Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Drug Des Devel Ther ; 18: 719-729, 2024.
Article in English | MEDLINE | ID: mdl-38476205

ABSTRACT

Background: Capsaicin is the main compound found in chili pepper and has complex pharmacologic effects. This study aimed to elucidate the mechanism of the effect of capsaicin on physiological processes by analyzing changes in metabolites and metabolic pathways. Methods: Female C57BL/6 mice were divided into two groups(n = 10/group) and fed with capsaicin-soybean oil solution(group T) or soybean oil(group C) for 6 weeks. Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) based metabolomics was undertaken to assess plasma and skin metabolic profile changes and identify differential metabolites through multivariate analysis. Results: According to the OPLS-DA score plots, the plasma and skin metabolic profiles in the group T and group C were significantly separated. In plasma, 38 significant differential metabolites were identified. KEGG pathway enrichment analysis revealed that the most significant plasma metabolic pathways included pyruvate metabolism and ABC transporters. In skin, seven significant differential metabolites were found. Four metabolic pathways with p values < 0.05 were detected, including sphingolipid metabolism, sphingolipid signaling pathway, apoptosis, and necroptosis. Conclusion: These findings will provide metabolomic insights to assess the physiological functions of capsaicin and contribute to a better understanding of the potential effects of a capsaicin-rich diet on health.


Subject(s)
Capsaicin , Soybean Oil , Mice , Animals , Female , Chromatography, High Pressure Liquid/methods , Mice, Inbred C57BL , Metabolomics/methods , Metabolome , Sphingolipids , Biomarkers/metabolism
2.
Article in English | MEDLINE | ID: mdl-38310833

ABSTRACT

Huanghou antidiarrhea dropping pills (HADP) is an efficient Chinese patent drug that is clinically used to treat diarrhea. However, its functional materials remain unclear due to the characteristics of traditional Chinese medicine, which is a multi-component and multi-target complex system. In this study, we investigated the intrinsic chemical components and combined with in vivo metabolism to reveal the functional material basis of HADP. Spectral behavior (accurate molecular weight and secondary fragmentation) and chromatographic behavior (retention time) were key criterions that throughout the whole research of components identification, prototypes screening, and tissue distribution. Mass defect filter (MDF), characteristic product ion filter (PIF), and neutral loss filter (NLF) were other three criterions for metabolites searching. Consequently, a total of 102 components in HADP, including alkaloids, lignans, lactones, gingerols, and alkaloid complexes were identified or tentatively characterized. About 39 metabolites that related to 37 prototypes were calculated and matched in bio-samples. Among them, 14 prototypes and 18 metabolites were detected distribution in colon, liver, heart, spleen, lung or kidney. This study provides a systematic investigation into the metabolism of HADP and offers effective analytical strategies for the characterization of compounds and metabolites in Chinese patent drugs.


Subject(s)
Drugs, Chinese Herbal , Metabolome , Chromatography, High Pressure Liquid/methods , Medicine, Chinese Traditional , Liver/metabolism , Drugs, Chinese Herbal/chemistry
3.
Chem Biodivers ; 21(3): e202301474, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215210

ABSTRACT

The present study shows the untargeted metabolite profiling and in vitro antibacterial, cytotoxic, and nitric oxide (NO) inhibitory activities of the methanolic leaves extract (MLE) and methanolic stem extract (MSE) of Erythroxylum mexicanum, as well as the fractions from MSE. Using ultra-high performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS), a total of 70 metabolites were identified; mainly alkaloids in the MLE, while the MSE showed a high abundance of diterpenoids. The MSE fractions exhibited differential activity against Gram-positive bacteria. Notably, the hexane fraction (HSF) against Streptococcus pyogenes ATCC 19615 (MIC=62.5 µg/mL) exhibited a bactericidal effect. The MSE fractions exhibited cytotoxicity against all cancer cell lines tested, with selectivity towards them compared to a noncancerous cell line. Particularly, the HSF and chloroform fraction (CSF) showed the highest cytotoxicity against prostate cancer (PC-3) cells, with IC50 values of 19.9 and 18.1 µg/mL and selectivity indexes of 3.8 and 4.2, respectively. Both the HSF and ethyl acetate (EASF) fractions of the MSE inhibited NO production in RAW 264.7 macrophages, with NO production percentages of 50.0 % and 51.7 %, respectively, at a concentration of 30 µg/mL. These results indicated that E. mexicanum can be a source of antibacterial, cytotoxic, and anti-inflammatory metabolites.


Subject(s)
Antineoplastic Agents , Tandem Mass Spectrometry , Male , Humans , Nitric Oxide , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Methanol/chemistry
4.
Biomed Chromatogr ; 38(2): e5784, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009806

ABSTRACT

Yinchenhao decoction (YCHD), a famous traditional Chinese medicine formula, has been applied for relieving jaundice in China for more than 1800 years. However, the material basis for YCHD is still unclear, and the chemical composition and metabolism characteristic in vivo are undefined, making the potential effective constituents and mechanism of action unclear. Herein, an ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-based strategy was applied for the chemical profiling of YCHD, as well as their in vivo prototypes and global metabolites that defined the metabolome. Our results showed that a total of 139 chemicals were identified in YCHD, including 28 organic acids, 12 monoterpenoids, five diterpenes, three triterpenoids, 17 iridoids, 23 anthraquinones, 26 flavonoids, four coumarins and 21 other types. Moreover, 58 prototypes and 175 metabolites were found in rat biological samples after oral administration of YCHD; those distributed in plasma, liver, intestine and feces were suggested to be potentially effective substances. Oxidation, hydrogenation, decarboxylation and conjugations with methyl, sulfate and glucuronate were considered as the predominant metabolic pathways in vivo. In conclusion, this is a systemic study of chemical constituents and in vivo metabolome profiles of YCHD, contributing to the material basis understanding and further mechanism research.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Rats , Animals , Medicine, Chinese Traditional/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Liver/chemistry
5.
J Ethnopharmacol ; 321: 117518, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042385

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jinfu'an Decoction (JFAD) is a traditional Chinese decoction used in lung cancer treatment to improve patient quality of life and survival. Previous research has established that JFAD has a significant therapeutic effect on non-small cell lung cancer (NSCLC), although the underlying molecular mechanisms have not been largely underexplored. AIM OF THE STUDY: We used network pharmacology to identify the putative active ingredients of JFAD and conducted experimental studies to determine the potential molecular mechanism of JFAD in NSCLC treatment. MATERIALS AND METHODS: The herbal components in JFAD-containing serum were identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), and targets associated with the anti-lung cancer metastasis effects of JFAD were retrieved from various databases. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Next, the protein-protein interactions network and the "JFAD-Chemical Component-Target-KEGG Pathway" network were constructed. The network pharmacology findings were confirmed by in vitro and in vivo experiments. In vitro experiments were conducted to assess cell viability by CCK8 assay, cell cycle analysis by propidium iodide (PI) assay, and migration and invasion ability of cells by the transwell assay. In vivo experiments were performed to assess the efficacy of JFAD on the tumor by observing the growth of transplanted tumor models in nude mice and evaluated by in vivo bioluminescence imaging. Moreover, we assessed the effect of JFAD on the PI3K/Akt signaling pathway and proteins of Lumican, p120ctn, and specific RhoGTP enzyme family members (RhoA, Rac1, and RhoC) by Western Blot and immunohistochemistry. RESULTS: 32 herbal components were identified in the JFAD-containing serum, which potentially acted on 229 targets related to lung cancer metastasis. Network pharmacology results suggested that JFAD may treat lung cancer metastasis by targeting the PI3K/Akt pathway via regulating multiple core targets. Our experiments showed that JFAD suppressed the proliferation of A549 cells in vitro, induced cell cycle arrest, and reduced the migration and invasion ability of A549 cells. Our in vivo study revealed that JFAD inhibited tumor growth in a nude mouse model. Additionally, we found that JFAD could downregulate the expression of the PI3K/Akt pathway and affect the expression of Lumican, p120ctn, and specific RhoGTPase family members. CONCLUSIONS: In conclusion, through network pharmacology, we have unveiled the underlying mechanisms that link the various components, targets, and pathways influenced by JFAD in the context of lung cancer metastasis. Our experimental results suggest that the oncostatic effects of JFAD may be achieved by upregulating the expression of Lumican/p120ctn and downregulating the levels of specific RhoGTPase family members, which in turn block the PI3K/Akt signaling pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lumican , Delta Catenin , Mice, Nude , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quality of Life , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation
6.
Talanta ; 270: 125583, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38141464

ABSTRACT

In this study, a method for the screening and identification of α-glucosidase inhibitors from natural products was developed. The α-glucosidase was immobilized on carboxyl terminated magnetic beads to form a ligand fishing system to screen the potential inhibitors. A total of 9 compounds were fishing out from the crude Houttuynia cordata Thunb. extract. Meanwhile, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) was used for the identification of the chemical structures, including 3 chlorogenic acid isomers, 2 flavone C-glycosides and 4 flavone O-glycosides. The combination of enzyme immobilization magnetic beads and UHPLC-QTOF MS could be used for the screening of bioactive multi-components from herbs with appropriate targets. Taking the advantage of the specificity of enzyme binding and the convenience of magnetic separation, the method has great potential for rapid screening of α-glucosidase inhibitors from complicated natural product extracts.


Subject(s)
Flavones , Houttuynia , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/chemistry , Ligands , Chromatography, High Pressure Liquid/methods , Glycosides/chemistry , Magnetic Phenomena
7.
Food Chem ; 429: 136918, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37516049

ABSTRACT

Yerba mate, a popular plant consumed mainly as an infusion, possesses nutritional and medicinal properties attributed to its secondary metabolites. This study aimed to develop strategies to elucidate the phenolic composition of yerba mate samples from Brazil, Argentina, Uruguay, and Paraguay. Optimization of ultrasonic-assisted extraction (UAE) was performed, and the extracted compounds were characterized using ultra-high-pressure liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UHPLC-QTOF-MS), molecular fluorescence and high-pressure liquid chromatography with diode-array detection (HPLC-DAD). Chemometric analysis, including parallel factor analysis (PARAFAC) and principal component analysis (PCA) explored metabolite profiles and identify patterns. PARAFAC modelling of the molecular fluorescence results revealed higher pigment content in Brazilian samples, while other countries' samples exhibited higher phenolic content. PCA modeling of HPLC-DAD results indicated that cultivated yerba mate contained higher chlorogenic acids levels, and samples from Argentina, Paraguay, and Uruguay exhibited higher concentrations of chlorogenic acids and flavonoids.


Subject(s)
Ilex paraguariensis , Ilex paraguariensis/chemistry , Chemometrics , Phenols/analysis , Flavonoids/analysis , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods
8.
J Ethnopharmacol ; 312: 116526, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37088234

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jian-Pi-Yi-Shen (JPYS) is a herbal decoction being used to relieve the symptoms of chronic kidney disease (CKD) and its complications, including anemia, for over twenty years. Nonetheless, it is unclear how JPYS influences renal anemia and iron metabolism. AIM OF THE STUDY: An analysis of network pharmacology, chemical profiling, and in vivo experiments was conducted to identify the impact of JPYS on JAK2-STAT3 pathway and iron utilization in renal anemia and CKD. MATERIALS AND METHODS: The chemical properties of JPYS and its exposed ingredients were detected in vivo. And based on the aforesaid chemical compounds, the potential targets and signaling pathways of JPYS for renal anemia treatment were predicted by network pharmacology. Afterward, an adenine-feeding animal model of CKD-related anemia was developed to verify the mechanism by which JPYS modulates iron recycling to treat renal anemia. Renal injury was estimated by serum creatinine (Scr), blood urea nitrogen (BUN), histopathological examinations and fibrosis degree. Western blot, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry approaches were utilized to assess the levels of JAK2, STAT3 and iron metabolism-related factors. RESULTS: There were 164 active ingredients identified in JPYS, including prototypes and metabolites in vivo were identified in JPYS, and 21 core targets were found through network pharmacology based on topological characteristics. Combined with the core targets and pathway enrichment analysis, the majority of the candidate targets were associated with the JAK2-STAT3 signaling pathways. Experimental results indicated that JPYS treatment significantly decreased the expression of BUN and Scr, restored renal pathological damage, down-regulated fibrosis degree, and improved hematological parameters such as red blood cell, hemoglobin and hematocrit in CKD rats. Furthermore, JPYS significantly restored iron metabolism from dysregulation by increasing the levels of iron and ferritin in the serum, inhibiting the production of hepcidin in liver and serum, and regulating transferrin receptor 1 in bone marrow. Meanwhile, the expression of JAK2 and STAT3 was suppressed by JPYS treatment. CONCLUSIONS: Based on these results, JPYS reduces hepcidin levels by inhibiting the activation of JAK2-STAT3 signaling, thereby protecting against iron deficiency anemia.


Subject(s)
Anemia , Renal Insufficiency, Chronic , Rats , Animals , Hepcidins/metabolism , Adenine , Anemia/drug therapy , Iron , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Fibrosis
9.
Anal Bioanal Chem ; 415(14): 2677-2692, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058167

ABSTRACT

α-Glucosidase inhibitors in natural products are one of the promising drugs for the treatment of type 2 diabetes. However, due to the complexity of the matrix, it is challenging to comprehensibly clarify the specific pharmacodynamic substances. In this study, a novel high-throughput inhibitor screening strategy was established based on covalent binding of α-glucosidase on chitosan-functionalized multi-walled carbon nanotubes coupled with high-resolution mass spectrometry. The synthesized MWCNTs@CS@GA@α-Glu was characterized by TEM, SEM, FTIR, Raman, and TG. Performance studies showed that the microreactor exhibited stronger thermostability and pH tolerance than that of the free one while maintaining its inherent catalytic activity. Feasibility study applying a model mixture of known α-glucosidase ligand and non-ligands indicated the selectivity and specificity of the system. By integrating ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-QTOF-MS) with ion mobility mass spectrometry (IMS), 15 ligands were obtained and tentatively identified from Tribulus terrestris L., including 8 steroidal saponins, 4 flavonoids, and 3 alkaloids. These inhibitors were further validated by in vivo experiments and molecular docking simulation.


Subject(s)
Chitosan , Diabetes Mellitus, Type 2 , Nanotubes, Carbon , Tribulus , alpha-Glucosidases/metabolism , Chitosan/chemistry , Chromatography, High Pressure Liquid/methods , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Docking Simulation , Nanotubes, Carbon/chemistry , Plant Extracts/chemistry , Tribulus/chemistry , Tribulus/metabolism
10.
Article in English | MEDLINE | ID: mdl-36753840

ABSTRACT

Pien-Tze-Huang (PTH) is a well-known traditional Chinese patent medicine with excellent liver-protection effect. However, the mechanism of hepatoprotective action has not yet been entirely elucidated. The aim of this study was to investigate the mechanism of protective effect of PTH on alcohol-induced liver injury in rats using cytokine analysis and untargeted metabolomics approaches. An alcoholic liver disease (ALD) model with SD rats was established, and PTH was administered according to the prescribed dose. The hepatoprotective effect of PTH was evaluated by pathological observation of liver tissue and changes in biochemical index activity and cytokines in serum. Serum samples were analyzed by ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS), and differentially expressed metabolites were screened by multivariate statistical analysis. KEGG combined with metabolic pathway analysis were used to evaluate the underlying metabolic pathways. Results showed liver histopathology injury was attenuated. The levels of IL-6, TNF-α and NF-κB were significantly decreased in rats intervened with PTH groups, suggesting that it may alleviate inflammation via suppressing the inflammatory cytokines signaling pathway. Eighty differentially expressed metabolites were found and identified. Pathway analysis indicated that the hepatoprotective effects of PTH occurred through the regulation of inflammatory cytokines signaling pathway, primary bile acid biosynthesis, vitamin B6 metabolism pathway, cholesterol metabolism, and tyrosine metabolism. PTH showed favorable hepatoprotective effect through multiple pathways. This study has great importance in fully revealing the mechanism of hepatoprotective action and can help improve the clinical application of PTH.


Subject(s)
Cytokines , Drugs, Chinese Herbal , Rats , Animals , Cytokines/metabolism , Rats, Sprague-Dawley , Drugs, Chinese Herbal/pharmacology , Liver/metabolism , Metabolomics/methods
11.
Medicina (Kaunas) ; 58(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36556921

ABSTRACT

Background and Objectives: Fibrotic lung disease is one of the main complications of many medical conditions. Therefore, the use of anti-fibrotic agents may provide a chance to prevent, or at least modify, such complication. The aim of this study was to evaluate the protective pulmonary anti-fibrotic and anti-inflammatory effects of Dinebra retroflexa. Materials and methods: Dinebra retroflexa methanolic extract and its synthesized silver nanoparticles were tested on bleomycin-induced pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/5 mL/kg-Saline) as a supposed model for induced lung fibrosis. The weed evaluation was performed by intratracheal instillation of Dinebra retroflexa methanolic extract and its silver nanoparticles (35 mg/100 mL/kg-DMSO, single dose). Results: The results showed that both Dinebra retroflexa methanolic extract and its silver nanoparticles had a significant pulmonary fibrosis retraction potential, with Ashcroft scores of three and one, respectively, and degrees of collagen deposition reduction of 33.8 and 46.1%, respectively. High-resolution UHPLC/Q-TOF-MS/MS metabolic profiling and colorimetrically polyphenolic quantification were performed for further confirmation and explanation of the represented effects. Such activity was believed to be due to the tentative identification of twenty-seven flavonoids and one phenolic acid along with a phenolic content of 57.8 mg/gm (gallic acid equivalent) and flavonoid content of 22.5 mg/gm (quercetin equivalent). Conclusion: Dinebra retroflexa may be considered as a promising anti-fibrotic agent for people at high risk of complicated lung fibrosis. The results proved that further clinical trials would be recommended to confirm the proposed findings.


Subject(s)
Metal Nanoparticles , Pulmonary Fibrosis , Humans , Rats , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Bleomycin/adverse effects , Metal Nanoparticles/therapeutic use , Silver/pharmacology , Switzerland , Tandem Mass Spectrometry , Phytotherapy , Lung/pathology
12.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557948

ABSTRACT

In our continuous study for some African plants as a source for antitrypanosomally and cytotoxic active drugs, nine different plants belonging to the Crassulaceae family have been selected for the present study. Sedum sieboldii leaves extract showed an antitrypanosomal activity against Trypanosoma brucei with an IC50 value of 8.5 µg/mL. In addition, they have cytotoxic activities against (HCT-116), (HEPG-2) and (MCF-7), with IC50 values of 28.18 ± 0.24, 22.05 ± 0.66, and 26.47 ± 0.85 µg/mL, respectively. Furthermore, the extract displayed inhibition against Topoisomerase-1 with an IC50 value of 1.31 µg/mL. It showed the highest phenolics and flavonoids content among the other plants' extracts. In order to identify the secondary metabolites which may be responsible for such activities, profiling of the polar secondary metabolites of S. sieboldii extract via Ultra-Performance Liquid Chromatography coupled to High-Resolution QTOF-MS operated in negative and positive ionization modes, which revealed the presence of 46 metabolites, including flavonoids, phenolic acids, anthocyanidins, coumarin, and other metabolites.


Subject(s)
Antineoplastic Agents , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Antineoplastic Agents/pharmacology , Flavonoids/chemistry , African People
13.
Pharmaceutics ; 14(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432659

ABSTRACT

Various parts of Terminalia brownii (Fresen) are used in Sudanese traditional medicine against fungal infections. The present study aimed to verify these uses by investigating the anti-Candida activity and phytochemistry of T. brownii extracts. Established agar diffusion and microplate dilution methods were used for the antifungal screenings. HPLC-DAD and UHPLC/QTOF-MS were used for the chemical fingerprinting of extracts and for determination of molecular masses. Large inhibition zones and MIC values of 312 µg/mL were obtained with acetone, ethyl acetate and methanol extracts of the leaves and acetone and methanol extracts of the roots. In addition, decoctions and macerations of the leaves and stem bark showed good activity. Sixty compounds were identified from a leaf ethyl acetate extract, showing good antifungal activity. Di-, tri- and tetra-gallotannins, chebulinic acid (eutannin) and ellagitannins, including an isomer of methyl-(S)-flavogallonate, terflavin B and corilagin, were detected in T. brownii leaves for the first time. In addition, genipin, luteolin-7-O-glucoside, apigenin, kaempferol-4'-sulfate, myricetin-3-rhamnoside and sericic acid were also characterized. Amongst the pure compounds present in T. brownii leaves, apigenin and ß-sitosterol gave the strongest growth inhibitory effects. From this study, it was evident that the leaf extracts of T. brownii have considerable anti-Candida activity with MIC values ranging from 312 to 2500 µg/mL.

14.
Molecules ; 27(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364395

ABSTRACT

Opuntia ficus-indica biological effects are attributed to several bioactive metabolites. However, these actions could be altered in vivo by biotransformation reactions mainly via gut microbiota. This study assessed gut microbiota effect on the biotransformation of O. ficus-indica metabolites both in vitro and ex vivo. Two-time aliquots (0.5 and 24 h) from the in vitro assay were harvested post incubation of O. ficus-indica methanol extract with microbial consortium, while untreated and treated samples with fecal bacterial culture from the ex vivo assay were prepared. Metabolites were analyzed using UHPLC-QTOF-MS, with flavonoid glycosides completely hydrolyzed in vitro at 24 h being converted to two major metabolites, 3-(4-hydroxyphenyl)propanoic acid and phloroglucinol, concurrent with an increase in the gallic acid level. In case of the ex vivo assay, detected flavonoid glycosides in untreated sample were completely absent from treated counterpart with few flavonoid aglycones and 3-(4-hydroxyphenyl)propanoic acid in parallel to an increase in piscidic acid. In both assays, fatty and organic acids were completely hydrolyzed being used as energy units for bacterial growth. Chemometric tools were employed revealing malic and (iso)citric acids as the main discriminating metabolites in vitro showing an increased abundance at 0.5 h, whereas in ex vivo assay, (iso)citric, aconitic and mesaconic acids showed an increase at untreated sample. Piscidic acid was a significant marker for the ex vivo treated sample. DPPH, ORAC and FRAP assays were further employed to determine whether these changes could be associated with changes in antioxidant activity, and all assays showed a decline in antioxidant potential post biotransformation.


Subject(s)
Gastrointestinal Microbiome , Opuntia , Antioxidants/pharmacology , Fruit , Plant Extracts/pharmacology , Flavonoids , Glycosides , Biotransformation
15.
J Mass Spectrom ; 57(8): e4878, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36065819

ABSTRACT

The evolution of the regulatory framework for medical devices in the EU (Reg 2017/745) has opened the study of complex systems emerging properties. This makes necessary to identify new analytical approaches able of characterizing complex natural substrates as completely as possible. Therefore, omics approaches and advanced analytical methods for the determination of metabolite classes appear to be at the forefront to meet this need. In this perspective, a new approach based on the suspect screening was developed to detect gallotannins. Gallotannins are a class of phenols with a polymeric nature; thus, there are no pure analytical standards available for all possible structures and their quali-quantitative determination in complex natural substrates can be a challenge. A new UHPLC-qToF method was developed and used to create an "in-house tannin database" with a dual purpose: (1) as a classic list of suspects and (2) to identify core fragments common to gallotannins to have another list of putative suspects based on the common fragment. The method was validated. The application of the method to a "system of molecules" extracted from the leaves of Hamamelis virginiana L. (Witch-hazel) allowed to the characterization of a total of 29 phenols by a suspect screening approach. Therefore, 15 gallotannins were putatively annotated while another 3 were confidently identified. All the gallotannins were semiquantified according to external regression curves of gallic acid and hamamelitannin based on core fragments at m/z 125.0244 and m/z 169.0142, the building blocks of the polymers. This new method provides a practical fit-to-purpose approach for the quali-quantitative screening evaluation of gallotannins, useful for creating multivariate control charts applicable in process development of complex natural systems or in quality control. The approach is innovative, and after specific checks, it can in principle be suitable for metabolomic fingerprint analysis of gallotannins among witch-hazel extract (WHE) samples.


Subject(s)
Hamamelis , Hydrolyzable Tannins , Chromatography, High Pressure Liquid/methods , Hamamelis/chemistry , Hydrolyzable Tannins/chemistry , Metabolomics , Phenols/chemistry
16.
J Pharm Biomed Anal ; 218: 114842, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35659656

ABSTRACT

Corni Fructus (CF), used for thousands of years in Asia as food and medicine, has different therapeutic effects before and after processing. In the past work, the quality assessment of Corni Fructus focused on the limited chemical compounds and rarely correlated external properties, such as color. The traditional sensory assessment relies partly on human eyes, which is quick but lacks objectivity. On a Shimadzu LC-20AD liquid chromatograph system equipped with a diode-array detector (DAD), we determined six major compounds (gallic acid, 5-hydroxymethyl-2-furaldehyde, morroniside, loganin, sweroside, and cornuside I). The extract was analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) after the solid-phase extraction (SPE) step. Totally 58 compounds in raw and processed Corni Fructus were identified in negative and positive ion modes according to tandem mass spectrometry (MS/MS) fragments. Iridoids, carboxylic acids, tannins, flavonoids, triterpenes, fatty acids, saccharides, phospholipids, polysaccharide, amino acid, amide, furan, catechol, aldehyde, fatty alcohol and vitamin were included. A multivariate statistical analysis based on UHPLC-QTOF-MS filtered 17 differential compounds between raw and processed products. The CM-5 colorimeter was applied for digitizing surface and powder color. The contents of gallic acid, morroniside, loganin, cornuside I, and sweroside significantly correlated with color parameters in raw Corni Fructus, particularly adp* and bdp* , but not in processed products, according to Spearman correlation analysis. MS peak area of four compounds in raw products correlated significantly with color parameters Ldp* , adp* , bdp* , Lpd* , apd* , bpd* , respectively, while three compounds in processed products with Lpd* , apd* , bpd* . It revealed the relationship between compounds and color of Corni Fructus and the crucial compounds to color. In this study, we successfully developed a method for comprehensive quality evaluation of Corni Fructus that combines HPLC, UHPLC-QTOF-MS, and color determination.


Subject(s)
Cornus , Drugs, Chinese Herbal , Humans , Chromatography, High Pressure Liquid/methods , Cornus/chemistry , Drugs, Chinese Herbal/chemistry , Gallic Acid/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods
17.
J Pharm Biomed Anal ; 216: 114811, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35576890

ABSTRACT

Tripterygium wilfordii genus preparations (TWGP) are widely used in traditional Chinese medicines for the treatment of autoimmune diseases and immune diseases with definite therapeutic effects but high toxicity. The aim of this study is to identify and compare chemical compounds in three types of commercial TWGP using UHPLC-QTOF-MS/MS and molecular networking (MN) technology. First, the mass fragmentation pathways of 10 compounds were investigated, which included two sesquiterpene alkaloids, four diterpenoids, and four triterpenoids. The chemical compounds were then identified using UHPLC-QTOF-MS/MS and a conventional database. Following that, molecular network technology was used to further identify the GNPS platform. Finally, metabonomic data analysis was used to compare 92 commercial TWGP samples from 13 manufacturers. A total of 103 compounds were identified, with the molecular network detecting 40 of them. Moreover, the quality of commercial Tripterygium glycoside tablets varies greatly and 26 compounds, including triptolide, wilforine, wilforgine, and demethylzeylasteral, were discovered to be the main differential compounds in tripterygium glycosides tablets. This was the first time MN technology was used for compound analysis in TWGP, laying the foundation for classifying effective and toxic substances and TWGP quality control.


Subject(s)
Drugs, Chinese Herbal , Tripterygium , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Glycosides , Tablets/chemistry , Tandem Mass Spectrometry , Tripterygium/chemistry
18.
Chin Med ; 17(1): 62, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637516

ABSTRACT

BACKGROUND: Shuang Huang Lian (SHL) is a traditional Chinese medicine (TCM) formula made from Lonicerae Japonicae Flos, Forsythiae Fructus, and Scutellariae Radix. Despite the widespread use of SHL in clinical practice for treating upper respiratory tract infections (URTIs), the complete component fingerprint and the pharmacologically active components in the SHL formula remain unclear. The objective of this study was to develop an untargeted metabolomics method for component identification, quantitation, pattern recognition, and cross-comparison of various SHL preparation forms (i.e., granule, oral liquid, and tablet). METHODS: Ultra-high-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) together with bioinformatics were used for chemical profiling, identification, and quantitation of SHL. Multivariate data analyses such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to assess the correlations among the three SHL preparation forms and the reproducibility of the technical and biological replicates. RESULTS: A UHPLC-QTOF-MS/MS-based untargeted metabolomics method was developed and applied to analyze three SHL preparation forms, consisting of 178 to 216 molecular features. Among the 95 common molecular features from the three SHL preparation forms, quantitative analysis was performed using a single exogenous reference internal standard. Forty-seven of the 95 common molecular features have been identified using various databases. Among the 47 common components, there were 17 flavonoids, 7 oligopeptides, 5 terpenoids, 2 glycosides, 2 cyclohexanecarboxylic acids, 2 spiro compounds, 2 lipids, 2 glycosylglycerol derivatives, and 8 various compounds such as alkyl caffeate ester, aromatic ketone, benzaldehyde, benzodioxole, benzofuran, chalcone, hydroxycoumarin, and purine nucleoside. Five of the 47 common components were designated by the Chinese Pharmacopoeia as the quality markers of medicinal plants of SHL, and 15 were previously reported to have pharmacological activities. Distinct patterns of the three SHL preparation forms were observed in the PCA and PLS-DA plots. CONCLUSIONS: The developed method is reliable and reproducible, which is useful for the profiling, component identification, quantitation, quality assessment of various SHL preparation forms and may apply to the analysis of other TCM formulas.

19.
J Chromatogr A ; 1674: 463145, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35594798

ABSTRACT

A comprehensive chemical profiling of traditional Chinese medicine is the basic issue for further pharmacological research and quality assessment. To facilitate chemical identification and potential components discovery, the present study proposed an integrated identification strategy guided by a self-built component database constructed from literatures to carry out the global profiling of complex matrixes. Lanqin Oral Liquid was applied as example to validate the feasibility of this strategy. Based on LQL Component Database containing 710 compounds, modified MDF windows was established to extract the interested analogues, isoquinoline alkaloids, flavonoids and iridoid glycosides, according to their regular integral masses and mass defect. For compounds with characteristic substructures, such as quinic acids, crocins and some glycoside derivatives, the associated neutral losses and diagnostic fragment ions were collected to assist in profiling. Directly matching the m/z or formulas in database was proposed to components with limited regularity of accurate masses and substructures, like indole alkaloids, sesquiterpenes and some nucleosides. Eventually, 170 ions of 1038 precursor ions were identified or temporarily deduced, including 59 alkaloids, 36 flavonoids, 48 terpenoids, 24 organic acids and their derivatives, 2 oligosaccharides, and 1 lignans. Among them, 52 putative compounds were confirmed by chemical standards. The results indicated that the database-oriented identification strategy could locate potential components quickly and eliminate interfering ions, which have the potential for in-depth analysis of compounds.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Flavonoids/analysis , Ions/chemistry , Iridoid Glycosides/analysis , Medicine, Chinese Traditional , Tandem Mass Spectrometry/methods
20.
Biomed Chromatogr ; 36(8): e5392, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35491476

ABSTRACT

Yinqiao powder is a classic and effective prescription for the treatment of many kinds of pneumonia in China. To date, its chemical constituents have not been determined. A comprehensive identification of its chemical constituents provided a structural basis to discover the potential anti-pneumonia ingredients in Yinqiao powder. This paper developed an ultra-high-performance liquid chromatography (UHPLC) coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) analysis with diagnostic product ions and neutral loss filtering strategy and applied it for the comprehensive chemical profiling of Yinqiao powder, which simplified the structural elucidation of chemical constituents in Yinqiao powder. A total of 124 compounds, comprising 8 C6-C2 glucoside conjugates, 28 iridoid glycosides, 14 lignans, 21 phenylethanol glycosides, 20 triterpenoid saponins, 9 chlorogenic acids, and 24 flavonoids, were rapidly identified in Yinqiao powder, and 32 of these were characterized by comparing their MS/MS data and retention time with reference standards. The results indicated that UHPLC-QTOF-MS/MS method coupled with data filtering strategy was feasible and rational to identify the complex chemical constituents of Yinqiao powder, which would be conducive to discover the active ingredients of Yinqiao powder for the treatment of pneumonia and establish its quality standard.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Iridoid Glycosides/analysis , Powders , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL