Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Plant Physiol Biochem ; 210: 108511, 2024 May.
Article in English | MEDLINE | ID: mdl-38593484

ABSTRACT

Terpenoids are a vast class of plant specialized metabolites (PSMs) manufactured by plants and are involved in their interactions with environment. In addition, they add health benefits to human nutrition and are widely used as pharmaceutically active compounds. However, native plants produce a limited amount of terpenes restricting metabolite yield of terpene-related metabolites. Exponential growth in the plant metabolome data and the requirement of alternative approaches for producing the desired amount of terpenoids, has redirected plant biotechnology research to plant metabolic engineering, which requires in-depth knowledge and precise expertise about dynamic plant metabolic pathways and cellular physiology. Metabolic engineering is an assuring tool for enhancing the concentration of terpenes by adopting specific strategies such as overexpression of the key genes associated with the biosynthesis of targeted metabolites, controlling the modulation of transcription factors, downregulation of competitive pathways (RNAi), co-expression of the biosynthetic pathway genes in heterologous system and other combinatorial approaches. Microorganisms, fast-growing host plants (such as Nicotiana benthamiana), and cell suspension/callus cultures have provided better means for producing valuable terpenoids. Manipulation in the biosynthetic pathways responsible for synthesis of terpenoids can provide opportunities to enhance the content of desired terpenoids and open up new avenues to enhance their production. This review deliberates the worth of metabolic engineering in medicinal plants to resolve issues associated with terpenoid production at a commercial scale. However, to bring the revolution through metabolic engineering, further implementation of genome editing, elucidation of metabolic pathways using omics approaches, system biology approaches, and synthetic biology tactics are essentially needed.


Subject(s)
Metabolic Engineering , Terpenes , Terpenes/metabolism , Metabolic Engineering/methods
2.
Nat Prod Res ; : 1-7, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38439740

ABSTRACT

Artemisia lactiflora Wall. ex DC. is a traditional Chinese medicinal plant used in the treatment of menstrual and hepatic disorders due to its antioxidant and anti-inflammatory properties. However, its anti-metastatic activity, which is the clinical challenge of lung cancer treatment, has not yet been reported. From the diethyl ether extract of Artemisia lactiflora, the four terpenoids, including dihydroactinidiolide, megastigmatrienone, alpha-curcumene, and dehydrovomifoliol, were the most intense peaks observed using LC-MS/MS, whereas bis (2-ethylhexyl) phthalate was a contaminant. In a transwell assay, the A. lactiflora diethyl ether extract (32 µg/ml) and dihydroactinidiolide (250 µg/ml) markedly inhibited the migration and invasion of non-small cell lung cancer (NSCLC) cells, similar to the standard anti-metastatic drug (capmatinib). Western blot analysis revealed that mesenchymal N-cadherin is downregulated in NSCLC cells under the treatment conditions. The potential anti-metastatic property of dihydroactinidiolide is promising as a new candidate anti-metastatic agent for lung cancer treatment.

3.
Heliyon ; 10(5): e26979, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463787

ABSTRACT

Semen Ziziphi Spinosae oil (SZSO) is a natural vegetable oil extracted from Semen Ziziphi Spinosae, a traditional Chinese medicine renowned for its sleep-promoting properties, while the mechanisms are still unclear. Our findings revealed that the terpenoids present in SZSO (T-SZSO) were identified as the active components responsible for promoting sleep. Network pharmacological analysis suggested that T-SZSO targeted different sleep-aid pathways to varying degrees and exhibited potential for preventing central nervous system diseases. Notably, lupeol and betulinicaldehyde exhibited more pronounced effects. Additionally, T-SZSO significantly elevated serotonin levels, enhanced gamma-aminobutyric acid (GABA) synthesis, promoted GABA A receptor expression, and decreased glutamate and norepinephrine expression levels. Moreover, T-SZSO was found to downregulate IL-1ß expression while upregulating superoxide dismutase and inducible nitric oxide synthase levels. In conclusion, this study presents the first investigation into the pharmacological basis of SZSO in promoting sleep and highlights the potential of nature food in improving suboptimal health conditions.

4.
Biomolecules ; 14(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38540779

ABSTRACT

Pineapple weed (Matricaria discoidea DC.) is a widespread plant in Europe and North America. In ethnomedicine, it is well-known for its anti-inflammatory and spasmolytic activities. The aim of this research was to develop novel methods of M. discoidea processing to obtain essential oil and dry extracts and to investigate their phytochemical compositions. Moreover, the molecular docking of the main substances and the in vivo studies on their soporific and analgesic activities were conducted. The essential oil and two dry extracts from M. discoidea were prepared. A total of 16 phenolic compounds (seven flavonoids, seven hydroxycinnamic acids, and two phenolic acids) in the dry extracts were identified by means of UPLC-MS/MS. In the essential oil, nine main terpenoids were identified by gas chromatography (GC). It was shown that phenolic extraction from the herb was successful when using 70% ethanol in a triple extraction method and at a ratio of 1:14-1:16. The in vivo studies with rodents demonstrated the analgesic activity of the M. discoidea extracts and improvements in the sleep of animals. The dry extracts of M. discoidea did not show any toxicity. The molecular docking analysis showed a high probability of COX-1,2 inhibition and NMDA receptor antagonism by the extracts.


Subject(s)
Matricaria , Oils, Volatile , Animals , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Analgesics/pharmacology , Analgesics/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Oils, Volatile/pharmacology , Ethanol , Phenols/pharmacology , Antioxidants/chemistry
5.
Molecules ; 29(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474692

ABSTRACT

Terpenes and their derivatives comprise a diverse group of natural compounds with versatile medicinal properties. This article elucidates the general characteristics of fungal terpenes and terpenoids, encompassing their structure and biogenesis. The focal point of this work involves a comprehensive overview of these compounds, highlighting their therapeutic properties, mechanisms of action, and potential applications in treating specific skin conditions. Numerous isolated terpenes and terpenoids have demonstrated noteworthy anti-inflammatory and anti-microbial effects, rivalling or surpassing the efficacy of currently employed treatments for inflammation or skin infections. Due to their well-documented antioxidant and anti-cancer attributes, these compounds exhibit promise in both preventing and treating skin cancer. Terpenes and terpenoids sourced from fungi display the capability to inhibit tyrosinase, suggesting potential applications in addressing skin pigmentation disorders and cancers linked to melanogenesis dysfunctions. This paper further disseminates the findings of clinical and in vivo research on fungal terpenes and terpenoids conducted thus far.


Subject(s)
Skin Diseases , Skin Neoplasms , Humans , Terpenes/chemistry , Anti-Inflammatory Agents , Inflammation/drug therapy , Skin Diseases/drug therapy , Skin Neoplasms/drug therapy
6.
Curr Med Chem ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38523544

ABSTRACT

Depression is a common mental illness that damages the life and health of patients and causes economic burden, and HPA (hypothalamic-pituitary-adrenal) axis dysfunction is considered to be one of the important factors leading to depression. In this case, it is essential to explore possible treatment methods by using natural compounds with HPA axis regulating and antidepressant effects. However, no one has reviewed it so far. Therefore, the purpose of this review is to systematically sort out the related natural products that play an antidepressant role by regulating the function of the HPA axis. Natural products are divided into flavonoids, polyphenols, terpenoids, saponins, polysaccharides and so on according to their chemical structures, which play a variety of biological activities such as regulating the HPA axis, anti-inflammation and neuroprotection. These effects may provide a useful reference for the potential treatment of depression so as to develop new antidepressants.

7.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398567

ABSTRACT

Asteraceae (Compositae), commonly known as the sunflower family, is one of the largest plant families in the world and includes several species with pharmacological properties. In the search for new antiviral candidates, an in vitro screening against dengue virus (DENV) was performed on a series of dichloromethane and methanolic extracts prepared from six Asteraceae species, including Acmella bellidioides, Campuloclinium macrocephalum, Grindelia pulchella, Grindelia chiloensis, Helenium radiatum, and Viguiera tuberosa, along with pure phytochemicals isolated from Asteraceae: mikanolide (1), eupatoriopicrin (2), eupahakonenin B (3), minimolide (4), estafietin (5), 2-oxo-8-deoxyligustrin (6), santhemoidin C (7), euparin (8), jaceidin (9), nepetin (10), jaceosidin (11), eryodictiol (12), eupatorin (13), and 5-demethylsinensetin (14). Results showed that the dichloromethane extracts of C. macrocephalum and H. radiatum and the methanolic extracts prepared from C. macrocephalum and G. pulchella were highly active and selective against DENV-2, affording EC50 values of 0.11, 0.15, 1.80, and 3.85 µg/mL, respectively, and SIs of 171.0, 18.8, >17.36, and 64.9, respectively. From the pool of phytochemicals tested, compounds 6, 7, and 8 stand out as the most active (EC50 = 3.7, 3.1, and 6.8 µM, respectively; SI = 5.9, 6.7, and >73.4, respectively). These results demonstrate that Asteraceae species and their chemical constituents represent valuable sources of new antiviral molecules.


Subject(s)
Asteraceae , Sesquiterpenes , Plant Extracts/pharmacology , Plant Extracts/chemistry , Asteraceae/chemistry , Methylene Chloride , Phytochemicals/pharmacology , Antiviral Agents/pharmacology , Sesquiterpenes/chemistry
8.
Biomolecules ; 14(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38397437

ABSTRACT

Cancer has become one of the most multifaceted and widespread illnesses affecting human health, causing substantial mortality at an alarming rate. After cardiovascular problems, the condition has a high occurrence rate and ranks second in terms of mortality. The development of new drugs has been facilitated by increased research and a deeper understanding of the mechanisms behind the emergence and advancement of the disease. Numerous preclinical and clinical studies have repeatedly demonstrated the protective effects of natural terpenoids against a range of malignancies. Numerous potential bioactive terpenoids have been investigated in natural sources for their chemopreventive and chemoprotective properties. In practically all body cells, the signaling molecule referred to as signal transducer and activator of transcription 3 (STAT3) is widely expressed. Numerous studies have demonstrated that STAT3 regulates its downstream target genes, including Bcl-2, Bcl-xL, cyclin D1, c-Myc, and survivin, to promote the growth of cells, differentiation, cell cycle progression, angiogenesis, and immune suppression in addition to chemotherapy resistance. Researchers viewed STAT3 as a primary target for cancer therapy because of its crucial involvement in cancer formation. This therapy primarily focuses on directly and indirectly preventing the expression of STAT3 in tumor cells. By explicitly targeting STAT3 in both in vitro and in vivo settings, it has been possible to explain the protective effect of terpenoids against malignant cells. In this study, we provide a complete overview of STAT3 signal transduction processes, the involvement of STAT3 in carcinogenesis, and mechanisms related to STAT3 persistent activation. The article also thoroughly summarizes the inhibition of STAT3 signaling by certain terpenoid phytochemicals, which have demonstrated strong efficacy in several preclinical cancer models.


Subject(s)
Neoplasms , STAT3 Transcription Factor , Humans , Apoptosis , Cell Proliferation , Neoplasms/drug therapy , Plant Extracts/pharmacology , Signal Transduction , STAT3 Transcription Factor/metabolism , Terpenes/pharmacology
9.
Planta ; 259(3): 58, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308700

ABSTRACT

MAIN CONCLUSION: The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes ß-elemene, neryl isovalerate, ß-selinene, and α-selinene, and trace amounts of monoterpenes ß-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of ß-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that ß-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.


Subject(s)
Artemisia , Oils, Volatile , Sesquiterpenes, Germacrane , Sesquiterpenes , Sesquiterpenes/metabolism , Terpenes , Oils, Volatile/chemistry , Saccharomyces cerevisiae/metabolism , Artemisia/genetics , Artemisia/metabolism
10.
Chem Biodivers ; 21(4): e202301883, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358959

ABSTRACT

Yerba mate (Ilex paraguariensis) is a forest species consumed in the form of non-alcoholic beverages in South America, with applications in foods, cosmetics, and pharmaceutical industries. The species leaves are globally recognized for their important bioactive compounds, including, saponins. We adjusted the vanillin-acid sulfuric method for determining spectrophotometrically the total saponin in yerba mate leaves. Seeking to maximize the extraction of saponins from leaves, a Doehlert design combined with Response Surface Methodology (RSM) was used, considering ethanol:water ratios and ultrasound times. In addition, the same methodology was used for the analysis of times and temperatures in the vanillin-sulfuric acid reaction heating. The contents of total saponin in mature leaves were compared in four yerba mate clones. The extraction was maximized using 40 % ethanol:60 % water and 60 minutes of ultrasound assisted extraction (UAE) without heating. For the reaction conditions, 70 °C for 10 minutes heating is recommended, and UV/Vis reading from 460 to 680 nm. Using the optimized methodology, total saponin contents ranged from 28.43 to 53.09 mg g-1 in the four yerba mate clones. The significant difference in saponin contents between clones indicate great genetic diversity and potential for clones' selection and extraction of these compounds from yerba mate leaves.


Subject(s)
Benzaldehydes , Ilex paraguariensis , Saponins , Saponins/analysis , Plant Extracts , Plant Leaves/chemistry , Sulfur Acids , Clone Cells/chemistry , Water , Ethanol
11.
Nat Prod Res ; : 1-10, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38328949

ABSTRACT

The pharmacological properties of plant extracts and phytochemicals, such as flavonoids and terpenoids, remain of great interest. In this work, the effect of extracts, friedelan-3,21-dione, and 3ß-O-D-glucosyl-sitosterol isolated from Tontelea micrantha roots was evaluated against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. The antibacterial activity was evaluated by the minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively), and the synergistic effect was assessed by the Checkerboard assay. Furthermore, the cytotoxicity of the plant-derived compounds against Vero cells was measured by the 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) method. The biological effects of the isolated compounds were predicted using the PASS online software. The chloroform and hexane extracts of T. micrantha roots showed promising antibacterial effect, with MIC in the range of 4.8-78.0 µg/mL. Further analyses showed that these compounds do not affect the integrity of the membrane. The combination with streptomycin strongly reduced the MIC of this antibiotic and extracts. The extracts were highly toxic to Vero cells, and no cytotoxicity was detected for the two terpenoids isolated from them (i.e. friedelan-3,21-dione and 3ß-O-D-glucosyl-sitosterol; CC50 > 1000 µg/mL). Therefore, extracts obtained from T. micrantha roots significantly inhibited bacterial growth and are considered promising agents against pathogenic bacteria. The cytotoxicity results were very relevant and can be tested in bioassays.

12.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279232

ABSTRACT

Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment.


Subject(s)
Drugs, Chinese Herbal , Keloid , Tannins , Humans , Keloid/drug therapy , Keloid/prevention & control , Keloid/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Collagen/metabolism , Drugs, Chinese Herbal/pharmacology , Fibroblasts/metabolism , Cell Proliferation , Cells, Cultured
13.
Article in English | MEDLINE | ID: mdl-37680163

ABSTRACT

Diabetic nephropathy (DN) is the foremost ailment resulting in end-stage renal damage. Chronic hyperglycaemia and hyperlipidaemia are the foremost reason for disease progression. The disease is characterized by the severity of albuminuria and cardiovascular disorders. Approximately 20 to 40% of the global prevalence of DN is mostly reported to occur in individuals with diabetes, and nearly 28% of DN occurs in individuals with other renal disorders. The pathological mechanism is very complex, involving innumerable targets and leading to multiple pharmacological effects. Thus, the scientific community is forced to work in search of safe and potent therapeutics that can tackle the complex pathology of DN effectively. The secondary plant metabolites categorized as terpenoids gained attention as potential therapeutics contrary to others for the management of diabetic nephropathy and other associated syndromes by their strong antioxidant activity and inhibition of advanced glycation and its associated products. This review focused on herbal therapeutics for the management of diabetic nephropathy. Moreover, different types of terpenoids, their biological sources, and proposed mechanisms of action are explored for the development of a novel pharmacophore for diabetic nephropathy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/metabolism , Terpenes/therapeutic use , Kidney/metabolism , Prevalence , Disease Progression
14.
Pest Manag Sci ; 80(2): 554-568, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37733166

ABSTRACT

PURPOSE AND METHODS: Botrytis cinerea is the primary disease affecting cucumber production. It can be managed by applying pesticides and cultivating disease-resistant cucumber strains. However, challenges, such as drug resistance in pathogenic bacteria and changes in physiological strains, are obstacles in the effective management of B. cinerea. Nano-selenium (Nano-Se) has potential in enhancing crop resistance to biological stress, but the exact mechanism for boosting disease resistance remains unclear. Here, we used metabolomics and transcriptomics to examine how Nano-Se, as an immune activator, induces plant resistance. RESULT: Compared with the control group, the application of 10.0 mg/L Nano-Se on the cucumber plant's leaf surface resulted in increased levels of chlorophyll, catalase (10.2%), glutathione (326.6%), glutathione peroxidase (52.2%), cucurbitacin (41.40%), and metabolites associated with the phenylpropane synthesis pathway, as well as the total antioxidant capacity (21.3%). Additionally, the expression levels of jasmonic acid (14.8 times) and related synthetic genes, namely LOX (264.1%), LOX4 (224.1%), and AOC2 (309.2%), were up-regulated. A transcription analysis revealed that the CsaV3_4G002860 gene was up-regulated in the KEGG enrichment pathway in response to B. cinerea infection following the 10.0 mg/L Nano-Se treatment. DISCUSSION: In conclusion, the activation of the phenylpropane biosynthesis and branched-chain fatty acid pathways by Nano-Se promotes the accumulation of jasmonic acid and cucurbitacin in cucumber plants. This enhancement enables the plants to exhibit resistance against B. cinerea infections. Additionally, this study identified a potential candidate gene for cucumber resistance to B. cinerea induced by Nano-Se, thereby laying a theoretical foundation for further research in this area. © 2023 Society of Chemical Industry.


Subject(s)
Cucumis sativus , Cyclopentanes , Hydroxybenzoates , Oxylipins , Selenium , Cucumis sativus/genetics , Cucumis sativus/microbiology , Cucurbitacins , Selenium/pharmacology , Selenium/metabolism , Botrytis/physiology , Plants/metabolism , Plant Diseases/microbiology , Disease Resistance/genetics , Gene Expression Regulation, Plant
15.
J Ethnopharmacol ; 321: 117202, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37742878

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW: To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS: In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS: The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION: Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.


Subject(s)
Ginkgo biloba , Quercetin , Humans , Quercetin/pharmacology , Kaempferols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Flavonoids
16.
Int J Toxicol ; 43(1_suppl): 64S-81S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37930133

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 10 Ginkgo biloba-derived ingredients, which are most frequently reported to function in cosmetics as skin conditioning agents or antioxidants. The Panel reviewed the available data to determine the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing the same constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. The Panel was concerned about the presence of ginkgolic acid in cosmetics. Industry should use good manufacturing practices to limit impurities. The Panel concluded that 5 Ginkgo biloba leaf-derived ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be non-sensitizing; data are insufficient to determine the safety of the remaining 5 ingredients under the intended conditions of use in cosmetic formulations.


Subject(s)
Cosmetics , Ginkgo biloba , Ginkgo biloba/toxicity , Consumer Product Safety , Plant Extracts/toxicity , Cosmetics/toxicity , Antioxidants
17.
J Hazard Mater ; 465: 133163, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38064945

ABSTRACT

Arsenic (As) is a highly cytotoxic element impairing normal cellular functions, and its bioremediation has become one of the environmental concerns. This study explored the molecular and physiological responses of thyme (Thymus kotschyanus) seedlings to incorporating As (0 and 10 mgl-1) and methyl jasmonate (MJ; 0 and 10 µM) into the culture medium. The MJ treatment reinforced root system and mitigated the As cytotoxicity risk. MJ contributed to hypomethylation, a potential adaptation mechanism for conferring the As tolerance. Two cytochrome P450 monooxygenases, including CYP71D178 and CYP71D180 genes, were upregulated in response to As and MJ. The MJ treatment contributed to up-regulation in the γ-terpinene synthase (TPS) gene, a marker gene in the terpenoid metabolism. The As presence reduced photosynthetic pigments (chlorophylls and carotenoids), while the MJ utilization alleviated the As toxicity. The MJ supplementation increased proline accumulation and soluble phenols. The application of MJ declined the toxicity sign of As on the concentration of proteins. The activities of peroxidase, catalase, and phenylalanine ammonia-lyase (PAL) enzymes displayed an upward trend in response to As and MJ treatments. Taken collective, MJ can confer the As tolerance by triggering DNA hypomethylation, regulating CYPs, and stimulating primary and secondary metabolism, especially terpenoid.


Subject(s)
Arsenic , Cyclopentanes , Oxylipins , Thymus Plant , Thymus Plant/metabolism , Secondary Metabolism , Acetates/metabolism , Cytochrome P-450 Enzyme System/metabolism , Terpenes , DNA
18.
J Agric Food Chem ; 72(1): 424-436, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38126326

ABSTRACT

Shell ginger (Alpinia zerumbet) is a perennial ornamental plant of ginger native to East Asia, which can be used as a flavoring agent in food or beverage, as well as a traditional Chinese medicine. In this study, a total of 37 terpenoids, including 7 new compounds, zerumin D1 to zerumin D7 (2, 3, 28-30, 36, and 37), and 5 new naturally occurring compounds, zerumin D10 to zerumin D14 (9, 12, 15, 20, and 24), were isolated and identified from the rhizomes of shell ginger. Compound 3 was an unprecedented variant labdane diterpenoid featuring a unique 6/7/6/3 tetracyclic cyclic ether system in its side chain. The anti-inflammatory activities of the isolated terpenoids were assessed in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). Compound 4 significantly inhibited the production of nitric oxide with an IC50 value of 5.4 µM. Further investigation revealed that compounds 2 and 3 may inhibit the nuclear translocation of NF-κB, thus suppressing the expression of IL-6, IL-1ß, iNOS, and COX-2 to exert the anti-inflammatory effects.


Subject(s)
Alpinia , Zingiber officinale , Rhizome , Terpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism
19.
Metabolomics ; 20(1): 5, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082140

ABSTRACT

INTRODUCTION: Feed additives represents a valid tool in animal nutrition to improve animal performance and livestock productivity under a sustainable perspective; however, there is a paucity of information about their comprehensive metabolomic and bioactive profiles. OBJECTIVE: In this study, we tested the ability of an untargeted metabolomics approach to discriminate nine commercial feed additives and unique blends of botanical extracts used in both ruminant and non-ruminant nutrition, according to their phytochemical profiles and different in vitro bioactive properties. METHODS: An ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry and multivariate statistics were combined to search for potential markers, in order to better discriminate the different commercial samples. RESULTS: Several phytochemicals were identified, namely alkaloids, phenolics, organosulfurs, and terpenoids. The polyherbal formulation Zigbir was the best source of phytochemicals, accounting for a cumulative total content of phytochemicals equal to 3.03 mg Eq./g, being particularly abundant in terpenoids, stilbenes, phenolic acids, and small-molecular-weight phenolics. Multivariate statistics allowed to group the different products in 2 bioactive subclusters. The diterpenoid andrographolide recorded the highest abundance in Zigbir and Sangrovit. The most predictive biomarkers were: piperine, isoquercitrin, 6-methylthiohexyldesulfoglucosinolate, 6-methylumbelliferone, benzoic acid, (+)-(1R,2R)-1,2-diphenylethane-1,2-diol, and piperitenone. Flavonoids were highly correlated with both in vitro antioxidant and enzyme inhibition assays. CONCLUSIONS: Our findings provide new insights into the comprehensive phytochemical composition of commercial feed additives and blend of botanical extracts used for both ruminant and non-ruminant nutrition. A great importance of polyphenols in relation to the biological activities was detected.


Subject(s)
Metabolomics , Plant Extracts , Animals , Plant Extracts/chemistry , Metabolomics/methods , Phenols/analysis , Terpenes , Phytochemicals/analysis , Ruminants
20.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067620

ABSTRACT

Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides contained within D. nobile are very important active components, which mainly have antiviral, anti-tumor, and immunity improvement effects. However, the changes in the compounds and functional genes of D. nobile induced by methyl jasmonate (MeJA) are not clearly understood. In this study, the metabolome and transcriptome of D. nobile were analyzed after exposure to MeJA. A total of 377 differential metabolites were obtained through data analysis, of which 15 were related to polysaccharide pathways and 35 were related to terpenoids and alkaloids pathways. Additionally, the transcriptome sequencing results identified 3256 differentially expressed genes that were discovered in 11 groups. Compared with the control group, 1346 unigenes were differentially expressed in the samples treated with MeJA for 14 days (TF14). Moreover, the expression levels of differentially expressed genes were also significant at different growth and development stages. According to GO and KEGG annotations, 189 and 99 candidate genes were identified as being involved in terpenoid biosynthesis and polysaccharide biosynthesis, respectively. In addition, the co-expression analysis indicated that 238 and 313 transcription factors (TFs) may contribute to the regulation of terpenoid and polysaccharide biosynthesis, respectively. Through a heat map analysis, fourteen terpenoid synthetase genes, twenty-three cytochrome P450 oxidase genes, eight methyltransferase genes, and six aminotransferase genes were identified that may be related to dendrobine biosynthesis. Among them, one sesquiterpene synthase gene was found to be highly expressed after the treatment with MeJA and was positively correlated with the content of dendrobine. This study provides important and valuable metabolomics and transcriptomic information for the further understanding of D. nobile at the metabolic and molecular levels and provides candidate genes and possible intermediate compounds for the dendrobine biosynthesis pathway, which lays a certain foundation for further research on and application of Dendrobium.


Subject(s)
Alkaloids , Dendrobium , Transcriptome , Dendrobium/genetics , Dendrobium/metabolism , Plant Extracts/metabolism , Alkaloids/metabolism , Terpenes/metabolism , Metabolome , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL