT

Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.


Subject(s)
Capsicum , Neoplasms , Humans , Capsaicin/pharmacology , Fruit/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Biology
9.
Front Cell Dev Biol ; 11: 1272667, 2023.
Article in English | MEDLINE | ID: mdl-38033861

ABSTRACT

Introduction: Detachment from the extracellular matrix (ECM) is the first step of the metastatic cascade. It is a regulated process involving interaction between tumor cells and tumor microenvironment (TME). Iron is a key micronutrient within the TME. Here, we explored the role of iron in the ability of ovarian cancer cells to successfully detach from the ECM. Methods: HEY and PEO1 ovarian cancer cells were grown in 3D conditions. To mimic an iron rich TME, culture media were supplemented with 100 µM Fe3+. Cell mortality was evaluated by cytofluorimetric assay. The invasive potential of tumor spheroids was performed in Matrigel and documented with images and time-lapses. Iron metabolism was assessed by analyzing the expression of CD71 and FtH1, and by quantifying the intracellular labile iron pool (LIP) through Calcein-AM cytofluorimetric assay. Ferroptosis was assessed by quantifying mitochondrial reactive oxygen species (ROS) and lipid peroxidation through MitoSOX and BODIPY-C11 cytofluorimetric assays, respectively. Ferroptosis markers GPX4 and VDAC2 were measured by Western blot. FtH1 knockdown was performed by using siRNA. Results: To generate spheroids, HEY and PEO1 cells prevent LIP accumulation by upregulating FtH1. 3D HEY moderately increases FtH1, and LIP is only slightly reduced. 3D PEO1upregulate FtH1 and LIP results significantly diminished. HEY tumor spheroids prevent iron import downregulating CD71, while PEO1 cells strongly enhance it. Intracellular ROS drop down during the 2D to 3D transition in both cell lines, but more significantly in PEO1 cells. Upon iron supplementation, PEO1 cells continue to enhance CD71 and FtH1 without accumulating the LIP and ROS and do not undergo ferroptosis. HEY, instead, accumulate LIP, undergo ferroptosis and attenuate their sphere-forming ability and invasiveness. FtH1 knockdown significantly reduces the generation of PEO1 tumor spheroids, although without sensitizing them to ferroptosis. Discussion: Iron metabolism reprogramming is a key event in the tumor spheroid generation of ovarian cancer cells. An iron-rich environment impairs the sphere-forming ability and causes cell death only in ferroptosis sensitive cells. A better understanding of ferroptosis sensitivity could be useful to develop effective treatments to kill ECM-detached ovarian cancer cells.

10.
Cells ; 12(16)2023 08 10.
Article in English | MEDLINE | ID: mdl-37626849

ABSTRACT

Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate and limited treatment options. Recent research has brought attention to the significant importance of intercellular communication in the progression of HCC, wherein exosomes have been identified as critical agents facilitating cell-to-cell signaling. In this article, we investigate the impact of macrophages as both sources and targets of exosomes in HCC, shedding light on the intricate interplay between exosome-mediated communication and macrophage involvement in HCC pathogenesis. It investigates how exosomes derived from HCC cells and other cell types within the tumor microenvironment (TME) can influence macrophage behavior, polarization, and recruitment. Furthermore, the section explores the reciprocal interactions between macrophage-derived exosomes and HCC cells, stromal cells, and other immune cells, elucidating their role in tumor growth, angiogenesis, metastasis, and immune evasion. The findings presented here contribute to a better understanding of the role of macrophage-derived exosomes in HCC progression and offer new avenues for targeted interventions and improved patient outcomes.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Humans , Tumor Microenvironment , Yin-Yang , Macrophages
11.
Phytomedicine ; 119: 154981, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37531902

ABSTRACT

PURPOSE: The declined oxygen tension in the cancer cell leads to the hypoxic adaptive response and favors establishment of tumor micro environment [TEM]. The complex TME consists of interwoven hypoxic HIF-1α and DNA damage repair ATM signaling. The ATM/HIF-1α phosphorylation switch on angiogenesis and abort apoptosis. Targeting this signaling nexus would be a novel therapeutic strategy for the treatment of cancer. BACKGROUND: Steroidal alkaloid solanidine is known for varied pharmacological role but with less molecular evidences. Our earlier findings on solanidine proven its anti-neoplastic activity by inducing apoptosis in lung cancer. In continued research, efforts have been made to establish the underlying molecular signaling in induction of DNA damage in prevailing hypoxic TME. METHODS: The solanidine induced DNA damage was assessed trough alkali COMET assay; signaling nexus and gene expression profile analysis through IB, qRT-PCR, Gelatin Zymography, IHC, IF and ELISA. Pathophysiological modulations assessed through tube formation, migration, invasion assays. Anti-angiogenic studies through CAM, rat aorta, matrigel assays and corneal neovascularization assay. Anti-tumor activity through in-vivo DLA ascites tumor model and LLC model. RESULTS: The results postulates, inhibition of hypoxia driven DDR proteins pATMser1981/pHIF-1αser696 by solanidine induces anti-angiogenesis. Systematic study of both non-tumorigenic and tumorigenic models in-vitro as well as in-vivo experimental system revealed the angio-regression mediated anticancer effect in lung cancer. These effects are due to the impeded expression of angiogenic mediators such as VEGF, MMP2&9 and inflammatory cytokines IL6 and TNFα to induce pathophysiological changes CONCLUSION: The study establishes new role of solanidine by targeting ATM/HIF-1α signaling to induce anti-angiogenesis for the first time. The study highlights the potentiality of plant based phytomedicine solanidine which can targets the multiple hallmarks of cancer by targeting interwoven signaling crosstalk. Such an approach through solanidine necessary to counteract heterogeneous complexity of cancer which could be nearly translated into drug.


Subject(s)
Adenocarcinoma of Lung , Alkaloids , Antineoplastic Agents , Lung Neoplasms , Rats , Animals , Phosphorylation , Antineoplastic Agents/therapeutic use , Hypoxia/drug therapy , Alkaloids/pharmacology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit , Neovascularization, Pathologic/drug therapy , Cell Line, Tumor , Tumor Microenvironment
12.
Biomed Pharmacother ; 163: 114732, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37254289

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by the loss of expression of several biomarkers, which limits treatment strategies for the disease. In recent years, immunotherapy has shown promising results in the treatment of various tumors. Emerging evidence demonstrated that TNBC is an immune-activated cancer, suggesting that immunotherapy could be a feasible treatment option for TNBC. Cytokine-induced killer (CIK) cell therapy is considered as a potential treatment for cancer treatment. However, it is still not approved as a standard treatment in the clinical setting. Our previous study demonstrated that focal adhesion kinase (FAK) plays important role in regulating the sensitivity of TNBC cells to CIK cells. In this study, we further verify the role of FAK in regulating the immune response in vivo. Our in vitro study indicated that knockdown of FAK in TNBC cells or treat with the FAK inhibitor followed by co-culture with CIK cells induced more cell death than CIK cells treatment only. RNA-seq analysis indicated that suppression of FAK could affect several immune-related gene expressions in TNBC cells that affects the immune response in the tumor microenvironment of TNBC cells. The combination of FAK inhibitor and CIK cells significantly suppressed tumor growth than the treatment of FAK inhibitor or CIK cells alone in vivo. Our findings provide new insights into the cytotoxic effect of CIK cell therapy in TNBC treatment and indicate that the combination of CIK cell therapy with FAK inhibitors may be an alternative therapeutic strategy for patients with TNBC.


Subject(s)
Antineoplastic Agents , Cytokine-Induced Killer Cells , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Immunotherapy/methods , Immunotherapy, Adoptive , Tumor Microenvironment
13.
Acta Biomater ; 162: 98-109, 2023 05.
Article in English | MEDLINE | ID: mdl-36931417

ABSTRACT

Sorafenib is the first line drug for hepatocellular carcinoma (HCC) therapy. However, HCC patients usually acquire resistance to sorafenib treatment within 6 months. Recent evidences have shown that anticancer drugs with antiangiogenesis effect (e.g., sorafenib) can aggravate the hypoxia microenvironment and promote the infiltration of more tumor-associated macrophages (TAMs) into the tumor tissues. Therefore, repolarization of TAMs phenotype could be expected to not only eliminate the influence of TAMs on sorafenib lethality to HCC cells, but also provide an additional anticancer effect to achieve combination therapy. However, immune side effects remain a great challenge due to the non-specific macrophage repolarization in normal tissues. We herein employed a tumor microenvironment (TME) pH-responsive nanoplatform to concurrently transport sorafenib and modified resiquimod (R848-C16). This nanoparticle (NP) platform is made with a TME pH-responsive methoxyl-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) copolymer. After intravenous administration, the co-delivery NPs could highly accumulate in the tumor tissues and then respond to the TME pH to detach their surface PEG chains. With this PEG detachment to enhance uptake by TAMs and HCC cells, the co-delivery NPs could combinatorially inhibit HCC tumor growth via sorafenib-mediated lethality to HCC cells and R848-mediated repolarization of TAMs into tumoricidal M1-like macrophages. STATEMENT OF SIGNIFICANCE: Anticancer drugs with antiangiogenesis effect (e.g., sorafenib) can aggravate the hypoxia microenvironment and promote the infiltration of more tumor-associated macrophages (TAMs) into the tumor tissues to restrict the anticancer effect. In this work, we designed and developed a tumor microenvironment (TME) pH-responsive nanoplatform for systemic co-delivery of sorafenib and resiquimod in hepatocellular carcinoma (HCC) therapy. These co-delivery NPs show high tumor accumulation and could respond to the TME pH to enhance uptake by TAMs and HCC cells. With the sorafenib-mediated lethality to HCC cells and R848-mediated repolarization of TAMs, the co-delivery NPs show a combinational inhibition of HCC tumor growth in both xenograft and orthotopic tumor models.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Humans , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Angiogenesis Inhibitors/therapeutic use , Cell Line, Tumor , Antineoplastic Agents/therapeutic use , Macrophages/pathology , Tumor Microenvironment , Nanoparticles/therapeutic use
14.
ACS Appl Mater Interfaces ; 15(13): 16329-16342, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36946515

ABSTRACT

Multidrug resistance in cancer stem cells (CSCs) is a major barrier to chemotherapy; hence, developing CSC-specific targeted nanocarriers for efficient drug delivery is critical. In this study, monodisperse hollow-structured MnO2 (H-MnO2) with a mesoporous shell was created for efficient targeted drug delivery. An effective therapeutic compound isoliquiritigenin (ISL) was confirmed to inhibit the lung cancer stem-cell phenotype by natural compound screening based on integrated microfluidic devices. The resultant H-MnO2 showed a high drug-loading content of the potent CSC-targeting compound ISL and near-infrared fluorescent dye indocyanine green (ICG). In addition, H-MnO2 was successively modified with hyaluronic acid (HA) to enhance targeting CSCs with high CD44 expression levels. The H-MnO2@(ICG + ISL)@HA nanocomposites displayed promising chemotherapeutic and photothermal treatment capabilities, as well as NIR-triggered drug release, which showed excellent CSC-killing effects and tumor inhibition efficacy. Meanwhile, the development of the tumor was effectively restrained by NIR-triggered phototherapy and prominent chemotherapy without obvious side effects after tail vein injection of the nanocomposites in vivo. In summary, the prepared nanocomposites accomplished synergistic cancer therapy that targets CSCs, offering a versatile platform for lung cancer diagnosis and treatment.


Subject(s)
Lung Neoplasms , Nanoparticles , Humans , Manganese Compounds , Tumor Microenvironment , Oxides , Phototherapy , Drug Delivery Systems , Indocyanine Green , Neoplastic Stem Cells , Doxorubicin/pharmacology , Cell Line, Tumor
15.
Front Oncol ; 13: 1295030, 2023.
Article in English | MEDLINE | ID: mdl-38173841

ABSTRACT

High-grade gliomas are malignant brain tumors that are characteristically hard to treat because of their nature; they grow quickly and invasively through the brain tissue and develop chemoradiation resistance in adults. There is also a distinct lack of targeted treatment options in the pediatric population for this tumor type to date. Several approaches to overcome therapeutic resistance have been explored, including targeted therapy to growth pathways (ie. EGFR and VEGF inhibitors), epigenetic modulators, and immunotherapies such as Chimeric Antigen Receptor T-cell and vaccine therapies. One new promising approach relies on the timing of chemotherapy administration based on intrinsic circadian rhythms. Recent work in glioblastoma has demonstrated temporal variations in chemosensitivity and, thus, improved survival based on treatment time of day. This may be due to intrinsic rhythms of the glioma cells, permeability of the blood brain barrier to chemotherapy agents, the tumor immune microenvironment, or another unknown mechanism. We review the literature to discuss chronotherapeutic approaches to high-grade glioma treatment, circadian regulation of the immune system and tumor microenvironment in gliomas. We further discuss how these two areas may be combined to temporally regulate and/or improve the effectiveness of immunotherapies.

16.
Biomed Pharmacother ; 153: 113376, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076519

ABSTRACT

Metabolic reprogramming is one of the most prominent features underlying cancer cells progression and metastasis.Traditional Chinese medicine (TCM) has been widely used in the clinical treatment of cancer, with the advantages of multi-pathway, multi-target, multi-component anti-tumor pharmacological effects and low risk of adverse effects. However, the mechanisms underlying the anti-tumor effects of TCM are not fully understood, especially on cellular metabolic reprogramming. In this review, we summarize the role of glucose, lipid and amino acid metabolism in cancer metastasis, which is key in cancer cells and tumor micro-environment (TME) cell metabolism. Furthermore, we reviewed the potential mechanisms by which, most bioactive TCM compounds suppress cancer metastasis by regulating metabolic reprogramming and the possibility of sensitizing other anti-tumor drugs. TCM and its bioactive compounds have huge prospects for clinical application in the treatment of cancer metastasis. Unfortunately, little is currently known about the regulatory effects of Chinese herbal medicines and their bioactive compounds on the metabolic reprogramming of cancer cells and the combination therapy for cancers. This review provides novel insights into the regulation of metabolic reprogramming by TCM in combination with other anti-tumor drugs against cancer metastasis and the possibility of becoming sensitizers for other anti-tumor drugs.


Subject(s)
Antineoplastic Agents , Drug-Related Side Effects and Adverse Reactions , Drugs, Chinese Herbal , Neoplasms , Antineoplastic Agents/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional , Neoplasms/drug therapy , Tumor Microenvironment
17.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955576

ABSTRACT

The tumor microenvironment of colon carcinoma, the site at which tumor cells and the host immune system interact, is influenced by signals from tumor cells, immunocompetent cells, and bacterial components, including LPS. A large amount of LPS is available in the colon, and this could promote inflammation and metastasis by enhancing tumor cell adhesion to the endothelium. Polydatin (PD), the 3-ß-D-glucoside of trans-resveratrol, is a polyphenol with anti-cancer, anti-inflammatory, and immunoregulatory effects. This study was designed to explore whether PD is able to produce antiproliferative effects on three colon cancer lines, to reduce the expression of adhesion molecules that are upregulated by LPS on endothelial cells, and to decrease the proinflammatory cytokines released in culture supernatants. Actually, we investigated the effects of PD on tumor growth in a coculture model with human mononuclear cells (MNCs) that mimics, at least in part, an in vitro tumor microenvironment. The results showed that PD alone or in combination with MNC exerts antiproliferative and proapoptotic effects on cancer cells, inhibits the production of the immunosuppressive cytokine IL-10 and of the proinflammatory cytokines upregulated by LPS, and reduces E-selectin and VCAM-1 on endothelial cells. These data provide preclinical support to the hypothesis that PD could be of potential benefit as a therapeutic adjuvant in colon cancer treatment and prevention.


Subject(s)
Colonic Neoplasms , Tumor Microenvironment , Colonic Neoplasms/pathology , Cytokines/metabolism , Endothelial Cells/metabolism , Glucosides/therapeutic use , Humans , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Stilbenes
18.
Adv Sci (Weinh) ; 9(30): e2203292, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36031411

ABSTRACT

Although synergistic therapy has shown great promise for effective treatment of cancer, the unsatisfactory therapeutic efficacy of photothermal therapy/photodynamic therapy is resulted from the absorption wavelength mismatch, tumor hypoxia, photosensitizer leakage, and inability in intelligent on-demand activation. Herein, based on the characteristics of tumor microenvironment (TME), such as the slight acidity, hypoxia, and overexpression of H2 O2 , a TME stimuli-responsive and dual-targeted composite nanoplatform (UCTTD-PC4) is strategically explored by coating a tannic acid (TA)/Fe3+ nanofilm with good biocompatibility onto the upconversion nanoparticles in an ultrafast, green and simple way. The pH-responsive feature of UCTTD-PC4 remains stable during the blood circulation, while rapidly releases Fe3+ in the slightly acidic tumor cells, which results in catalyzing H2 O2 to produce O2 and overcoming the tumor hypoxia. Notably, the emission spectrum of the UCTTD perfectly matches the absorption spectrum of the photosensitizer (perylene probe (PC4)) to achieve the enhanced therapeutic effect triggered by a single laser. This study provides a new strategy for the rational design and development of the safe and efficient single near-infrared laser-triggered synergistic treatment platform for hypoxic cancer under the guidance of multimodal imaging.


Subject(s)
Nanoparticles , Neoplasms , Perylene , Humans , Photosensitizing Agents/therapeutic use , Tumor Microenvironment , Perylene/therapeutic use , Phototherapy , Neoplasms/therapy , Lasers , Hypoxia , Tannins/therapeutic use
19.
Front Oncol ; 12: 915662, 2022.
Article in English | MEDLINE | ID: mdl-36033441

ABSTRACT

Background: The aberrant regulation of cell cycle is significantly correlated with cancer carcinogenesis and progression, in which cell cycle checkpoints control phase transitions, cell cycle entry, progression, and exit. However, the integrative role of cell cycle checkpoint-related genes (CRGs) in bladder carcinoma (BC) remains unknown. Methods: The transcriptomic data and clinical features of BC patients were downloaded from The Cancer Genome Atlas (TCGA), used to identify CRGs correlated with overall survival (OS) by univariate Cox regression analysis. Then, the multivariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses further developed a prognostic CRG signature, which was validated in three external datasets retrieved from Gene Expression Omnibus (GEO). The receiver operating characteristic curve (ROC) analysis was conducted for evaluating the performance of the CRG signature in prognosis prediction. RNA sequencing (RNA-Seq) was performed to explore the expression difference in the identified CRGs between tumor and normal tissue samples from 11 BC patients in the local cohort. Ultimately, genomic profiles and tumor microenvironment (TME), and the Genomics of Drug Sensitivity in Cancer (GDSC) were investigated to guide precision treatment for BC patients with different CRG features. Results: The novel constructed 23-CRG prognostic signature could stratify BC patients into high-risk and low-risk groups with significantly different outcomes (median OS: 13.64 vs. 104.65 months). Notably, 19 CRGs were the first to be identified as being associated with BC progression. In three additional validation datasets (GSE13507, GSE31684, and GSE32548), higher CRG scores all indicated inferior survival, demonstrating the robust ability of the CRG signature in prognosis prediction. Moreover, the CRG signature as an independent prognostic factor had a robust and stable risk stratification for BC patients with different histological or clinical features. Then, a CRG signature-based nomogram with a better performance in prognostic prediction [concordance index (C-index): 0.76] was established. Functional enrichment analysis revealed that collagen-containing extracellular matrix (ECM), and ECM-related and MAPK signaling pathways were significantly associated with the signature. Further analysis showed that low-risk patients were characterized by particularly distinctive prevalence of FGFR3 (17.03% vs. 6.67%, p < 0.01) and POLE alterations (7.97% vs. 2.50%, p < 0.05), and enrichment of immune infiltrated cells (including CD8+ T cells, CD4+ naïve T cells, follicular helper T cells, Tregs, and myeloid dendritic cells). RNA-seq data in our local cohort supported the findings in the differentially expressed genes (DEGs) between tumor and normal tissue samples, and the difference in TME between high-risk and low-risk groups. Additionally, CRG signature score plus FGFR3 status divided BC patients into four molecular subtypes, with distinct prognosis, TME, and transcriptomic profiling of immune checkpoint genes. Of note, CRG signature score plus FGFR3 status could successfully distinguish BC patients who have a higher possibility of response to immunotherapy or chemotherapy drugs. Conclusions: The CRG signature is a potent prognostic model for BC patients, and in combination with FGFR3 alterations, it had more practical capacity in the prediction of chemotherapy and immunotherapy response, helping guide clinical decision-making.

20.
J Colloid Interface Sci ; 626: 453-465, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35809437

ABSTRACT

For photothermal therapy (PTT), the improved targeting can decrease the dosage and promote the therapeutic function of photothermal agents, which would effectively improve the antitumor effect. The tumor microenvironment (TME) and cells are targets in designing intelligent and responsive theranostics. However, most of these schemes have been limited to the traditional visible and first near-infrared (NIR-I) regions, eager to expand to the second near-infrared (NIR-II) window. We designed and synthesized a polyethylene glycol conjugated and disulfide-modified macromolecule fluorophore (MPSS). MPSS could self-assemble into core-shell micelles in an aqueous solution (MPSS-NPS), while the small molecule probes were in a high aggregation arrangement inside the nanoparticle. The pronounced aggregation quenching (ACQ) effect caused them to the "sleeping" state. After entering the tumor cells, the disulfide bonds in MPSS-NPS broke in response to a high concentration of glutathione (GSH) in TME, and the molecule probes were released. The highly aggregated state was effectively alleviated, resulting in distinct absorption enhancement in the near-infrared region. Therefore, the fluorescence signal was recovered, and the photothermal performance was triggered. In vitro and in vivo studies reveal that the Nano-system is efficient for the smart NIR-II fluorescence imaging-guided PTT, even at a low dosage and density of irradiation.


Subject(s)
Nanoparticles , Neoplasms , Cell Line, Tumor , Disulfides , Fluorescent Dyes/chemistry , Glutathione , Humans , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy , Theranostic Nanomedicine/methods , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL