Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
CNS Neurosci Ther ; 30(2): e14345, 2024 02.
Article in English | MEDLINE | ID: mdl-37424152

ABSTRACT

OBJECTIVE: Cognitive deficit is common in patients with temporal lobe epilepsy (TLE). Here, we aimed to investigate the modular architecture of functional networks associated with distinct cognitive states in TLE patients together with the role of the thalamus in modular networks. METHODS: Resting-state functional magnetic resonance imaging scans were acquired from 53 TLE patients and 37 matched healthy controls. All patients received the Montreal Cognitive Assessment test and accordingly were divided into TLE patients with normal cognition (TLE-CN, n = 35) and TLE patients with cognitive impairment (TLE-CI, n = 18) groups. The modular properties of functional networks were calculated and compared including global modularity Q, modular segregation index, intramodular connections, and intermodular connections. Thalamic subdivisions corresponding to the modular networks were generated by applying a 'winner-take-all' strategy before analyzing the modular properties (participation coefficient and within-module degree z-score) of each thalamic subdivision to assess the contribution of the thalamus to modular functional networks. Relationships between network properties and cognitive performance were then further explored. RESULTS: Both TLE-CN and TLE-CI patients showed lower global modularity, as well as lower modular segregation index values for the ventral attention network and the default mode network. However, different patterns of intramodular and intermodular connections existed for different cognitive states. In addition, both TLE-CN and TLE-CI patients exhibited anomalous modular properties of functional thalamic subdivisions, with TLE-CI patients presenting a broader range of abnormalities. Cognitive performance in TLE-CI patients was not related to the modular properties of functional network but rather to the modular properties of functional thalamic subdivisions. CONCLUSIONS: The thalamus plays a prominent role in modular networks and potentially represents a key neural mechanism underlying cognitive impairment in TLE.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Thalamus/diagnostic imaging , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/pathology , Cognition Disorders/pathology
2.
Appl Psychophysiol Biofeedback ; 48(4): 439-451, 2023 12.
Article in English | MEDLINE | ID: mdl-37405548

ABSTRACT

Removal of the mesial temporal lobe (MTL) is an established surgical procedure that leads to seizure freedom in patients with intractable MTL epilepsy; however, it carries the potential risk of memory damage. Neurofeedback (NF), which regulates brain function by converting brain activity into perceptible information and providing feedback, has attracted considerable attention in recent years for its potential as a novel complementary treatment for many neurological disorders. However, no research has attempted to artificially reorganize memory functions by applying NF before resective surgery to preserve memory functions. Thus, this study aimed (1) to construct a memory NF system that used intracranial electrodes to feedback neural activity on the language-dominant side of the MTL during memory encoding and (2) to verify whether neural activity and memory function in the MTL change with NF training. Two intractable epilepsy patients with implanted intracranial electrodes underwent at least five sessions of memory NF training to increase the theta power in the MTL. There was an increase in theta power and a decrease in fast beta and gamma powers in one of the patients in the late stage of memory NF sessions. NF signals were not correlated with memory function. Despite its limitations as a pilot study, to our best knowledge, this study is the first to report that intracranial NF may modulate neural activity in the MTL, which is involved in memory encoding. The findings provide important insights into the future development of NF systems for the artificial reorganization of memory functions.


Subject(s)
Epilepsy, Temporal Lobe , Neurofeedback , Humans , Pilot Projects , Temporal Lobe/physiology , Temporal Lobe/surgery , Epilepsy, Temporal Lobe/surgery , Magnetic Resonance Imaging/methods , Hippocampus
3.
Epilepsy Behav ; 146: 109365, 2023 09.
Article in English | MEDLINE | ID: mdl-37523797

ABSTRACT

OBJECTIVE: In patients with treatment-refractory temporal lobe epilepsy (TLE), a single stereotactic laser interstitial thermotherapy (LITT) procedure is sometimes insufficient to ablate epileptogenic tissue, particularly the medial structures often implicated in TLE. In patients with seizure recurrence after initial ablation, the extent to which a second ablation may achieve improved seizure outcomes is uncertain. The objective of this study was to investigate the feasibility and potential efficacy of repeat LITT amygdalohippocampotomy as a worthwhile strategy for intractable temporal lobe epilepsy by quantifying changes to targeted mesial temporal lobe structures and seizure outcomes. METHODS: Patients who underwent two LITT procedures for drug-resistant mesial TLE at our institution were included in the study. Lesion volumes for both procedures were calculated by comparing post-ablation intraoperative sequences to preoperative anatomy. Clinical outcomes after the initial procedure and repeat procedure were classified according to Engel scores. RESULTS: Five consecutive patients were included in this retrospective case series: 3 with right- and 2 with left-sided TLE. The median interval between LITT procedures was 294 days (range: 227-1918). After the first LITT, 3 patients experienced class III outcomes, 1 experienced a class IV, and 1 experienced a class IB outcome. All patients achieved increased seizure freedom after a second procedure, with class I outcomes (3 IA, 2 IB). CONCLUSIONS: Repeat LITT may be sufficient to achieve satisfactory seizure outcomes in some individuals who might otherwise be considered for more aggressive resection or palliative neuromodulation. A larger study to establish the potential value of repeat LITT amygdalohippocampotomy vs. other re-operation strategies for persistent, intractable temporal lobe epilepsy is worth pursuing.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Laser Therapy , Humans , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/pathology , Retrospective Studies , Treatment Outcome , Laser Therapy/methods , Seizures/surgery , Drug Resistant Epilepsy/surgery , Lasers , Magnetic Resonance Imaging
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047373

ABSTRACT

Temporal lobe epilepsy (TLE) is a common and severe epilepsy displaying rhythmicity in humans and animals. However, how the circadian clock contributes to TLE remains elusive. A recent circadian analysis of the ventral hippocampal transcriptome of pilocarpine-induced TLE mice revealed as many as 1650 rhythmically expressed transcripts. Here, a comparison of the mouse ventral hippocampal transcriptome with the human epilepsy-related gene set identified 315 possible mouse epilepsy-related genes. Rhythmicity analysis classified them into arrhythmicity, loss-of-rhythmicity, gain-of-rhythmicity, and rhythmicity-maintaining groups. KEGG and GO analyses of these mouse epilepsy genes suggest their involvement in circadian entrainment. In TLE mice, Htr1d, Drd2, and Chrna3 lose rhythmicity, but P2rx7 gains rhythmicity; the up-regulation of Htr1d and Drd2 and down-regulation of Chrna3 inhibit adenylate cyclase (AC), and up-regulation of Htr1d, Drd2, and P2rx7 activates protein kinase C (PKC). Together, these results suggest that epilepsy can disrupt the circadian dynamics of the epileptic genes, shed light on possible TLE pathogenesis, and provide potential targets for TLE diagnosis and chronotherapy.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Mice , Humans , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/metabolism , Epilepsy/metabolism , Pilocarpine/toxicity , Hippocampus/metabolism , Up-Regulation
5.
Neurosci Insights ; 18: 26331055221147009, 2023.
Article in English | MEDLINE | ID: mdl-36620125

ABSTRACT

Music is an art form and cultural activity whose language, the sounds and silences, is organized in time with logic and sensitivity. Music as a whole is the result of an ancestral nonverbal and international mode of human expression and communication. The primitive and former mother-child bonding might be highly influenced and modulated by the music and singing with their babies. Musicality and music imply two different sides of the same coin, where the former is based on the human capacity to produce the latter. Some theories about evolution suggest music might have an adaptive advantage for humans in society. Historical examples of different styles in music point out that if any allusion or reminder about gender in music might happen most probably occurs in folk non always written pagan or secular music with lyrics or voice. This genre of music usually tells about traditional gender differences in jobs, habits, lifestyles, etc., and has a clear preference for male musicians, while on the contrary, classical music usually does not have a clear gender difference in meaning, and instruments are played by both. In this text, I explore and empirically describe, neuroanatomically or functionally, some examples of different genres of music and brain differences, related to music and dance. Three different genres of music (Classical music, Fado and Flamenco) are explored in an attempt to elucidate some reasons for possible gender differences.

6.
Saudi J Biol Sci ; 30(2): 103555, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36632072

ABSTRACT

Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.

7.
Psychol Med ; 53(7): 2831-2841, 2023 May.
Article in English | MEDLINE | ID: mdl-34852855

ABSTRACT

BACKGROUND: Overgeneralised self-blame and worthlessness are key symptoms of major depressive disorder (MDD) and have previously been associated with self-blame-selective changes in connectivity between right superior anterior temporal lobe (rSATL) and subgenual frontal cortices. Another study showed that remitted MDD patients were able to modulate this neural signature using functional magnetic resonance imaging (fMRI) neurofeedback training, thereby increasing their self-esteem. The feasibility and potential of using this approach in symptomatic MDD were unknown. METHOD: This single-blind pre-registered randomised controlled pilot trial probed a novel self-guided psychological intervention with and without additional rSATL-posterior subgenual cortex (BA25) fMRI neurofeedback, targeting self-blaming emotions in people with insufficiently recovered MDD and early treatment-resistance (n = 43, n = 35 completers). Participants completed three weekly self-guided sessions to rebalance self-blaming biases. RESULTS: As predicted, neurofeedback led to a training-induced reduction in rSATL-BA25 connectivity for self-blame v. other-blame. Both interventions were safe and resulted in a 46% reduction on the Beck Depression Inventory-II, our primary outcome, with no group differences. Secondary analyses, however, revealed that patients without DSM-5-defined anxious distress showed a superior response to neurofeedback compared with the psychological intervention, and the opposite pattern in anxious MDD. As predicted, symptom remission was associated with increases in self-esteem and this correlated with the frequency with which participants employed the psychological strategies in daily life. CONCLUSIONS: These findings suggest that self-blame-rebalance neurofeedback may be superior over a solely psychological intervention in non-anxious MDD, although further confirmatory studies are needed. Simple self-guided strategies tackling self-blame were beneficial, but need to be compared against treatment-as-usual in further trials. https://doi.org/10.1186/ISRCTN10526888.


Subject(s)
Depressive Disorder, Major , Neurofeedback , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Pilot Projects , Neurofeedback/methods , Depression , Magnetic Resonance Imaging , Single-Blind Method
8.
Vet J ; 290: 105928, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36347391

ABSTRACT

Feline epilepsy is treated with antiseizure medications, which achieves fair to good seizure control. However, a small subset of feline patients with drug-resistant epilepsy requires alternative therapies. Furthermore, approximately 50 % of cats with epileptic seizures are diagnosed with structural epilepsy with or without hippocampal abnormality and may respond to surgical intervention. The presence of hippocampal pathology and intracranial tumors is a key point to consider for surgical treatment. This review describes feline epilepsy syndrome and epilepsy-related pathology, and discusses the indications for and availability of neurosurgery, including lesionectomy, temporal lobectomy with hippocampectomy, and corpus callosotomy, for cats with different epilepsy types.


Subject(s)
Cat Diseases , Drug Resistant Epilepsy , Epilepsy , Epileptic Syndromes , Neurosurgery , Animals , Cats , Epilepsy/surgery , Epilepsy/veterinary , Drug Resistant Epilepsy/veterinary , Seizures/veterinary , Hippocampus/pathology , Epileptic Syndromes/pathology , Epileptic Syndromes/veterinary , Electroencephalography , Cat Diseases/surgery , Cat Diseases/pathology
9.
Handb Clin Neurol ; 187: 145-160, 2022.
Article in English | MEDLINE | ID: mdl-35964968

ABSTRACT

What are mental images needed for? A variety of everyday situations calls for us to plan ahead; one of the clever ways our mind prepares and strategizes our next move is through mental simulation. A powerful tool in running these simulations is visual mental imagery, which can be conceived as a way to activate and maintain an internal representation of the to-be-imagined object, giving rise to predictions. Therefore, under normal conditions imagination is primarily an endogenous process, and only more rarely can mental images be activated exogenously, for example, by means of intracerebral stimulation. A large debate is still ongoing regarding the neural substrates supporting mental imagery, with the neuropsychological and neuroimaging literature agreeing in some cases, but not others. This chapter reviews the neuroscientific literature on mental imagery, and attempts to reappraise the neuropsychological and neuroimaging evidence by drawing a model of mental imagery informed by both structural and functional brain data. Overall, the role of regions in the ventral temporal cortex, especially of the left hemisphere, stands out unequivocally as a key substrate in mental imagery.


Subject(s)
Imagination , Visual Perception , Brain/diagnostic imaging , Brain/physiology , Humans , Imagination/physiology , Temporal Lobe/physiology , Visual Perception/physiology
10.
Metab Brain Dis ; 37(7): 2581-2602, 2022 10.
Article in English | MEDLINE | ID: mdl-35916986

ABSTRACT

Temporal lobe epilepsy is the most common drug-resistant epilepsy. To cure epilepsy, drugs must target the mechanisms at the origin of seizures. Thus, the present investigation aimed to evaluate the antiepileptic- and anti-amnesic-like effects of an aqueous extract of Syzygium cumini against kainate-induced status epilepticus in mice, and possible mechanisms of action. Mice were divided into 7 groups and treated as follows: normal group or kainate group received po distilled water (10 mL/kg), four test groups received Syzygium cumini (28.8, 72, 144, and 288 mg/kg, po), and the positive control group treated intraperitoneally (ip) with sodium valproate (300 mg/kg). An extra group of normal mice was treated with piracetam (200 mg/kg, po). Treatments were administered 60 min before the induction of status epilepticus with kainate (15 mg/kg, ip), and continued daily throughout behavioral testing. Twenty-four hours after the induction, T-maze and Morris water maze tasks were successively performed. The animals were then sacrificed and some markers of oxidative stress and neuroinflammation were estimated in the hippocampus. The extract significantly prevented status epilepticus and mortality. In the T-maze, the aqueous extract markedly increased the time spent and the number of entries in the discriminated arm. In the Morris water maze, the extract significantly increased the time spent in the target quadrant during the retention phase. Furthermore, the aqueous extract induced a significant reduction of oxidative stress and neuroinflammation. These results suggest that the aqueous extract of Syzygium cumini has antiepileptic- and anti-amnesic-like effects, likely mediated in part by antioxidant and anti-inflammatory activities.


Subject(s)
Piracetam , Status Epilepticus , Syzygium , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Kainic Acid/toxicity , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Valproic Acid , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Amnesia/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy
11.
J Food Biochem ; 46(10): e14342, 2022 10.
Article in English | MEDLINE | ID: mdl-35851712

ABSTRACT

The leaves of Clerodendrum polycephalum Baker (Labiatae) are used as a dietary legume supplement and applied ethnomedicinally for the management of epilepsy, convulsion, and spasms. This study is aimed at evaluating the effects of Clerodendrum polycephalum (CP) leaf extract on chemical-induced seizures in mice and the possible mechanisms of action. Swiss albino mice were pretreated with CP (50, 100, or 500 mg/kg, p.o.) prior to intraperitoneal injection of picrotoxin (PTX) or pentylenetetrazole (PTZ). However, the most effective dose was used to elucidate the role of GABAergic and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling mechanisms in mice brains. Accordingly, we evaluated the preventive and reversal effects of CP on kainic acid (KA)-induced temporal lobe epilepsy (TLE), oxidative stress, and neuroinflammatory in mice. The pretreatment of mice with CP delayed the latencies to PTX and PTZ-induced seizures and decrement in the period of tonic-clonic attacks. Interestingly, CP (100 mg/kg) completely prevented PTZ-induced tonic-clonic seizures. Contrastingly, flumazenil (benzodiazepine receptor antagonist), NG -nitro-L-Arginine (L-NNA) (10 mg/kg., neuronal nitric oxide synthase inhibitor), and methylene blue (MB) (2 mg/kg, a soluble guanylyl cyclase inhibitor) but not L-arginine (150 mg/kg., nitric oxide precursor) reversed CP-induced anticonvulsant-like effect in PTZ model. Furthermore, KA-elicited TLE was prevented by CP treatment. CP also attenuated KA-induced oxidative stress, cyooxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) elevated expressions in the hippocampus. The study revealed that the ethanolic leaf extract of CP produced anticonvulsant actions through enhancement of antioxidant defense, GABAergic, and NO-cGMP signaling pathways as well as attenuation of inflammatory processes. PRACTICAL APPLICATIONS: The leaves of Clerodendrum polycephalum Baker (Labiatae) are used as a dietary legume supplement and applied ethnomedicinally for the management of epilepsy, convulsion, and spasms. For this reason, we believe that supplementation of the Clerodendrum polycephalum leaf extract would prevent epileptic-related disorders in mice induced with epileptic conditions using kainic acid and other behavioral phenotypic models. Here, our findings clearly revealed that Clerodendrum polycephalum leaf extract protects against conditions of epileptic-related disorders and thus might be relevant as a dietary supplement in the prevention or delay of the onset of seizures and epileptic behavior.


Subject(s)
Clerodendrum , Lamiaceae , Animals , Anticonvulsants/pharmacology , Antioxidants/therapeutic use , Arginine , Clerodendrum/metabolism , Cyclooxygenase 2/metabolism , Flumazenil , Guanosine Monophosphate , Kainic Acid , Methylene Blue , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , Pentylenetetrazole , Picrotoxin , Plant Extracts/pharmacology , Receptors, GABA-A/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Soluble Guanylyl Cyclase/metabolism , Spasm/drug therapy
12.
J Neurosurg Case Lessons ; 3(23): CASE2295, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35733825

ABSTRACT

BACKGROUND: Musicogenic epilepsy (ME) is a rare reflex epilepsy in which seizures are triggered by musical stimuli. Prior descriptions of ME have suggested localization to the nondominant temporal lobe, primarily in neocortex. Although resection has been described as a treatment for ME, other surgical modalities, such as laser ablation, may effectively disrupt seizure networks in ME while incurring comparatively lower risks of morbidity. The authors described the use of laser ablation to treat ME arising from the dominant mesial temporal structures. OBSERVATIONS: A 37-year-old woman with a 15-year history of drug-resistant ME was referred for surgical evaluation. Her seizures were triggered by specific musical content and involved behavioral arrest, repetitive swallowing motions, and word incomprehension. Diagnostic studies, including magnetic resonance imaging, single-photon emission computed tomography, magnetoencephalography, Wada testing, and stereoelectroencephalography, indicated seizure onset in the left (dominant) mesial temporal lobe. Laser interstitial thermal therapy was used to ablate the left mesial seizure onset zone. The patient was discharged on postoperative day two. At 18-month follow-up, she was seizure-free with no posttreatment neurological deficits. LESSONS: Laser ablation can be an effective treatment option for well-localized forms of ME, particularly when seizures originate from the dominant mesial temporal lobe.

13.
Heliyon ; 8(5): e09549, 2022 May.
Article in English | MEDLINE | ID: mdl-35663738

ABSTRACT

Ethnopharmacological relevance: Temporal lobe epilepsy is the most common form of drug-resistant epilepsy. Therefore, medicinal plants provide an alternative source for the discovery of new antiepileptic drugs. Aim of the study: This study was aimed at investigating the antiepileptic- and anxiolytic-like effects of an aqueous extract of Khaya senegalensis (K. senegalensis) in kainate-treated rats. Methods: Seventy-two rats received a single dose of kainate (12 mg/kg) intraperitoneally. Those that exhibited two hours of status epilepticus were selected and monitored for the first spontaneous seizure. Then, animals that developed seizures were divided into 6 groups of 8 rats each and treated twice daily for 14 days as follows: negative control group received per os (p.o.) distilled water (10 ml/kg); two positive control groups received either sodium valproate (300 mg/kg, p.o.) or phenobarbital (20 mg/kg, p.o.); and three test groups received different doses of the extract (50, 100, and 200 mg/kg, p.o.). In addition, a group of 8 normal rats (normal control group) received distilled water (10 ml/kg, p.o.). During the treatment period, the animals were video-monitored 12 h/day for behavioral seizures. At the end of the treatment period, animals were subjected to elevated plus-maze and open field tests. Thereafter, rats were euthanized for the analysis of γ-aminobutyric acid (GABA) concentration, oxidative stress status, and neuronal loss in the hippocampus. Results: The aqueous extract of K. senegalensis significantly reduced spontaneous recurrent seizures (generalized tonic-clonic seizures) and anxiety-like behavior compared to the negative control group. These effects were more marked than those of sodium valproate or phenobarbital. Furthermore, the extract significantly increased GABA concentration, alleviated oxidative stress, and mitigated neuronal loss in the dentate gyrus of the hippocampus. Conclusion: These findings suggest that the aqueous extract of K. senegalensis possesses antiepileptic- and anxiolytic-like effects. These effects were greater than those of sodium valproate or phenobarbital, standard antiepileptic drugs. Furthermore, these effects are accompanied by neuromodulatory and antioxidant activities that may be related to their behavioral effects. These data justify further studies to identify the bioactive molecules present in the extract for possible future therapeutic development and to unravel their mechanisms of action.

14.
Prog Neurobiol ; 214: 102286, 2022 07.
Article in English | MEDLINE | ID: mdl-35537572

ABSTRACT

There is a large unmet need for improved treatment for temporal lobe epilepsy (TLE); circuit-specific manipulation that disrupts the initiation and propagation of seizures is promising in this regard. The midline thalamus, including the mediodorsal nucleus (MD) is a critical distributor of seizure activity, but its afferent and efferent pathways that mediate seizure activity are unknown. Here, we used chemogenetics to silence input and output projections of the MD to discrete regions of the frontal cortex in the kindling model of TLE in rats. Chemogenetic inhibition of the projection from the amygdala to the MD abolished seizures, an effect that was replicated using optogenetic inhibition. Chemogenetic inhibition of projections from the MD to the prelimbic cortex likewise abolished seizures. By contrast, inhibition of projections from the MD to other frontal regions produced partial (orbitofrontal cortex, infralimbic cortex) or no (cingulate, insular cortex) attenuation of behavioral or electrographic seizure activity. These results highlight the particular importance of projections from MD to prelimbic cortex in the propagation of amygdala-kindled seizures.


Subject(s)
Kindling, Neurologic , Thalamus , Amygdala/physiology , Animals , Frontal Lobe/physiology , Humans , Kindling, Neurologic/physiology , Rats , Seizures , Thalamus/physiology
15.
Neurochem Res ; 47(8): 2396-2404, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35622215

ABSTRACT

Temporal lobe epilepsy (TLE) is a complex neurological disease, and its occurrence and development are closely related to the autophagy signaling pathway. However, the mechanism by which electroacupuncture (EA) affects the regulation of autophagy has not been fully elucidated. TLE gene chip dataset GSE27166 and data from rats without epilepsy (n = 6) and rats with epilepsy (n = 6) were downloaded from Gene Expression Omnibus. The differentially expressed genes (DEGs) in the TLE and control groups were identified with the online tool GEO2R. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to analyse the functional and pathway enrichment of genes in the most important modules. A rat model of TLE induced by lithium-pilocarpine treatment was established. EA treatment at DU20 and DU14 in TLE rats was performed for 2 weeks. Neuronal regeneration was determined using immunofluorescence staining. The protein levels of AKT/mTOR signaling pathway and autophagy markers were detected through western blotting and immunohistochemistry. This study identified 1837 DEGs, including 798 upregulated genes and 1039 downregulated genes. GO enrichment and KEGG analyses were performed on DEGs and revealed functional enrichment mainly in the mTOR signaling pathway and autophagy-animal. Furthermore, the number of mature neurons was significantly increased upon coexpressing BrdU/NeuN in TLE rats treated with EA. Western blotting and immunohistochemistry results showed significantly decreased levels of the phosphorylated-AKT and p-mTOR in the hippocampal CA3 and DG regions of TLE rats with EA treatment. And increased p-ULK1/ULK1, LC3-II/LC3-I and p62 levels in TLE rats with EA stimulation. Therefore, this study suggested that EA promoted autophagy in hippocampal neurons during the onset of epilepsy by regulating the AKT/mTOR signaling pathway to treat epilepsy.


Subject(s)
Electroacupuncture , Epilepsy, Temporal Lobe , Animals , Autophagy , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/therapy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
16.
Eur Arch Psychiatry Clin Neurosci ; 272(4): 729-739, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35113202

ABSTRACT

Hypnotherapy (HT) is a promising approach to treating depression, but so far, no data are available on the neuronal mechanisms of functional reorganization after HT for depressed patients. Here, 75 patients with mild to moderate depression, who received either HT or Cognitive Behavioral Therapy (CBT), were measured before and after therapy using functional near-infrared spectroscopy. We investigated the patients' cerebral activation during an emotional human gait paradigm. Further, rumination was included as predictor. Our results showed a decrease of functional connectivity (FC) between two regions that are crucial to emotional processing, the Extrastriate Body Area (EBA) and the Superior Temporal Sulcus (STS). This FC decrease was traced back to an activation change throughout therapy in the right STS, not the EBA and was only found in the HT group, depending on rumination: less ruminating HT patients showed a decrease in right STS activation, while highly ruminating patients showed an increase. We carefully propose that this activation change is due to the promotion of emotional experiences during HT, while in CBT a focus lay on activating behavior and changing negative cognitions. HT seemed to have had differential effects on the patients, depending on their rumination style: The increase of right STS activation in highly ruminating patients might mirror the improvement of impaired emotional processing, whilst the decrease of activation in low ruminating patients might reflect a dismissal of an over-compensation, associated with a hyperactivity before therapy. We conclude that HT affects emotional processing and this effect is moderated by rumination.


Subject(s)
Cognitive Behavioral Therapy , Hypnosis , Cognitive Behavioral Therapy/methods , Depression/psychology , Depression/therapy , Emotions/physiology , Gait , Humans
17.
Epilepsy Res ; 181: 106871, 2022 03.
Article in English | MEDLINE | ID: mdl-35144171

ABSTRACT

Epilepsy remains an unmet medical need affecting more than 50 million people worldwide with about 125,000 mortality annually and more prevalent in low- and middle-income countries. Nymphaea lotus (also known as water lilly) is an aquatic plant used traditionally to treat convulsive episodes in Southwestern Nigeria. This study was undertaken to evaluate anticonvulsant activity of aqueous Nymphaea lotus extract (ANL) and ethanol Nymphaea lotus extract (ENL) on chemical-induced seizures in mice as well as possible mechanisms of action. Vehicle (10 mL/kg, p.o.), ANL (50-200 mg/kg, p.o.), ENL (50-200 mg/kg) or diazepam (5 mg/kg, p.o.) was administered 1 h prior to chemo-convulsant (picrotoxin (PCT), pentylenetetrazol (PTZ), strychnine or N-methyl-D-aspartate (NMDA)) administration. Most effective doses of the extracts were administered to mice after the establishment of temporal lobe epilepsy (TLE) induced by kainic acid. Thereafter, memory assessment in Y-maze, depressive-like behaviour in tail suspension test (TST) and anxiety model in elevated plus maze test (EPM). The prefrontal cortex and hippocampus were assayed for oxidative stress parameters. The pretreatment of mice with ANL or ENL significantly prolonged onset of seizures and reduced the duration of picrotoxin-, pentylenetetrazol-, and strychnine-induced seizures or NMDA-induced turning behaviour. Kainic acid induced spontaneous recurrent seizures and oxidative stress were ameliorated by N. lotus extracts. Moreover, N. lotus-induced anticonvulsant action was reversed by the pretreatment of mice with flumazenil (benzodiazepine receptor antagonist) or L-arginine (nitric oxide precursor). In addition, kainic acid induced neurodegeneration was reduced by N. lotus extract. Findings from this study showed anticonvulsant activity of Nymphaea lotus in neurotoxins-induced seizures through enhancement of inhibitory GABAergic/ antioxidant signalling and inhibition of glutamatergic neurotransmission.


Subject(s)
Anticonvulsants , Nymphaea , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Antioxidants/pharmacology , Humans , Mice , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Synaptic Transmission
18.
Seizure ; 95: 50-55, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998088

ABSTRACT

PURPOSE: Mind wandering, i.e. mental time-travelling and imagery unrelated to the current situation has recently been related to mesial temporal lobe (memory) function. In this regard we evaluated as to whether parameters of mind wandering are related to material specific memory in patients with a left-, right-, or extra- temporal lobe epilepsy. METHODS: In this prospective controlled study we analyzed mind wandering, material specific memory, and executive functions in 29 right-handed patients with right-, left-, or extra-temporal lobe epilepsies. Mind wandering was assessed with a sustained attention to response task containing embedded inquiries on mind wandering. In addition, verbal list learning and memory (VLMT), design list learning (DCS-R), and executive function (EpiTrack) were assessed. RESULTS: In patients with right temporal lobe epilepsy, the propensity to mind wander was positively related to verbal memory performance, while in left temporal lobe epilepsy, the propensity and future related mind wandering were positively correlated to the performance in visual/figural memory. Generally, the propensity of MW was related to executive function as well. CONCLUSION: The results suggest that mind wandering in lateralized temporal lobe epilepsy appears to be non-specifically driven by executive function and specifically by the mode and functionality of the memory system of the non-epileptic hemisphere. Repeated assessments would be required to discern as to how much such patterns depend on lesions versus epileptic dysfunction and whether they change with successful medical or surgical treatment.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Epilepsy, Temporal Lobe/complications , Humans , Memory , Neuropsychological Tests , Prospective Studies , Temporal Lobe
19.
CNS Neurosci Ther ; 28(2): 206-217, 2022 02.
Article in English | MEDLINE | ID: mdl-33644976

ABSTRACT

AIMS: Noninvasive music adjuvant therapy shows great potential in improving seizure control when combined with routine antiepileptic drugs. However, the diversity of previous music protocols has resulted in disparate outcomes. The optimized protocol and features for music adjuvant therapy are still not fully understood which limits its feasibility. METHODS: By applying different regimens of music therapy in various temporal lobe epilepsy models, we evaluated the effect of music in combination with sub-dose drugs on epileptic seizures to determine the optimized protocol. RESULTS: A subgroup of kindled mice that were responsive to music adjuvant therapy was screened. In those mice, sub-dose drugs which were noneffective on kindled seizures, alleviated seizure severity after 12 h/day Mozart K.448 for 14 days. Shorter durations of music therapy (2 and 6 h/day) were ineffective. Furthermore, only full-length Mozart K.448, not its episodes or other music varieties, was capable of enhancing the efficacy of sub-dose drugs. This music therapeutic effect was not due to increasing cerebral drug concentration, but instead was related with the modulation of seizure electroencephalogram (EEG) spectral powers in the hippocampus. CONCLUSION: These results indicate that long-term full-length Mozart K.448 could enhance the anti-seizure efficacy of sub-dose drugs and may be a promising noninvasive adjuvant therapy for temporal lobe epilepsy.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy, Temporal Lobe/therapy , Music Therapy , Animals , Anticonvulsants/administration & dosage , Combined Modality Therapy , Disease Models, Animal , Electroencephalography , Epilepsy, Temporal Lobe/drug therapy , Male , Mice , Mice, Inbred C57BL , Time Factors , Valproic Acid/pharmacology
20.
Brain Struct Funct ; 227(2): 697-708, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33885966

ABSTRACT

Visual mental imagery is the faculty whereby we can "visualize" objects that are not in our line of sight. Longstanding evidence dating back over thirty years has shown that unilateral brain lesions, especially in the left temporal lobe, can impair aspects of this ability. Yet, there is currently no attempt to identify analogies between these neuropsychological findings of hemispheric asymmetry and those from other neuroscientific approaches. Here, we present a critical review of the available literature on the hemispheric laterality of visual mental imagery, by looking at cross-method patterns of evidence in the domains of lesion neuropsychology, neuroimaging, and direct cortical stimulation. Results can be summarized under three main axes. First, frontoparietal networks in both hemispheres appear to be associated with visual mental imagery. Second, lateralization patterns emerge in the temporal lobes, with the left inferior temporal lobe being the most common finding in the literature for endogenously generated images, especially, but not exclusively, when orthographic material is used to ignite imagery. Third, an opposite pattern of hemispheric laterality emerges when visual mental images are induced by exogenous stimulation; direct cortical electrical stimulation tends to produce visual imagery experiences predominantly when applied to the right temporal lobe. These patterns of hemispheric asymmetry are difficult to reconcile with the dominant model of visual mental imagery, which emphasizes the implication of early sensory cortices. They suggest instead that visual mental imagery relies on large-scale brain networks, with a crucial participation of high-level visual regions in the temporal lobes.


Subject(s)
Functional Laterality , Temporal Lobe , Brain/diagnostic imaging , Brain Mapping , Imagination , Neuroimaging , Temporal Lobe/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL