Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Anim Biosci ; 37(7): 1277-1288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38665076

ABSTRACT

OBJECTIVE: This study was aimed to investigate the effect of fresh and dried hydrolyzed Cordyceps militaris (CM) mushroom with proteolytic enzymes; bromelain (CMB), flavorzyme (CMF), and mixture of bromelain: flavorzyme (CMBF) on quality properties of spent hen chicken. METHODS: Mushroom extract (CME) were combined with three proteolytic enzyme mixtures that had different peptidase activities; stem bromelain (CMB), flavorzyme (CMF), and mixture of stem bromelain:flavorzyme (CMBF) at (1:1). The effect of these hydrolysates was investigated on spent hen breast meat via dipping marination. RESULTS: Hydrolyzation positively alters functional properties of CM protease. in which bromelain hydrolyzed group (CMB) displayed the highest proteolytic activity at 4.57 unit/mL. The antioxidant activity had a significant increment from 5.32% in CME to 61.79% in CMB. A significantly higher emulsion stability index and emulsification activity index compared to CME were another result from hydrolyzation (p<0.05). Texture properties along with the shear force value and myofibrillar fragmentation index were notably improved under CMB and CMBF in fresh condition. Marination with CM mushroom protease that was previously hydrolyzed with enzymes was proven to also increase the nucleotide compounds, indicated by higher adenosine 5'-monophosphate (AMP) and inosine 5'-monophosphate (IMP) in hydrolysate groups (p<0.05). The concentration of both total and insoluble collagen remained unchanged, meaning less effect from CM protease. CONCLUSION: This study suggested the hydrolyzation of CM protease with bromelain or a mixture of bromelain:flavourzyme to significantly improve functional properties of protease and escalate the taste-related nucleotide compounds and texture profiles from spent hen breast meat.

2.
Food Res Int ; 185: 114277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658069

ABSTRACT

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Subject(s)
Emulsions , Flavoring Agents , Gas Chromatography-Mass Spectrometry , Mentha piperita , Plant Oils , Mentha piperita/chemistry , Emulsions/chemistry , Humans , Plant Oils/chemistry , Flavoring Agents/chemistry , Gelatin/chemistry , Cross-Linking Reagents/chemistry , Taste , Hydrogels/chemistry , Electronic Nose , Male , Female , Adult
3.
J Texture Stud ; 55(2): e12833, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634383

ABSTRACT

Videofluoroscopic swallowing study (VFSS), alongside flexible endoscopic evaluation of swallowing, represents the gold standard for diagnosing swallowing disorders and to determine severity, pathophysiology, and effective interventions, including texture modification. The clinical swallowing examination and assessment supplements these instrumental methods and serves as the basis for the modules of swallowing diagnostics. The adaptation of food and drink consistencies in dysphagia management has become widespread. For valid results of a VFSS with respect to confirming swallowing safety and efficiency of different liquid and food consistencies and textures, the use of uniform recipes containing radio-opaque contrast media is important. Our goal was to identify recipes that would produce consistencies that conform to the liquid and food levels of 0-7, as defined by the International Dysphagia Diet Standardization Initiative (IDDSI), with barium- and iodine-based contrast media, xanthan gum-based thickeners, and other edible components, which also show sufficient contrast on VFSS. In this study, we determined the different recipes using IDDSI testing methods and explored their radiological characteristics using a Philips MultiDiagnost Eleva fluoroscopy system and two different fluid contrast agents: barium- (Micropaque®) and iodine-based (Telebrix®). All recipes showed sufficient contrast on fluoroscopy and could be visualized in the amounts used for swallowing examinations. They were practical and easy to implement in terms of production and availability of the components. The homogeneity of the recipes diminished with higher IDDSI levels, which represent transitional food, but appeared still sufficient for fluoroscopic examination. The opacity did not significantly differ between the barium- and iodine-based contrast media.


Subject(s)
Deglutition Disorders , Iodine , Humans , Deglutition Disorders/diagnosis , Contrast Media , Barium , Viscosity
4.
Bioresour Technol ; 398: 130511, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437963

ABSTRACT

The effect of thiamine (TA), ascorbic acid (AA), citric acid, and gallic acid (GA) on bacterial cellulose (BC) production by Komagataeibacter sucrofermentans, in synthetic (Hestrin and Schramm, HS) and natural substrates (industrial raisins finishing side stream extract, FSSE; orange juice, OJ; green tea extract, GTE), was investigated. The Response Surface Methodology was found reliable for BC yield prediction and optimization. Higher yields were achieved in the FSSE substrates, especially those supplemented with AA, TA, and GA (up to 19.4 g BC/L). The yield in the non-fortified substrates was 1.1-5.4 and 11.6-15.7 g/L, in HS and FSSE, respectively. The best yield in the natural non-fortified substrate FSSE-OJ-GTE (50-20-30 %), was 5.9 g/L. The porosity, crystallinity, and antioxidant properties of the produced BC films were affected by both the substrate and the drying method (freeze- or oven-drying). The natural substrates and the process wastewaters can be further exploited towards added value and sustainability. Take Home Message Sentence: Raisin and citrus side-streams can be efficiently combined for bacterial cellulose production, enhanced by other vitamin- and phenolic-rich substrates such as green tea.


Subject(s)
Acetobacteraceae , Cellulose , Vitamins , Cellulose/chemistry , Rivers , Vitamin A , Vitamin K , Organic Chemicals , Culture Media , Tea , Plant Extracts
5.
Food Chem ; 447: 138953, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38479144

ABSTRACT

This study aimed to characterize the thermomechanical transitions of meat-analog (MA) based coated fried foods. Wheat and rice flour-based batters were used to coat the MA and fried at 180 °C in canola oil for 2, 4 and 6 min. Glass-transition-temperature (Tg) of the coatings were assessed by differential scanning calorimetry, directly after frying or after post-fry holding. Mechanical texture analyzer and X-ray microtomography were employed to assess textural attributes and internal microstructure, respectively. Batter-formulation substantially impacted the Tg of fried foods coating i.e., crust. Tg of fried foods crust were ranged between -20 °C to -24 °C. Tg was positively correlated with frying time and internal microporosity (%), whereas negatively correlated with moisture content. Internal microstructure greatly influenced the textural attributes (hardness, brittleness, crispiness). Post-fry textural stability considerably impacted by Tg. Negative Tg value explains post-fry textural changes (hard-to-soft, brittle-to-ductile, crispy-to-soggy) of MA-based coated products at room-temperature (25 °C) and under IR-heating (65 °C).


Subject(s)
Cooking , Flour , Cooking/methods , Flour/analysis , Food Handling/methods , Rapeseed Oil , Meat/analysis
6.
Int J Biol Macromol ; 263(Pt 1): 130303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382785

ABSTRACT

Aqueous lupine seeds (Lupinus albus L.) extracts were evaluated as a natural fat substitute in low-fat yogurt production. Thus, the chemical composition, particle size, molecular weight, total phenolic (TPC), and total flavonoids (TFC) of the selected extract were estimated. Also, the antimicrobial activity and antioxidant capacity of selected extract were investigated. Yogurt with neutral lupine extract (NeLP) had the highest all sensorial attributes compared to other extracts. Also, the incorporation of NeLP during low-fat yogurt processing increased the solid content, and viscosity, as well as improved the textural profile and sensorial attributes without any negative effect on the yogurt's color. SEM micrographs of NeLP-yogurt microstructure showed a matrix characterized by large fused casein micelles clusters with comparatively lower porosity compared to control yogurt (without NeLP). The chemical composition of NeLP indicated that the major sugar constituents are glucose and galactose with different molar fractions. The molecular weight of NeLP is 460.5 kDa with a particle size of 1519.9 nm. Also, IC50 of NeLP is 0.589 mg/ml, while TPC and TFC are 7.17, and 0.0137 g/100 g sample, respectively. Hence, lupine neutral extract (0.25%) could be used as a fat replacer or texture improver ingredient in such low-fat yogurt which led to improved its characteristics without any negative defect during 7 days at 5 °C.


Subject(s)
Lupinus , Yogurt/analysis , Antioxidants/metabolism , Vegetables , Plant Extracts , Seeds/metabolism
7.
Int J Biol Macromol ; 262(Pt 2): 130028, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340927

ABSTRACT

Porous morphology and mechanical properties determine the applications of cryogels. To understand the influence of the ionic network on the microstructure and mechanical properties of pectin cryogels, we prepared low-methoxyl pectin (LMP) cryogels with different Ca2+ concentrations (measured as R-value, ranging from 0 to 2) through freeze-drying (FD). Results showed that the R-values appeared to be crucial parameters that impact the pore morphology and mechanical characteristics of cryogels. It is achieved by altering the network stability and water state properties of the cryogel precursor. Cryogel precursors with a saturated R-value (R = 1) produced a low pore diameter (0.12 mm) microstructure, obtaining the highest crispness (15.00 ± 1.85) and hardness (maximum positive force and area measuring 2.36 ± 0.31 N and 12.30 ± 1.57 N·s respectively). Hardness showed a negative correlation with Ca2+ concentration when R ≤ 1 (-0.89), and a similar correlation with the porosity of the gel network when R ≥ 1 (-0.80). Given the impacts of crosslinking on the pore structure, it is confirmed that the pore diameter can be designed between 56.24 and 153.58 µm by controlling R-value in the range of 0-2.


Subject(s)
Cryogels , Pectins , Cryogels/chemistry , Mechanical Phenomena , Porosity , Hardness
8.
Trop Anim Health Prod ; 56(2): 89, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411734

ABSTRACT

The aim of the current study was to determine the effects of dietary supplementation of safflower seed (SS) on the growth performance and hematological parameters of broiler birds along with the physicochemical, textural and sensory attributes of chicken meat. A total of 200 male chickens (7-days-old) were distributed into 5 groups (40 chickens in each) with 5 replicates of 8 chicks in a 42-day experiment. Each group was allocated to one of 5 dietary treatments, i.e., 0, 2.5, 5, 7.5, and 10% SS. The experimental diets were formulated for starter (7 to 21 days) and finisher (22 to 42 days) phases. Inclusion of SS in the diet improved growth performances in treatment groups between 7 and 42 days. The highest and lowest body weights were observed at the 5% SS and 0% SS levels, respectively. The physicochemical attributes of breast and thigh meat were found (P > 0.05) except for crude fat. The crude fat was significantly (P < 0.05) increased with increasing levels of SS in the diet. The inclusion of SS in the diet did not negatively impact the textural properties, i.e., hardness, cohesiveness, springiness, gumminess, chewiness, and shear force of breast and thigh meat. There was no significant difference in the sensory parameters of cooked chicken meat with increasing levels of SS in the diet. The results demonstrated a significant (P < 0.01) improvement in hematological parameters in the blood samples of broiler chickens fed diet supplemented with various levels of SS for five weeks. These findings suggest that, SS may be used as an oil seed for broiler chicken feed.


Subject(s)
Carthamus tinctorius , Chickens , Animals , Male , Dietary Supplements , Meat , Seeds
9.
J Sci Food Agric ; 104(7): 3947-3957, 2024 May.
Article in English | MEDLINE | ID: mdl-38264924

ABSTRACT

BACKGROUND: In order to improve the tenderness of dried shrimp products as well as to reduce the hardness of the meat during the drying process, shrimp were treated with ultrasound combined with pineapple protease and the tenderization condition was optimized by measuring the texture and shear force of dried shrimp. In addition, the sulfhydryl content, myofibril fragmentation index (MFI) and microstructure were also examined to clarify the mechanisms of shrimp tenderization. RESULTS: The results showed UB1 group with ultrasonic power of 100 W, heating temperature of 50 °C and pineapple protease concentration of 20 U mL-1 were the optimum tenderization conditions, where shrimp showed the lowest hardness (490.76 g) and shear force (2006.35 gf). Microstructure as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis results suggested that during the tenderization process the muscle segments of shrimps were broken, degradation of myofibrillar proteins occurred, and MFI values and total sulfhydryl content increased significantly (P < 0.05) (MFI value = 193.6 and total sulfhydryl content = 93.93 mmol mg-1 protein for UB 1 group). CONCLUSION: Ultrasound combined with bromelain could be used as a simple and effective tenderization method for the production of tender dried shrimp. The best conditions were 100 W ultrasonic power, 50 °C ultrasonic temperature, and 20 U mL-1 bromelain. © 2024 Society of Chemical Industry.


Subject(s)
Ananas , Bromelains , Bromelains/analysis , Bromelains/metabolism , Seafood/analysis , Meat/analysis , Proteins/metabolism , Myofibrils/chemistry
10.
J Oleo Sci ; 72(11): 997-1004, 2023.
Article in English | MEDLINE | ID: mdl-37914269

ABSTRACT

There is a need for an alternative method of producing a vegetable oil with high levels of unsaturated fatty acids and physical properties similar to solid fat. The objective of current work was to cut down the amount of oil absorbed by the finished product, increase the frying stability of sunflower oil, and fry potato chips using oleogel without harming their sensory quality. Rice bran wax was applied in this experiment, at rates of 2, 4, and 6 weight percent, and the generated oleogels were then utilized for four days in a succession to fry potato chips for four hours each day. The results suggested that potato chips could be fried using the sunflower oil-rice bran wax oleogel without having an adverse effect on their texture, color, or quality. Furthermore, the produced oleogel was more robust during frying than liquid sunflower oil. During intermittent frying, SFA levels also marginally rose in all samples with the exception of 4% oleogel. The control sample, which was sunflower oil, had the lowest levels of unsaturated fatty acids and poly unsaturated fatty acids at the end of the frying operation. The percentage of oil uptake by the potato chips in the oleogels containing 4 and 2% rice bran wax, on the other hand, was lower than in the control sample. The findings suggested that oleogels could be used as a deep-fat frying medium in household, commercial, and industrial settings.


Subject(s)
Food Handling , Oryza , Sunflower Oil , Food Handling/methods , Fatty Acids, Unsaturated
11.
Food Res Int ; 174(Pt 1): 113524, 2023 12.
Article in English | MEDLINE | ID: mdl-37986511

ABSTRACT

Hard-to-cook (HTC) is a textural defect that delays the softening of common bean seeds during cooking. While this defect is commonly associated with conventionally stored beans, soaking/cooking of beans in CaCl2 solutions or sodium acetate buffer can also prolong the cooking time of beans due to formation of Ca2+ crosslinked pectin retarding bean softening during cooking. In this study, the role of the cell wall-bound Mg2+/Ca2+ content and the degree of pectin methyl esterification (DM) was quantified, as important factors for bean texture-related changes stipulated in the pectin-cation-phytate hypothesis, the most plausible hypothesis of HTC development. Evaluation of texture changes during cooking of conventionally aged beans (35 °C and 83% RH for up to 20 weeks), beans soaked/cooked in CaCl2 solutions (0.01 to 0.1 M) or soaked in 0.1 M sodium acetate buffer (pH 4.4) revealed large bean-to-bean variations. Therefore a texture-based classification approach was used to better capture the relation between texture characteristics and cell wall polymer, in particular pectin, related changes. While cell wall-bound Ca2+ and pectin DM did not change/were not related to the texture variation during cooking of fresh beans, increased cell wall-bound Ca2+ and decreased pectin DM were associated with prolonged conventional storage of beans and their texture changes during subsequent cooking (due to pectin cross linking, retarding its solubilization during cooking). Exogenously added Ca2+ from pre-treating beans in CaCl2 solutions promoted to a great extent the cell wall-bound Ca2+ during soaking but even more so during cooking, complementing the harder texture associated with these beans during cooking (compared to conventionally stored and fresh beans). Similarly, free Ca2+ endogenously generated by phytase-catalysed phytate hydrolysis (beans treated by acetate buffer) promoted crosslinking of pectin by Ca2+ (cell wall-bound Ca2+), delaying softening of beans during cooking.


Subject(s)
Phaseolus , Phaseolus/chemistry , Calcium Chloride , Phytic Acid/analysis , Sodium Acetate/analysis , Hot Temperature , Cooking , Pectins/chemistry , Vegetables , Cations , Cell Wall/chemistry
12.
Food Res Int ; 173(Pt 1): 113308, 2023 11.
Article in English | MEDLINE | ID: mdl-37803613

ABSTRACT

Pickled kohlrabi is a traditional and favored vegetable product in China. During pickling, the hardness, springiness, and chewiness of kohlrabi all experienced a typical change with twice "increase-decrease" trend. However, little is known about its mechanism. In this study, in situ analysis including immunofluorescence, low field nuclear magnetic, and transmission electron microscopy were used to explore the effects of cell wall pectin, water state, and cellular structure on kohlrabi texture changes during pickling. Results revealed that at the early stage, due to the rapid loss of water after three times salting, the cells shrank and the interstitial space reduced, resulting in the first increase on kohlrabi texture. Subsequently, the dehydration-rehydration caused by the first brine processing resulted in the first decrease on kohlrabi texture. Then under the action of PME enzyme, more low-esterified pectin was produced, and chelate-soluble pectin with more branched structure was further formed, leading to another elevation of the sample texture. As the pickling continued, under the combined action of PG and PME, the molecular weight of pectin was decreased and the rigidity of the cell tissue was destroyed, caused kohlrabi texture continued to decline. These researches could provide important information and guidance for better maintaining the texture of pickled vegetables during processing.


Subject(s)
Pectins , Water , Pectins/chemistry , Water/analysis , Polysaccharides/analysis , Cell Wall/chemistry , Fruit/chemistry
13.
Int J Biol Macromol ; 253(Pt 3): 126690, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37673156

ABSTRACT

The softening of acidified chili peppers induced by processing and storage has become a major challenge for the food industry. This study aims to explore the impact of pasteurization techniques, thermal processing (TP), high-pressure processing (HPP), addition of sodium metabisulfite (SMS), and storage conditions (25 °C, 37 °C, and 42 °C for 30 days) on the texture-related properties of acidified chili pepper. The results showed that the textural properties of samples were destructed by TP (the hardness of samples decreased by 19.43 %) but were less affected by HPP and SMS. Compared with processing, storage temperature had a more dominant impact on texture and pectin characteristics. With increased storage temperature, water-solubilized pectin fraction content increased (increased by 160.99 %, 136.74 %, and 13.01 % in TP, HPP, and SMS-stored groups, respectively), but sodium carbonate-solubilized pectin fraction content decreased (decreased by 29.84 %, 26.81 %, and 8.60 % in TP-, HPP-, and SMS-stored groups, respectively), especially in TP-stored groups. Multivariate data analysis showed that softening was more closely related to pectin conversion induced by acid hydrolysis and pectinase depolymerization. This finding offers new perspectives for the production of acidified chili pepper.


Subject(s)
Capsicum , Pasteurization , Pectins , Temperature , Antioxidants/analysis
14.
Meat Sci ; 206: 109341, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717338

ABSTRACT

This study aimed to apply different proteolytic enzymes (bromelain, papain, and flavourzyme) to develop texture-modified meats suitable for people with chewing or swallowing problems. The samples were categorised at level 6 (soft and bite-sized food) of the dysphagia diet, characterised in terms of physicochemical and textural parameters, and evaluated for their behaviour during gastrointestinal digestion simulating elderly alterations. In general, the enzyme-treated samples had lower moisture content, weight, and diameter of the piece of meat, and presented colour differences compared to the control samples. Textural analyses did not show significant differences in terms of hardness and cohesiveness for the texture-modified meats, while flavourzyme-treated samples presented less elasticity. Instrumental mastication assay showed the breakdown of samples' structure mainly during the first mastication cycles, with flavourzyme-treated samples presenting slightly higher consistency. The protein digestibility of the meats greatly increased after simulated gastrointestinal digestion, but a decrease in proteolysis for the control and papain-treated samples in the altered gastric model and an increase for flavourzyme-treated samples in the altered both gastric and intestinal model were shown compared to standard conditions. These results allow integrating knowledge to design foods that better meet the requirements of dysphagics or elderly people.

15.
Environ Sci Pollut Res Int ; 30(46): 103141-103152, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37682438

ABSTRACT

Arsenic (As) is a naturally occurring element that is found in soil, water, and rocks. However, it can also be released into the environment through human activities. Arsenic is considered an environmental hazard because it is toxic to humans and animals and can cause serious health problems. Additionally, As-contaminated soil can limit plant growth and reduce crop yields, leading to economic losses for farmers. So, decreasing metal/metalloid solubility in soil by synthetic and organic amendments leads to better crop productivity on contaminated soils. The current study aimed to evaluate farmyard manure (FYM)-mediated changes in soil arsenic (As) behavior, and subsequent effects on achene yield of sunflower. Treatment plan comprised of two As levels, i.e., As-60 (60 mg kg-1) and As-120 (120 mg kg-1), four FYM levels (0, 20, 35, and 50 g kg-1), three textural types (sandy, loamy and clayey), and replicated thrice. Seven As fractions including water soluble-As (WS-As), labile-As (L-As), calcium-bound As (Ca-As), aluminum-bound As (Al-As), iron-bound As (Fe-As), organic-matter-bound As (OM-As), and residual-As (R-As) were determined which differed significantly (P ≤ 0.05) with FYM and soil texture. FYM supplementation decreased WS-As, L-As, Ca-As, and Al-As while increased Fe-As, OM-As, and R-As. The immobilizing effect of FYM increased with increasing its rate of application, and maximum effect was found in clayey soil. As speciation in soil also significantly (P ≤ 0.05) affected by FYM and soil texture, with a reduction in arsenate while increase in arsenite, mono-methyl arsenate, and di-methyl arsenate with increasing the rate of FYM supplementation. Bioaccumulation factor reduced with FYM addition, and highest reduction of 38.65 and 42.13% in sandy, 34.24 and 36.26% in loamy while 29.16 and 35.10% in clayey soils at As-60 and As-120, respectively, by 50 g kg-1 FYM compared with respective As treatments without FYM. As accumulation in plant parts was significantly (P ≤ 0.05) reduced by FYM with the subsequent improvement in achene yield.

16.
Food Res Int ; 172: 113111, 2023 10.
Article in English | MEDLINE | ID: mdl-37689841

ABSTRACT

Maltogenic α-amylase (MA) are commercially used in the baking industry to retard starch retrogradation. However, whether MA can be used to modify rice flour during the fermentation process to improve the quality of rice flour remains unclear. In this study, MA was introduced during rice cake (RC) processing, and the modification effect and underlying mechanism were explored. Mn showed a decreasing trend except for 4.0 × 10-3 U/g sample. Chain length distribution data showed that MA effectively hydrolyzed long chains in amylopectin and increased the concentration of amylopectin chain length with a degree of polymerization of ≤ 9. High-performance liquid chromatography results suggested that the maltose content increased to 3.14% at an MA concentration of 9.5 × 10-3 U/g, which affected the fermentation effect of MA-treated RC. MA effectively reduced the viscosity of RC, and the gelatinization enthalpy of RC changed to 0.835 mJ/mg. MA also reduced the hardness and chewiness of RC after storage for 7 d. Moreover, rapidly digestible starch and slowly digestible starch contents of MA-treated RC decreased and increased, respectively, and resistant starch contents were remained unchanged. These results indicate that MA exerts a significant and effective antiretrogradation effect on RC. Combining the above results with sensory evaluation findings, an MA concentration of 4.0 × 10-3 U/g was the best supplemental concentration for obtaining RC with better edible quality. These findings suggest that MA treatment to rice flour during the fermentation process not only preserved the edible quality of RC but also retarded its retrogradation, thus, providing a novel processing method for the industrial production of RC.


Subject(s)
Oryza , Amylopectin , Dietary Supplements , Starch , alpha-Amylases
17.
Environ Monit Assess ; 195(8): 1007, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37515672

ABSTRACT

Land elevation exerts a significant influence on soil fertility through affecting macro and micro climatic conditions and geomorphological processes. To evaluate the soil fertility at different elevation classes, namely 1600-2000, 2000-2400, 2400-2800, and > 2800 m, 350 surface soil samples (0-30 cm) were collected from the agricultural lands of northwestern Iran. Soil properties, including soil texture, calcium carbonate (CaCO3), pH, electrical conductivity (EC), organic matter (OM), and soil macronutrients (TN, P, and K) and micronutrients (Fe, Mn, Zn, and Cu), were measured. Finally, the interpretation and classification of the soil samples were made using the nutritional value index (NIV). The comparison of the NIV index based on elevation changes showed that the Gomez method classifies the soil properties in an optimal order as evidenced by its tendency towards the center of the data. However, the Common method is more consistent with the observed trend. After classifying the NIV index using the Common method, it was determined that CaCO3 and soil salinity are not the limiting factor for soil fertility in different elevation classes. However, in all elevations, high pH, low OM at elevations > 2800 m, total nitrogen (TN), available phosphorous (AP), and micronutrients deficiencies, except Zn at the elevation of 1600-2000 m, are the main limiting factors for soil fertility of agricultural lands. The results provide further insight into the elevation-based land evaluation and may supports grower's decision on nutrient management and crop selection strategies.


Subject(s)
Environmental Monitoring , Soil , Soil/chemistry , Iran , Micronutrients/analysis , Agriculture , Phosphorus/analysis , Metals/analysis , Calcium Carbonate/analysis
18.
Meat Sci ; 204: 109254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37354834

ABSTRACT

This study evaluates the characteristics of n-3-enriched meat spread that is in development for consumption by elderly individuals. Herein, flaxseed oil was used as a source of n-3 fatty acid, and macro- and nano-sized flaxseed oil emulsions (FOE) were prepared for the fabrication of meat spreads. As the level of FOE was increased in the meat spreads, significant increases in the levels of omega-3 fatty acids (α-linolenic acid) were observed. Emulsion stability and cooking loss were also improved in meat spreads formulated with FOE compared with those the control. In particular, the addition of FOE generated softer and less chewy meat, owing to its lower melting point and rheological properties. However, the high content of unsaturated fatty acids in the FOE-containing meat spreads increased their susceptibility to lipid oxidation meat. These findings indicate that FOE, particularly macro-sized FOE, has the potential for use in n-3 fatty acid enriched meat products that are intended for consumption by elderly individuals but need to be evaluated for their impacts on shelf-life and sensory quality.


Subject(s)
Fatty Acids, Omega-3 , Meat Products , Humans , Aged , Linseed Oil/chemistry , Fatty Acids, Omega-3/chemistry , Meat/analysis , Fatty Acids, Unsaturated , Meat Products/analysis
19.
Plant Dis ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37294154

ABSTRACT

Aralia cordata var. continentalis (Kitag), commonly known as Japanese spikenard, is an upright herbaceous perennial medicinal plant effective in relieving pain. It is also consumed as a leafy vegetable. Leaf spots and blight symptoms on A. cordata resulting in defoliation were observed in July 2021 from a research field with a disease incidence of nearly 40-50% from 80 plants in Yeongju, Korea. Brown spots with chlorotic halos first appear on the upper leaf surface (Fig. 1A). In the later stage, spots enlarge and coalesce; resulting in the leaves to dry-off (Fig. 1B). To isolate the causal agent, small pieces of diseased leaves displaying the lesion were surface-sterilized by 70% ethanol for 30 s and rinsed twice with sterile distilled water (SDW). Later, the tissues were crushed in a sterile 2.0-ml Eppendorf tube with a rubber pestle in SDW. The suspension was serially diluted and spread on potato dextrose agar (PDA) medium, incubated at 25°C for 3 days. A total of 3 isolates were obtained from the infected leaves. Pure cultures were obtained by the monosporic culture technique (Choi et al. 1999). After 2 to 3 days of incubation with a 12-h photoperiod, the fungus initially produced gray mold colonies in olive color, and the edges of the mold appeared white with a velvety texture after 20 days (Fig. 1C). Microscopic observations revealed small, single-celled, rounded, and pointed conidia that measured 6.67 ± 0.23 µm × 4.18 ± 0.12 µm (length × width) (n=40 spores) (Fig. 1D). On the basis of its morphology, the causal organism was identified as Cladosporium cladosporioides (Torres et al. 2017). For molecular identification, pure colonies of three single-spore isolates were used for DNA extraction. A fragment of the ITS, ACT, and TEF1-α were amplified using the primers ITS1/ITS4 (Zarrin et al. 2016), ACT-512F/ACT-783R, and EF1-728F/EF1-986R, respectively, by PCR (Carbone et al. 1999). The DNA sequences from all three isolates (GYUN-10727, GYUN-10776, and GYUN-10777) were identical. The resulting ITS (ON005144), ACT (ON014518), and TEF1-α (OQ286396) sequences from the representative isolate GYUN-10727 were 99 to 100% identical to the C. cladosporioides (ITS: KX664404, MF077224; ACT: HM148509; TEF1-α: HM148268, HM148266). The phylogenetic dendrogram was constructed from the comparative analysis of ITS, ACT, and TEF1-α gene sequences, showing the relationship between Cladosporium cladosporioides and related Cladosporium species (Fig. 2). The isolate GYUN-10727 has been deposited in Korean Agricultural Culture Collection (KACC 410009), and used as a representative strain in this study. For the pathogenicity test, healthy fresh leaves (3 leaves per plant) of 3-months-old A. cordata plants in pots were spray inoculated with conidial suspensions (1 × 104 conidia/mL) of GYUN-10727, which was obtained from a 7-day-old PDA culture. Leaves sprayed with SDW were considered as control. After 15 days of incubation at 25°C ± 5°C under greenhouse conditions, necrotic lesions were observed on the inoculated A. cordata leaves, while control leaves did not develop any disease symptoms. The experiment was performed twice with three replicates (pots) per treatment. The pathogen was re-isolated from the symptomatic A. cordata leaves, but not from control plants, to fulfill Koch's postulates. The re-isolated pathogen was identified by PCR. Cladosporium cladosporioides has been reported to cause diseases in sweet pepper (Krasnow et al. 2022) and garden peas (Gubler et al. 1999). To our knowledge, this is the first report of C. cladosporioides causing leaf spots of A. cordata in Korea. The identification of this pathogen will help develop strategies to efficiently control the disease in A. cordata.

20.
J Food Sci ; 88(7): 2919-2932, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37282728

ABSTRACT

In this study, the effects of coating quince slices with CaCl2 and pectin (C + P) followed by drying with microwave (MWD-C + P) or with hot air (HAD-C + P) were investigated to determine the physicochemical, techno-functional, textural, and volatile components of dried quince slices. A Taguchi orthogonal experimental design was set up with 18 points (L18 ), and the best conditions for drying were obtained using signal/noise ratio method. Coating quince slices with C + P and then drying with microwave at 450 W displayed the higher results compared to other points in terms of color, total phenolic, antioxidant activity, antimicrobial activity, and water holding capacity. MWD-C + P application dramatically changed the textural properties of dried quince slices in terms of hardness, gumminess, and chewiness. Moreover, MWD, lasted 12-15 min, was superior to HAD in the context of drying time. Ultrasonication as a pretreatment had no positive impact on dried products. GC-MS analyses revealed that MWD-C + P had positive effects on dried quince slices in terms of ethyl hexanoate and octanoic acid. However, MWD-C + P application triggered the formation of furfural in dried products.


Subject(s)
Pectins , Rosaceae , Pectins/chemistry , Rosaceae/chemistry , Microwaves , Antioxidants/pharmacology , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL