Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Front Nutr ; 10: 1267035, 2023.
Article in English | MEDLINE | ID: mdl-38099182

ABSTRACT

Introduction: The spice curcumin and its metabolites are widely used by cancer patients but have not shown proven health benefits in clinical studies, likely due to low plasma concentrations after oral intake. However, public interest in curcumin continues to grow, and companies claim enhanced absorption in their formulations. This study aims to determine if daily oral intake of curcumin leads to sufficient plasma concentrations for health effects. The study was registered in the Dutch Clinical Trial Register with ID NL5931. Methods: We used a validated HPLC-MS/MS method to measure curcumin and its metabolites in 47 individuals using their own curcumin formulations. Questionnaires assessed other supplement and medication use. Plasma samples were collected before and 1.5 h after intake, analyzing curcumin and metabolite levels with and without ß-glucuronidase pretreatment to measure conjugated and unconjugated forms. Results: Plasma concentrations of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin, ranged between 1.0 and 18.6 ng/mL. Adding ß-glucuronidase resulted in an increase of unconjugated curcumin plasma levels to 25.4 ng/mL; however still significantly below (1000-fold) a plasma concentration that is expected to have a beneficial health effect. The use of adjuvants like piperine did not result in higher curcumin plasma concentrations. Discussion: Our study shows that using oral curcumin supplements still does not result in therapeutic plasma levels. Health care practitioners need to be critical toward the claimed beneficial systemic health effects of current curcumin supplement use by their patients. Clinical Trial Registration: https://onderzoekmetmensen.nl/en/trial/25480, NL5931.

2.
Phytomedicine ; 121: 155127, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812853

ABSTRACT

BACKGROUND: Myocardial infarction (MI) often leads to sudden cardiac death. Persistent myocardial ischemia increases oxidative stress and impairs mitochondrial function, contributing significantly to postinfarction cardiac dysfunction and remodeling, and the subsequent progression to heart failure (HF). Tetrahydrocurcumin (THC), isolated from the rhizome of turmeric, has antioxidant properties and has been shown to protect against cardiovascular diseases. However, its effects on HF after MI are poorly understood. PURPOSE: The objective was the investigation of the pharmacological effects of THC and its associated mechanisms in the pathogenesis of HF after MI. METHODS: A total of 120 mice (C57BL/6, male) were used for the in vivo experiments. An MI mouse model was created by permanent ligation of the left anterior descending coronary artery. The mice received oral dose of THC at 120 mg/kg/d and the effects on MI-induced myocardial injury were evaluated by assessment of cardiac function, histopathology, myocardial oxidative levels, and mitochondrial function. Molecular mechanisms were investigated by intraperitoneal injection of 50 mg/kg of the SIRT3 selective inhibitor 3-TYP. Meanwhile, mouse neonatal cardiomyocytes were isolated and cultured in a hypoxic incubator to verify the effects of THC in vitro. Lastly, SIRT3 and Nrf2 were silenced using siRNAs to further explore the regulatory mechanism of key molecules in this process. RESULTS: The mouse hearts showed significant impairment in systolic function after MI, together with enlarged infarct size, increased myocardial fibrosis, cardiac hypertrophy, and apoptosis of cardiomyocytes. A significant reversal of these changes was seen after treatment with THC. Moreover, THC markedly reduced reactive oxygen species generation and protected mitochondrial function, thus mitigating oxidative stress in the post-MI myocardium. Mechanistically, THC counteracted reduced Nrf2 nuclear accumulation and SIRT3 signaling in the MI mice while inhibition of Nrf2 or SIRT3 reversed the effects of THC. Cell experiments showed that Nrf2 silencing markedly reduced SIRT3 levels and deacetylation activity while inhibition of SIRT3 signaling had little impact on Nrf2 expression. CONCLUSION: This is the first demonstration that THC protects against the effects of MI. THC reduced both oxidative stress and mitochondrial damage by regulating Nrf2-SIRT3 signaling. The results suggest the potential of THC in treating myocardial ischemic diseases.


Subject(s)
Cardiomyopathies , Myocardial Infarction , Sirtuin 3 , Mice , Male , Animals , Sirtuin 3/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Oxidative Stress , Myocytes, Cardiac/metabolism , Cardiomyopathies/metabolism , Mitochondria , Signal Transduction , Apoptosis
3.
Drug Deliv ; 30(1): 2254530, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37668361

ABSTRACT

Oral cancer is one of the leading causes of death worldwide. Oral precancerous lesions (OPL) are the precursors of oral cancer, with varying degrees of progression. Tetrahydrocurcumin (THC) is a major metabolite of curcumin with superior anticancer properties against various types of cancer. However, THC's clinical outcome is limited by its poor aqueous solubility. Herein, we developed novel mucoadhesive biopolymer-based composite sponges for buccal delivery of THC, exploiting nanotechnology and mucoadhesion for efficient prevention and treatment of oral cancer. Firstly, THC-nanocrystals (THC-NC) were formulated and characterized for subsequent loading into mucoadhesive composite sponges. The anticancer activity of THC-NC was assessed on a human tongue squamous carcinoma cell line (SCC-4). Finally, the chemopreventive activity of THC-NC loaded sponges (THC-NC-S) was examined in DMBA-induced hamster OPL. The selected THC-NC exhibited a particle size of 532.68 ± 13.20 nm and a zeta potential of -46.08 ± 1.12 mV. Moreover, THC-NC enhanced the anticancer effect against SCC-4 with an IC50 value of 80 µg/mL. THC-NC-S exhibited good mucoadhesion properties (0.24 ± 0.02 N) with sustained drug release, where 90% of THC was released over 4 days. Furthermore, THC-NC-S had a magnificent potential for maintaining high chemopreventive activity, as demonstrated by significant regression in the dysplasia degree and a decline in cyclin D1 (control: 40.4 ± 12.5, THC-NC-S: 12.07 ± 5.2), culminating in significant amelioration after 25 days of treatment. Conclusively, novel THC-NC-S represent a promising platform for local therapy of OPL, preventing their malignant transformation into cancer.


Subject(s)
Mouth Neoplasms , Precancerous Conditions , Animals , Cricetinae , Humans , Carrageenan , Mouth Neoplasms/drug therapy , Precancerous Conditions/drug therapy
4.
Nat Prod Commun ; 18(5)2023 May.
Article in English | MEDLINE | ID: mdl-37292146

ABSTRACT

Docetaxel (DTX) is the treatment of choice for metastatic castration-resistant prostate cancer. However, developing drug resistance is a significant challenge for achieving effective therapy. This study evaluated the anticancer and synergistic effects on DTX of four natural compounds (calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin) using PC-3 androgen-resistant human prostate cancer cells. We utilized the CellTiter-Glo® luminescent cell viability assay and human PC-3 androgen-independent prostate cancer cells to determine the antiproliferative effects of the four compounds alone and combined with DTX. Cytotoxicity to normal human prostate epithelial cells was tested in parallel using normal immortalized human prostate epithelial cells (RWPE-1). We used cell imaging and quantitative caspase-3 activity to determine whether these compounds induce apoptosis. We also measured the capacity of each drug to inhibit TNF-α-induced NF-kB using a colorimetric assay. Our results showed that all four natural compounds significantly augmented the toxicity of DTX to androgen-resistant PC-3 prostate cancer cells at IC50. Interestingly, when used alone, each of the four compounds had a higher cytotoxic activity to PC-3 than DTX. Mechanistically, these compounds induced apoptosis, which we confirmed by cell imaging and caspase-3 colorimetric assays. Further, when used either alone or combined with DTX, the four test compounds inhibited TNF-α-induced NF-kB production. More significantly, the cytotoxic effects on normal immortalized human prostate epithelial cells were minimal and non-significant, suggesting prostate cancer-specific effects. In conclusion, the combination of DTX with the four test compounds could effectively enhance the anti-prostate cancer activity of DTX. This combination has the added value of reducing the DTX effective concentration. We surmise that calebin A, 3'-hydroxypterostilbene, hispolon, and tetrahydrocurcumin were all excellent drug candidates that produced significant antiproliferative activity when used alone and synergistically enhanced the anticancer effect of DTX. Further in vivo studies using animal models of prostate cancer are needed to confirm our in vitro findings.

5.
Pharmacol Res Perspect ; 11(2): e01079, 2023 04.
Article in English | MEDLINE | ID: mdl-36971089

ABSTRACT

Tetrahydrocurcumin (THC), a principal metabolite of curcumin, was tested in a rat model of type 2 diabetes mellitus. THC was administered via daily oral gavage with the lipid carrier polyenylphosphatidylcholine (PPC) as add-on therapy to losartan (angiotensin receptor blocker) to examine effects on kidney oxidative stress and fibrosis. A combination of unilateral nephrectomy, high-fat diet and low-dose streptozotocin was used to induce diabetic nephropathy in male Sprague-Dawley rats. Animals with fasting blood glucose >200 mg/dL were randomized to PPC, losartan, THC + PPC or THC + PPC + losartan. Untreated chronic kidney disease (CKD) animals had proteinuria, decreased creatinine clearance, and evidence of kidney fibrosis on histology. THC + PPC + losartan treatment significantly lowered blood pressure concurrent with increased messenger RNA levels of antioxidant copper-zinc-superoxide dismutase and decreased protein kinase C-α, kidney injury molecule-1 and type I collagen in the kidneys; there was decreased albuminuria and a trend for increased creatinine clearance compared to untreated CKD rats. There was decreased fibrosis on kidney histology in PPC-only and THC-treated CKD rats. Plasma levels of kidney injury molecule-1 were decreased in THC + PPC + losartan animals. In summary, add-on THC to losartan therapy improved antioxidant levels and decreased fibrosis in the kidneys, and lowered blood pressure in diabetic CKD rats.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Renal Insufficiency, Chronic , Animals , Male , Rats , Antioxidants/pharmacology , Blood Pressure , Creatinine/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Fibrosis , Kidney , Losartan/therapeutic use , Rats, Sprague-Dawley
6.
Molecules ; 28(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36838654

ABSTRACT

Complexes of curcumin with metals have shown much-improved stability, solubility, antioxidant capability, and efficacy when compared to curcumin. The present research investigates the relative bioavailability, antioxidant, and ability to inhibit inflammatory cytokine production of a curcuminoid metal chelation complex of tetrahydrocurcumin-zinc-curcuminoid termed TurmiZn. In vitro uptake assay using pig intestinal epithelial cells showed that TurmiZn has an ~3-fold increase (p ≤ 0.01) in uptake compared to curcumin and a ~2-fold increase (p ≤ 0.01) over tetrahydrocurcumin (THC). In a chicken model, an oral 1-g dose of TurmiZn showed a ~2.5-fold increase of a specific metabolite peak compared to curcumin (p = 0.004) and a ~3-fold increase compared to THC (p = 0.001). Oral doses (5 g/Kg) of TurmiZn in rats also showed the presence of curcumin and THC metabolites in plasma, indicating bioavailability across cell membranes in animals. Determination of the antioxidant activity by a 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging assay indicated that TurmiZn was about 13x better (p ≤ 0.0001) than curcumin and about 4X better (p ≤ 0.0001) than THC, in reducing free radicals. In vitro experiments further showed significant (p ≤ 0.01) reductions of lipopolysaccharide (LPS)-induced proinflammatory cytokines such as interleukin (IL) IL-6, IL-8, IL-15, IL-18, and tumor necrosis factor (TNF)-alpha, while showing a significant (p ≤ 0.01) increase of granulocyte-macrophage colony-stimulating factor (GM-CSF) in dog kidney cells. In vivo cytokine modulations were also observed when TurmiZn was fed for 6 weeks to newborn chickens. TurmiZn reduced IL-1 and IL-6, but significantly reduced (p ≤ 0.01) IL-10 levels while there was a concurrent significant (p = 0.02) increase in interferon gamma compared to controls. Overall, these results indicate that TurmiZn has better bioavailability and antioxidant capability than curcumin or THC and has the ability to significantly modulate cytokine levels. Thus, TurmiZn could be an excellent candidate for a novel ingredient that can be incorporated into food and supplements to help overall health during the aging process.


Subject(s)
Curcumin , Cytokines , Animals , Rats , Swine , Dogs , Antioxidants/pharmacology , Curcumin/pharmacology , Interleukin-6 , Diarylheptanoids , Biological Availability , Zinc , Chickens , Tumor Necrosis Factor-alpha
7.
Molecules ; 27(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014335

ABSTRACT

Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling. The effects of THC on angiogenesis in CaSki xenografted mice and the expression of vascular endothelial growth factor (VEGF) are well documented. On the other hand, as an anti-inflammatory and antioxidant compound, THC is involved in enhancing homocysteine-induced mitochondrial remodeling in brain endothelial cells. The experimental evidence regarding the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion injury and the therapeutic potential of THC to alleviate mitochondrial cerebral dysmorphic dysfunction patterns is also scrutinized and explored. Overall, the studies on different animal models of disease suggest that THC can be used as a dietary supplement to protect against cardiovascular changes caused by various factors (such as heavy metal overload, oxidative stress, and carcinogenesis). Additionally, the reviewed literature data seem to confirm THC's potential to improve mitochondrial dysfunction in cerebral vasculature during ischemic stroke through epigenetic mechanisms. We suggest that further preclinical studies should be implemented to demonstrate THC's vascular-protective, antiangiogenic, and anti-tumorigenic effects in humans. Applying the methods used in the presently reviewed studies would be useful and will help define the doses and methods of THC administration in various disease settings.


Subject(s)
Endothelial Cells , Hypertension , Animals , Humans , Mice , Curcumin/analogs & derivatives , Disease Models, Animal , Hypertension/drug therapy , Vascular Endothelial Growth Factor A
8.
Phytomedicine ; 104: 154283, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35779282

ABSTRACT

BACKGROUND: Acute myocardial dysfunction in patients with sepsis is attributed to oxidative stress, inflammation, and cardiomyocyte loss; however, specific drugs for its prevention are still lacking. Tetrahydrocurcumin (THC) has been proven to contribute to the prevention of various cardiovascular diseases by decreasing oxidative stress and inflammation. This study was performed to investigate the functions and mechanism of action of THC in septic cardiomyopathy. METHODS: After the oral administration of THC (120 mg/kg) for 5 consecutive days, a mouse model of sepsis was established via intraperitoneal lipopolysaccharide (LPS, 10 mg/kg) injection. Following this, cardiac function was assessed, pathological section staining was performed, and inflammatory markers were detected. RESULTS: Myocardial systolic function was severely compromised in parallel with the accumulation of reactive oxygen species and enhanced cardiomyocyte apoptosis in mice with sepsis. These adverse changes were markedly reversed in response to THC treatment in septic mice as well as in LPS-treated H9c2 cells. Mechanistically, THC inhibited the release of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1ß, and IL-6, by upregulating mitogen-activated protein kinase phosphatase 1, to block the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK). Additionally, THC enhanced the levels of antioxidant proteins, including nuclear factor-erythroid 2-related factor 2, superoxide dismutase 2, and NAD(P)H quinone oxidoreductase 1, while decreasing gp91phox expression. Furthermore, upon THC treatment, Bcl-2 expression was significantly increased, along with a decline in Bax and cleaved caspase-3 expression, which reduced cardiomyocyte loss. CONCLUSION: Our findings indicate that THC exhibited protective potential against septic cardiomyopathy by reducing oxidative stress and inflammation through the regulation of JNK/ERK signaling. The findings of this study provide a basis for the further evaluation of THC as a therapeutic agent against septic cardiomyopathy.


Subject(s)
Cardiomyopathies , Sepsis , Animals , Mice , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Curcumin/analogs & derivatives , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System , Oxidative Stress , Sepsis/chemically induced , Sepsis/drug therapy , Sepsis/metabolism
9.
Carbohydr Polym ; 288: 119401, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35450653

ABSTRACT

Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.


Subject(s)
Breast Neoplasms , Chitosan , Curcumin , Nanostructures , Female , Humans , Breast Neoplasms/drug therapy , Chitosan/chemistry , Curcumin/analogs & derivatives , Curcumin/pharmacology , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Particle Size
10.
Nutrients ; 13(12)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34960104

ABSTRACT

Impairment of adiponectin production and function is closely associated with insulin resistance and type 2 diabetes, which are linked to obesity. Studies in animal models have documented the anti-diabetic effects of tetrahydrocurcumin (THC). Although several possible mechanisms have been proposed, the contribution of adiponectin signaling on THC-mediated antihyperglycemic effects remains unknown. Here, we report that adiposity, steatosis, and hyperglycemia were potently attenuated in high-fat diet/streptozotocin-induced diabetic obese mice after they received 20 and 100 mg/kg THC for 14 weeks. THC upregulated UCP-1 in adipose tissue and elevated adiponectin levels in the circulation. THC upregulated the AdipoR1/R2-APPL1-mediated pathway in the liver and skeletal muscle, which contributes to improved insulin signaling, glucose utilization, and lipid metabolism. Furthermore, THC treatment significantly (p < 0.05) preserved islet mass, reduced apoptosis, and restored defective insulin expression in the pancreatic ß-cells of diabetic obese mice, which was accompanied by an elevation of AdipoR1 and APPL1. These results demonstrated a potential mechanism underlying the beneficial effects of THC against hyperglycemia via the adiponectin-AdipoR pathway, and thus, may lead to a novel therapeutic use for type 2 diabetes.


Subject(s)
Adiponectin/metabolism , Curcumin/analogs & derivatives , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Hypoglycemic Agents , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Insulin/metabolism , Phytotherapy , Receptors, Adiponectin/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Curcumin/pharmacology , Curcumin/therapeutic use , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/physiopathology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Streptozocin , Up-Regulation/drug effects
11.
Curr Pharm Biotechnol ; 22(7): 1005-1012, 2021.
Article in English | MEDLINE | ID: mdl-32767918

ABSTRACT

BACKGROUND: Curcumin was found to accelerate gastric ulcer healing by the main mechanism, i.e., the suppression of iNOS mediated inflammation. Although Tetrahydrocurcumin (THC) is claimed to be an active antioxidant element of curcumin, its antiulcer activity has not been systematically examined. The utility of Self-Microemulsifying Drug Delivery Systems (SMEDDSs) for curcumin and THC formulations in the liquid form was also found to increase the rate and extent of release of curcumin- and THC-SMEDDS. Nevertheless, the beneficial antiulcer effect of these nanoproducts has not yet been evaluated. OBJECTIVE: This study aimed to evaluate and compare the antiulcer efficacy of curcumin- and THCSMEDDS through the inhibition of the iNOS/NO system in the rat model. METHODS: Antiulcer efficacy was compared in terms of the ability to accelerate healing of gastric ulcer including the efficient inhibitory action on inflammatory NO production in activated macrophages and iNOS mRNA expression at the ulcerated area. RESULTS: THC was found to have less ulcer healing capacity than curcumin with a lack of significant inhibitory effect on the iNOS/NO system. The SMEDDS used in the study significantly increased the inhibitory efficacy of THC on iNOS/NO production and iNOS mRNA expression compared to the inhibitory potency of curcumin. An oral administration of curcumin- or THC-SMEDDS once a day was appropriate for exerting a comparable curative efficacy to a twice-daily oral administration of curcumin or THC. CONCLUSION: The SMEDDS used in the study was observed to enhance the inhibitory efficacy of the antiulcer drug on the iNOS/NO system, leading to a reduction of daily dosing and dosing frequency.


Subject(s)
Curcumin/analogs & derivatives , Curcumin/therapeutic use , Emulsifying Agents/therapeutic use , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide/antagonists & inhibitors , Stomach Ulcer/drug therapy , Administration, Oral , Animals , Curcumin/pharmacology , Drug Compounding/methods , Emulsifying Agents/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism
12.
Int J Mol Sci ; 22(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379248

ABSTRACT

Curcumin is one of the most valuable natural products due to its pharmacological activities. However, the low bioavailability of curcumin has long been a problem for its medicinal use. Large studies have been conducted to improve the use of curcumin; among these studies, curcumin metabolites have become a relatively new research focus over the past few years. Additionally, accumulating evidence suggests that curcumin or curcuminoid metabolites have similar or better biological activity than the precursor of curcumin. Recent studies focus on the protective role of plasma tetrahydrocurcumin (THC), a main metabolite of curcumin, against tumors and chronic inflammatory diseases. Nevertheless, studies of THC in eye diseases have not yet been conducted. Since ophthalmic conditions play a crucial role in worldwide public health, the prevention and treatment of ophthalmic diseases are of great concern. Therefore, the present study investigated the antioxidative, anti-inflammatory, antiangiogenic, and neuroprotective effects of THC on four major ocular diseases: age-related cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). While this study aimed to show curcumin as a promising potential solution for eye conditions and discusses the involved mechanistic pathways, further work is required for the clinical application of curcumin.


Subject(s)
Curcumin/analogs & derivatives , Eye Diseases/drug therapy , Curcumin/metabolism , Curcumin/therapeutic use , Humans , Ophthalmology
13.
Heliyon ; 6(11): e05469, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33241148

ABSTRACT

Curcumin, a secondary metabolite from the turmeric plant is one of the most promising natural products, which has been studied extensively for decades. It has demonstrated several pharmacological activities in vitro and in vivo. Various studies have indicated that the pharmacological activity of curcumin is contributed by its metabolites. The aim of this review is to present an overview of metabolic products of curcumin produced upon its reduction like di, tetra, hexa and octa-hydrocurcumin. In addition, this paper has systematically analyzed the current information regarding medicinal use of reduced metabolites of curcumin and identified the limitations which have hindered its widespread usage in the medical world. Several diverse therapeutic effects have shown to be exhibited by reduced metabolites of curcumin such as antioxidant, anti-cancerous, anti-inflammatory and immunoregulatory activities. The potential underlying molecular mechanisms of the biological activities of reduced metabolites of curcumin have also been highlighted, which may provide insight into the principle of effectiveness of curcumin.

14.
Int Arch Allergy Immunol ; 181(11): 822-830, 2020.
Article in English | MEDLINE | ID: mdl-32784298

ABSTRACT

BACKGROUND: Tetrahydrocurcumin (THC) is the major active metabolite of curcumin, which is a dietary factor derived from Curcuma species. Our previous study demonstrated a significant beneficial effect of THC in mice with allergic asthma. Glucocorticosteroids (GCs) are commonly used drugs in asthma. Whether THC supplementation could promote the beneficial effects of GC therapy on asthma has not yet been reported. The current study aimed to investigate the combined efficacy of GC and THC treatment in a mouse model of allergic asthma. METHODS: BALB/c mice were randomly divided into 5 groups: the control group, ovalbumin (OVA)-induced group, and OVA-induced mice treated with dietary THC only, intraperitoneal injection of dexamethasone (DEX) only, or THC combined with DEX. The nasal symptoms, histopathological alterations of lung tissues, lung cytokine production, and Th cell subsets were assessed. RESULTS: THC or DEX had beneficial effects on nasal symptoms and pathological lung changes, and the therapeutic effects between THC and DEX treatment were comparable. Importantly, compared to the monotherapy groups (THC or DEX only), the combination of THC and DEX showed a significantly reduced nasal rubbing frequency, lower mucus hyperproduction, lower Th2 and Th17 cell numbers as well as lower related cytokine levels (IL-4, IL-5, and IL-17A). CONCLUSIONS: Supplementation with THC can enhance the therapeutic effects of DEX to alleviate airway symptoms, lung inflammation, and the Th2 response. Our findings suggest that dietary administration of THC could act as an add-on therapy for asthma treated with GCs.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Curcumin/analogs & derivatives , Dexamethasone/therapeutic use , Th2 Cells/immunology , Allergens/immunology , Animals , Curcuma , Curcumin/therapeutic use , Dietary Supplements , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Th2 Cells/drug effects
15.
Fitoterapia ; 146: 104665, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32531320

ABSTRACT

Diabetes is a worldwide healthy concern, which affects approximately 9% of the population. Tetrahydrocurcumin (THC) is the main metabolite of curcumin, which exerts the anti-diabetic activity. However, the underlying mechanism has not been clarified. In the research, we investigated whether THC could improve diabetes by regulating the gut microbiota and the expression of pancreatic glucagon-like peptide-1 (GLP-1) in the db/db mice. After 8-week THC administration (ig., once a day, THCH group: 200 mg/kg, THCL group: 100 mg/kg), the fasting blood glucose (FBG) was measured every two weeks. Serum insulin levels, the expression of GLP-1 in the pancreas, the histopathology of pancreas and the composition of gut microbiota were evaluated at the end of the experiment. Compared to the diabetic group, THC treatment decreased significantly blood glucose, increased the secretion of insulin and the expression of GLP-1 in the pancreas. Histomorphological analysis revealed that THC could protect pancreatic islet cells against hyperglycemic insult. Furthermore, the data from the sequencing of the 16S rDNA genes in gut microbiome displayed that THC could restore the intestinal dysbiosis, including the lowered relative abundance of Proteobacteria, Actinobacteria and the ratio of Firmicutes to Bacteroidetes. The linear regression analysis showed a close correlation between the GLP-1 expression and the proportion of the intestinal microflora. Altogether, these results demonstrated that THC might have a direct regulatory effect on gut microflora, which indirectly decrease the FBG levels by modulating GLP-1 expression in the pancreas.


Subject(s)
Curcumin/analogs & derivatives , Diabetes Mellitus, Experimental/drug therapy , Gastrointestinal Microbiome , Glucagon-Like Peptide 1/metabolism , Hypoglycemic Agents/pharmacology , Pancreas/drug effects , Animals , Blood Glucose/analysis , Curcumin/pharmacology , Insulin/metabolism , Male , Mice , Mice, Inbred CBA , Molecular Structure
16.
Phytother Res ; 34(11): 2963-2977, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32573860

ABSTRACT

High-altitude cerebral oedema (HACE) is a potentially fatal manifestation of high-altitude sickness and is caused partly by inflammation and the blood-brain barrier disruption. Tetrahydrocurcumin (THC) has been reported to exert effective antioxidative and anti-inflammatory effects; This study sought to elucidate the underlying mechanism of THC in mitigating HACE using a mouse model. Our results revealed that prophylactic administration of THC (40 mg/kg) for 3 days significantly alleviated the increase in brain water content (BWC), interleukin-1ß (IL-1ß) and TNF-α levels caused by acute hypobaric hypoxia (AHH). Additionally, superoxide dismutase (SOD) activity was increased by THC to enhance the ability to resist hypoxia. Histological and ultrastructural analysis of the cerebrum revealed that THC administration mitigated AHH-induced pericellular oedema and reduced the perivascular space, resulting in the simultaneous remission of oedema and protection of mitochondria in the cerebrum. In vitro, astrocytes exposed to hypoxia (4% O2 ) for 24 hr exhibited and increase in IL-1ß expression followed by an increase in vascular endothelial growth factor (VEGF) levels. Furthermore, THC administration remarkably downregulated VEGF, matrix metallopeptidase-9 (MMP-9), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, both in vivo and in vitro. Our data highlight the potential prophylactic activity of THC in HACE, it effectively mitigates AHH-induced cerebral oedema and inflammation is associated with the inhibition of the NF-κB/ VEGF/MMP-9 pathways.


Subject(s)
Altitude Sickness/drug therapy , Brain Edema/drug therapy , Cell Hypoxia/drug effects , Curcumin/analogs & derivatives , Inflammation/drug therapy , NF-kappa B/metabolism , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Disease Models, Animal , Humans , Male , Mice , Vascular Endothelial Growth Factor A/metabolism
17.
Biomolecules ; 10(6)2020 05 29.
Article in English | MEDLINE | ID: mdl-32486019

ABSTRACT

In recent decades, cancer has been one of the leading causes of death worldwide. Despite advances in understanding the molecular basis of tumorigenesis, diagnosis, and clinical therapies, the discovery and development of effective drugs is an active and vital field in cancer research. Tetrahydrocurcumin is a major curcuminoid metabolite of curcumin, naturally occurring in turmeric. The interest in tetrahydrocurcumin research is increasing because it is superior to curcumin in its solubility in water, chemical stability, bioavailability, and anti-oxidative activity. Many in vitro and in vivo studies have revealed that tetrahydrocurcumin exerts anti-cancer effects through various mechanisms, including modulation of oxidative stress, xenobiotic detoxification, inflammation, proliferation, metastasis, programmed cell death, and immunity. Despite the pharmacological similarities between tetrahydrocurcumin and curcumin, the structure of tetrahydrocurcumin determines its distinct and specific molecular mechanism, thus making it a potential candidate for the prevention and treatment of cancers. However, the utility of tetrahydrocurcumin is yet to be evaluated as only limited pharmacokinetic and oral bioavailability studies have been performed. This review summarizes research on the anti-cancer properties of tetrahydrocurcumin and describes its mechanisms of action.


Subject(s)
Antineoplastic Agents/therapeutic use , Curcumin/analogs & derivatives , Neoplasms/drug therapy , Curcumin/therapeutic use , Humans
18.
Pharmacol Res ; 147: 104367, 2019 09.
Article in English | MEDLINE | ID: mdl-31344423

ABSTRACT

The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.


Subject(s)
Gastrointestinal Microbiome/drug effects , Phytochemicals/pharmacology , Phytotherapy , Animals , Biotransformation , Diet , Humans , Phytochemicals/pharmacokinetics
20.
J Pharm Biomed Anal ; 172: 58-66, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31029801

ABSTRACT

Curcumin (CUR) is a bioactive compound present in many composite prescriptions of traditional Chinese medicine together with quercetin (QR) and paeoniflorin (PF). Little is known about the influence of QR and PF on the absorption and metabolism of CUR when the three compounds are orally co-administered. In this study, a rapid, sensitive, and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous determination of CUR, tetrahydrocurcumin (THC), QR, and PF in rat plasma by using tinidazole as the internal standard (IS). A liquid-liquid extraction method with ethyl acetate was used to pre-treat the plasma samples. Chromatographic separation was conducted on a C18 column with isocratic elution using acetonitrile and 0.1% formic acid water solution (80:20, v/v) as the mobile phase at the flow rate of 0.3 mL/min. A TSQ Quantum Access Max API mass spectrometer equipped with electrospray ionisation (ESI) source in selection reaction monitoring (SRM) mode was employed to determine transitions of m/z 369.0 → 176.9, 373.1 → 137.0, 303.0 → 228.9, 478.9 → 120.9, 248.1 → 121.0 for CUR, THC, QR, PF, and IS, respectively. The selectivity, precision, accuracy, extraction recovery, matrix effect, and stability of the method were validated. This developed and validated method was successfully applied in the pharmacokinetic study of CUR, THC, QR, and PF in rats. The effects of QR and PF on the pharmacokinetics of CUR and its metabolite, THC, were evaluated in the plasma of Sprague-Dawley rats that were orally co-administered CUR, QR, and PF. The results showed that the combined use of QR, PF, and CUR has a possible influence on the metabolism and excretion of CUR. Our work provides a fundamental method for the rapid simultaneous determination of CUR, THC, QR, and PF in rat plasma. Furthermore, this study will provide a basic method for the analysis of pharmacokinetic interaction of CUR, QR, and PF and offer a scientific basis for a possible combination therapy with the three compounds.


Subject(s)
Drug Monitoring/methods , Drugs, Chinese Herbal/pharmacokinetics , Liquid-Liquid Extraction/methods , Administration, Oral , Animals , Chromatography, High Pressure Liquid/methods , Curcumin/administration & dosage , Curcumin/analogs & derivatives , Curcumin/analysis , Curcumin/pharmacokinetics , Drug Interactions , Drug Therapy, Combination/methods , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/analysis , Glucosides/administration & dosage , Glucosides/analysis , Glucosides/pharmacokinetics , Limit of Detection , Male , Monoterpenes/administration & dosage , Monoterpenes/analysis , Monoterpenes/pharmacokinetics , Quercetin/administration & dosage , Quercetin/analysis , Quercetin/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL