Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.090
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Heliyon ; 10(7): e28736, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586342

ABSTRACT

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that seriously affects the life quality of patients. As a patent medicine of Chinese traditional medicine, YuXueBi capsule (YXBC) is widely used for treating RA with significant effects. However, its active compounds and therapeutic mechanisms are not fully illuminated, encumbering the satisfactory clinical application. In this study, we developed a method for identifying the chemical compounds of YXBC and the absorbed compounds into blood of rats using ultra performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) combined with UNIFI analysis software. A total of 58 compounds in YXBC were unambiguously or tentatively identified, 16 compounds from which were found in serum of rats after administration of YXBC. By network pharmacology, these prototype compounds identified in serum were predicted to regulate 30 main pathways (including HIF-1 signaling pathway, neuroactive ligand-receptor interaction, IL-17 signaling pathway, and so on) through 146 targets, resulting in promoting blood circulation and removing blood stasis, analgesia, and anti-inflammatory activities. This study provides a scientific basis for the clinical efficacy of YXBC in the treatment of RA.

2.
Nat Prod Res ; : 1-7, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586954

ABSTRACT

Huai Yam (Dioscoreae Rhizoma) contains many active ingredients such as flavonoids, saponins, and amino acids. In this study, an efficient method for the classification and rapid identification of yam components was established based on UPLC-Q-Exactive-MS and data post-processing techniques. First, the mass spectrometry information including the characteristic fragmentations (CFs) and neutral losses (NLs) of yam reported in the literature were summarised and a database of compounds was established. Then, the mass spectrometry data detected by the yam sample are compared with those described in database for rapid identification of target compounds. Finally, 60 compounds were identified, including 18 flavones, 2 saponins, 10 amino acids, 7 organic acids, 3 carbohydrates, 8 fatty acids and 12 others. A new strategy for identifying target constituents based on CFs and NLs was successfully established, laying the foundation for further research on yam and promoting the development of composition analysis of Traditional Chinese Medicine (TCM).

3.
Food Res Int ; 184: 114251, 2024 May.
Article in English | MEDLINE | ID: mdl-38609229

ABSTRACT

Persimmon (Diospyros kaki L. cv. Mopan.), an important commercial crop belonging to the genus of Diospyros in the Ebenaceae family, is rich in bioactive phenolic compounds. In this study, the phenolic compounds from fruits, leaves, and calyces of persimmon were qualitatively and quantitatively determined by UPLC-Q-Exactive-Orbitrap/MS and UPLC-QqQ-MS/MS, respectively. Furthermore, the role of phenolic extract from different parts of persimmon on neuroprotective activity in vitro, through against oxidative stress and anti-neuroinflammation effect was firstly evaluated. The results showed that 75 phenolic compounds, and 3 other kinds of compounds were identified, among which 44 of phenolic compounds were quantified from different parts of persimmon. It is the first time that epicatechin-epigallocatechin, catechin-epigallocatechin, catechin-epigallocatechin (A-type), and glycoside derivatives of laricitrin were identified in persimmon extract. The dominated phenolic compounds in three parts of persimmon were significantly different. All phenolic extracts from each part of persimmon showed strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells and LPS-induced BV2 cells. The fruit extract presented the strongest activity, followed by calyx and leaf extract. The systematic knowledge on the phytochemical composition along with activity evaluation of different parts of persimmon could contribute to their targeted selection and development.


Subject(s)
Catechin , Diospyros , Neurodegenerative Diseases , Chromatography, High Pressure Liquid , Hydrogen Peroxide , Tandem Mass Spectrometry , Plant Extracts/pharmacology
4.
Molecules ; 29(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611838

ABSTRACT

The rhizome of Polygonatum cyrtonema Hua has been used as a traditional Chinese medicine for over 2000 years. The fresh Chinese herb possesses micro toxicity and is thus traditionally alternately steamed and basked nine times to alleviate the toxicity and enhance the pharmaceutical efficacy. Different processing cycles usually result in variable therapeutic effects in the processed Polygonatum cyrtonema Hua (P-PCH). However, it can be hard to tell these various P-PCHs apart at present. To identify the P-PCHs that had undergone repeated steaming one to nine times, the chemical constituents were profiled based on Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry, and the Principal Component Analysis and Cluster Analysis methods were adopted to discriminate different cycles of P-PCH. A total of 44 characteristic markers were identified, which allowed the P-PCHs to be discriminated exactly.


Subject(s)
Gastropoda , Polygonatum , Animals , Cluster Analysis , Mass Spectrometry , Steam , Chromatography, Liquid
5.
Int J Nanomedicine ; 19: 3405-3421, 2024.
Article in English | MEDLINE | ID: mdl-38617795

ABSTRACT

Background: Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD. Methods: N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds. Results: The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of -5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats. Conclusion: The major active compounds of XBSD were mainly distributed in N-XBSD, and N-XBSD was formed through self-assembly among active compounds. N-XBSD could obviously promote the bioavailability of active compounds, indicating natural nanoparticles of decoctions play an important role in therapeutic effects.


Subject(s)
Caffeic Acids , Disaccharides , Nanoparticles , Spermine/analogs & derivatives , Stilbenes , Tandem Mass Spectrometry , Animals , Rats , Biological Availability , Chromatography, Liquid , Spectroscopy, Fourier Transform Infrared
6.
Sci Rep ; 14(1): 8709, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622262

ABSTRACT

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Subject(s)
Camellia , Hydroxybenzoates , Lignans , Camellia/chemistry , Antioxidants/chemistry , Tandem Mass Spectrometry , Flavonoids/analysis , Seeds/chemistry , Metabolomics/methods , Plant Extracts/chemistry , Lignans/analysis , Coumarins/analysis
7.
J Ethnopharmacol ; 329: 118134, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38574777

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The nature of Chinese medicine is a unique index to measure its efficacy. Generally, treating the hot syndrome with cold nature medicine and vice versa. Ginseng medicines, a renowned Chinese medicine known for its qi tonifying action, encompasses various herbal materials such as ginseng, red ginseng, and black ginseng (GS, RG, and BG, respectively), ginseng leaves (GL), and American ginseng (AG), which exhibited different natures, thought contained similar ginsenosides. This traditional effect of GS and RG "reinvigorate the pulse for relieving qi depletion". It is closely linked to anti-heart failure (HF), HF is a clinical manifestation of deficiency of "heart-qi". However, the elucidation of the mechanism underlying the anti-HF effects of ginseng medicines with different natures remains a significant challenge. AIM OF THE STUDY: To elucidate pharmacological mechanisms underlying the effect of ginseng medicines on HF, and to identify biomarkers associated with their various natures. Furthermore, it provides the basis for the different applications of ginseng medicines with various natures. MATERIALS AND METHODS: This study established a rat model of HF induced by isoproterenol (ISO) combined with a specific diet. Four representative hot/cold herbs were selected as compared references for the medicine natures. The divergent effects of these herbs on the HF model were investigated by analyzing RNA-seq data to identify genes expressed differentially. Additionally, pathways associated with medicine natures were obtained using KEGG. Furthermore, UPLC-QqQ-MS/MS, as well as ELISA, were used to measure indexes associated with the nervous system, energy metabolisms, and endocrinology systems, such as BNP, CK, IL-1, T3, T4, cAMP, cGMP, AD, adrenal hormones (DOC, CORT, and COR), progestogens (pregnenolone, P, 17-OH-PR, and 17-OH-P), androgens (DHEA, A4, and T), and estrogens hormones (E2). RESULTS: All ginseng medicines demonstrated varying levels of efficacy in alleviating HF and GS exhibited a significant protective effect on HF. The ginseng medicines with qi tonifying primarily achieve their effect by enhancing the levels of adrenal hormones (DOC, CORT, and COR), T4, elevation of cAMP/cGMP, and activation of AchE. Warm nature qi tonifying ginseng medicines increased the levels of 17-OH-PR and P while decreasing 17-OH-P and the ratio of E2/T. On the other hand, cold nature qi tonifying ginseng medicines decreased the levels of A4 and T while increasing the ratio of E2/T. CONCLUSION: Overall, the effects of warm nature ginseng medicines are stronger on HF compared to cold nature ginseng medicines. Our research firstly reported that the E2/T ratio, progestogens (17-OH-PR, 17-OH-P, and P), and androgens (A4 and T) have been identified as significant biomarkers for discerning the mechanism differences of ginseng medicines with differences natures in treatment of HF.


Subject(s)
Biomarkers , Heart Failure , Panax , Rats, Sprague-Dawley , Panax/chemistry , Animals , Heart Failure/drug therapy , Male , Rats , Plant Extracts/pharmacology , Isoproterenol , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Disease Models, Animal
8.
J Ethnopharmacol ; 329: 118146, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38604512

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Agrimonia pilosa Ledeb. (Rosaceae, A. pilosa) has been used in traditional medicine in China, Japan, Korea, and other Asian countries for treatment of acute and chronic enteritis and diarrhea. Secondary metabolites have been isolated and tested for biological activities. It remains unclear in terms of its potential components of anti-colorectal cancer properties. AIM OF THE STUDY: The study aimed to how extracts from A. pilosa and their components influenced tumor microenvironment and the colorectal tumor growth in vivo on AOM/DSS induced colorectal cancer mice, the metabolites of A. pilosa was also been studied. MATERIALS AND METHODS: Different methods have been used to extract different parts of A. pilosa. And the anti-proliferation effect of these extracts on colon cancer cells have been tested. The components of A. pilosa and its metabolites in vivo were analyzed by UPLC-QTOF-MS/MS. The anti-colorectal cancer (CRC) effects of A. pilosa and its components in vivo were studied on AOM/DSS induced CRC mice. The effects of constituents of A. pilosa on the composition of immune cells in tumor microenvironment (TME) were analyzed by flow cytometry. 16 S rDNA technology was used to analyze the effect of administration on the composition of intestinal microflora. Pathological section staining was used to compare the morphological changes and molecular expression of intestinal tissue in different groups. RESULTS: The constituent exists in root of A. pilosa showed the strongest anti-proliferation ability on colon cancer cells in vitro. The extract from the root of A. pilosa could attenuate the occurrence of colorectal tumors induced by AOM/DSS in a concentration-dependent manner. Administration of the extract from the root of A. pilosa could affect the proportion of γδT cells, tumor associated macrophages and myeloid derived suppressor cells in TME, increasing the proportion of anti-tumor immune cells and decrease the immunosuppressive cells in the TME to promote the anti-tumor immune response. The administration of the extract adjusted the composition of gut microbiota and its components Agrimoniin and Agrimonolide-6-o-glucoside showed the strongest anti-CRC effect in vivo with adjusting the gut microbiota differently. CONCLUSIONS: The extract from root of A. pilosa showed anti-colorectal cancer effects in vivo and in vitro, affecting the composition of gut microbiota and the anti-tumor immune response. Within all components of A. pilosa, Agrimoniin and Agrimonolide-6-o-glucoside showed remarkable anti-CRC efficiency in vivo and in vitro. Besides, the metabolites of extract from root of A. pilosa in gastrointestinal tract mainly composed of two parts: Agrimonolide-related metabolites and Urolithins. The extract from root of A. pilosa could contribute to potential drugs for assisting clinical anti-colon cancer therapy.


Subject(s)
Agrimonia , Antineoplastic Agents, Phytogenic , Colorectal Neoplasms , Plant Extracts , Animals , Agrimonia/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Plant Extracts/pharmacology , Mice , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Male , Tumor Microenvironment/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Gastrointestinal Microbiome/drug effects
9.
J Pharm Biomed Anal ; 245: 116156, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38636190

ABSTRACT

Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, a traditional Chinese medicinal plant, is often used to treat various urologic disorders in China. P. capitata extracts (PCE) have been used in combination with levofloxacin (LVFX) to treat urinary tract infections (UTIs) for a long time. However, little is known about the absorption of LVFX and transporter expression in the intestine after combined treatment with PCE, restricting the development and utilization of PCE. In view of this, a UPLC-MS/MS method was established for the determination of LVFX in intestinal sac fluid samples and in situ intestinal circulation perfusate samples to explore the effect of PCE on the intestinal absorption characteristics of LVFX ex vivo and in vivo. To further evaluate the interaction between LVFX and PCE, western blotting, immunohistochemistry, and RT-qPCR were utilized to determine the expression levels of drug transporters (OATP1A2, P-gp, BCRP, and MRP2) involved in the intestinal absorption of LVFX after combined treatment with PCE. Using the everted intestinal sac model, the absorption rate constant (Ka) and cumulative drug absorption (Q) of LVFX in each intestinal segment were significantly lower in groups treated with PCE than in the control group. Ka at 2 h decreased most in the colon segment (from 0.088 to 0.016 µg/h·cm2), and Q at 2 h decreased most in the duodenum (from 213.29 to 33.92 µg). Using the intestinal circulation perfusion model, the Ka value and percentage absorption rate (A) of LVFX in the small intestine decreased significantly when PCE and LVFX were used in combination. These results showed that PCE had a strong inhibitory effect on the absorption of LVFX in the rat small intestine (ex vivo and in vivo intestinal segments). In addition, PCE increased the protein and mRNA expression levels of efflux transporters (P-gp, BCRP, and MRP2) and decreased the expression of the uptake transporter OATP1A2 significantly. The effects increased as the PCE concentration increased. These findings indicated that PCE changed the absorption characteristics of levofloxacin, possibly by affecting the expression of transporters in the small intestine. In addition to revealing a herb-drug interaction (HDI) between PCE and LVFX, these results provide a basis for further studies of their clinical efficacy and mechanism of action.


Subject(s)
Herb-Drug Interactions , Intestinal Absorption , Intestinal Mucosa , Levofloxacin , Rats, Sprague-Dawley , Animals , Levofloxacin/pharmacology , Levofloxacin/pharmacokinetics , Intestinal Absorption/drug effects , Rats , Male , Intestinal Mucosa/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Tandem Mass Spectrometry/methods , Plant Extracts/pharmacology , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacokinetics
10.
J Pharm Biomed Anal ; 245: 116157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38636192

ABSTRACT

Penthorum chinense Pursh (PCP), as a traditional medicine of Miao nationality in China, is often used for the treatment of various liver diseases. At present, information regarding the in vivo process of PCP is lacking. Herein, a sensitive and robust ultra-performance liquid chromatography tandem with mass spectrometry (UPLC-MS/MS) was developed and validated for the quantification of several components to study their pharmacokinetics, tissues distribution and excretion in normal and acute alcoholic liver injury (ALI) rats. Prepared samples were separated on a Thermo C18 column (4.6 mm × 50 mm, 2.4 µm) using water containing 0.1 % formic acid (A) and acetonitrile (B) as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) mode for each component. The validated UPLC-MS/MS assay gave good linearity, accuracy, precision, recovery rate, matrix effect and stability. This method was successfully applied to the pharmacokinetics, tissue distribution and excretion in normal and acute ALI rats. There were differences in pharmacokinetic process, tissue distribution and excretion characteristics, indicating that ALI had a significant influence on the in vivo process of PCP in rats. The research provided an experimental basis for the study of PCP quality control and further application in the clinic.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Rats , Male , Drugs, Chinese Herbal/pharmacokinetics , Tissue Distribution , Reproducibility of Results , Liver Diseases, Alcoholic/metabolism , Liquid Chromatography-Mass Spectrometry
11.
J Pharm Biomed Anal ; 245: 116158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38643703

ABSTRACT

Areca nuts have been used as a traditional Chinese medicine (TCM) for thousands of years. Recent studies have shown that it exhibits good pharmacological activity and toxicity. In this study, the pharmacokinetics of five major components of areca nut extract in rats were investigated using a highly sensitive ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-MS/MS) method. Arecoline, arecaidine, guvacoline, guvacine, and catechin were separated and quantified accurately using gradient elution with mobile phases of (A) water containing 0.1 % formic acid-10 mM ammonium formate, and (B) methanol. The constituents were detected under a timing switch between the positive and negative ion modes using multiple reaction monitoring (MRM). Each calibration curve had a high R2 value of >0.99. The method accuracies ranged -7.09-11.05 % and precision values were less than 14.36 %. The recovery, matrix effect, selectivity, stability, and carry-over of the method were in accordance with the relevant requirements. It was successfully applied for the investigation of the pharmacokinetics of these five constituents after oral administration of areca nut extract. Pharmacokinetic results indirectly indicated a metabolic relationship between the four areca nut alkaloids in rats. For further clarification of its pharmacodynamic basis, this study provided a theoretical reference.


Subject(s)
Areca , Nuts , Plant Extracts , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Areca/chemistry , Chromatography, High Pressure Liquid/methods , Rats , Male , Nuts/chemistry , Plant Extracts/pharmacokinetics , Plant Extracts/chemistry , Plant Extracts/blood , Arecoline/pharmacokinetics , Arecoline/blood , Arecoline/analogs & derivatives , Reproducibility of Results , Administration, Oral , Catechin/pharmacokinetics , Catechin/blood , Catechin/chemistry , Liquid Chromatography-Mass Spectrometry
12.
Zhongguo Zhong Yao Za Zhi ; 49(3): 809-818, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621885

ABSTRACT

Scutellariae Radix extract is one of the important components in Shuganning Injection. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method was established for simultaneously determining five components in Shuganning Injection and Scutellariae Radix extract in bile, urine, and feces of rats, so as to reveal the difference in the excretion process of Shuganning Injection and Scutellariae Radix extract in rats and explore the law of the excretion process of the five components in vivo before and after the compatibility of Scutellariae Radix. Rats were injected with Shuganning Injection and Scutellariae Radix extract(4.2 mL·kg~(-1)), respectively, and the excretion of baicalin, baicalein, oroxylin A, oroxylin A-7-O-ß-D-glucuronide, and scutellarin in bile, urine, and feces of rats in 24 h was observed. The results showed that except for baicalin, the other four index components were excreted as prototype components in a high proportion after intravenous injection of Shuganning Injection and Scutellariae Radix extract in rats, respectively. The excretion of each component was relatively high in urine and less in feces and bile. After the compatibility of Scutellariae Radix extract, the accumulative excretion of five index components in rats all decreased. Among them, the cumulative excretion of baicalein in bile, urine, and feces significantly decreased by 26.67%, 48.11%, and 31.01%. The cumulative excretion of baicalin in bile, urine, and feces decreased significantly by 70.69%, 19.43%, and 31.22%. The result showed that the five index components in Scutellariae Radix extract were mainly excreted by the kidneys, and other components in Shuganning Injection delayed the excretion process and prolonged the residence time. This study is of great significance for elucidating the compatibility rationality of Shuganning Injection.


Subject(s)
Bile , Scutellaria baicalensis , Rats , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Flavonoids , Feces , Chromatography, High Pressure Liquid
13.
Zhongguo Zhong Yao Za Zhi ; 49(4): 981-988, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621905

ABSTRACT

The quantitative analysis of multicomponents by single-marker(QAMS) was established for 13 chemical components of Epimedii Folium, including neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ, so as to investigate the feasibility and accuracy of this method in evaluating the quality of Epimedii Folium materials from different origins and different varieties. Through the scientific and accurate investigation of the experimental method, the external standard method was used to determine the content of 13 chemical components in epimedium brevieornu. At the same time, icariin was used as the internal standard, and the relative correction factors of icariin with neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ were established, respectively. The contens of neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuosideⅠ in Epimedii Folium were calculated by QAMS. Finally, the difference between the measured value and the calculated value was compared to verify the accuracy and scientific nature of QAMS in the determination. The relative correction factor of each component had better repeatability, and there was no significant difference between the results of the external standard method and those of QAMS. With icariin as the internal standard, QAMS simultaneously determining neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ can be used for quantitative analysis of Epimedii Folium.


Subject(s)
Anthracenes , Drugs, Chinese Herbal , Epimedium , Perylene/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Chlorogenic Acid , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Epimedium/chemistry
14.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1526-1539, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621936

ABSTRACT

This study aims to investigate the component variations and spatial distribution of ginsenosides in Panax quinquefolium roots during repeated steaming and drying. Ultra performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to identify the ginsenosides in the root extract. Matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI) was employed to visualize the spatial distribution and spatiotemporal changes of prototype ginsenosides and metabolites in P. quinquefolium roots. The UPLC results showed that 90 ginsenosides were identified during the steaming process of the roots, and polar ginsenosides were converted into low polar or non-polar ginsenosides. The content of prototype ginsenosides decreased, while that of rare ginsenosides increased, which included 20(S/R)-ginsenoside Rg_3, 20(S/R)-ginsenoside Rh_2, and ginsenosides Rk_1, Rg_5, Rs_5, and Rs_4. MALDI-MSI results showed that ginsenosides were mainly distributed in the epidermis and phloem. As the steaming times increased, ginsenosides were transported to the xylem and medulla. This study provides fundamental information for revealing the changes of biological activity and pharmacological effect of P. quinquefolium roots that are caused by repeated steaming and drying and gives a reference for expanding the application scope of this herbal medicine.


Subject(s)
Ginsenosides , Panax , Ginsenosides/analysis , Tandem Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Panax/chemistry , Chromatography, High Pressure Liquid/methods , Plant Roots/chemistry
15.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621973

ABSTRACT

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Subject(s)
Artemisia annua , Artemisinins , Lactones , Artemisia annua/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Plant Breeding , Artemisinins/analysis , Aldehydes
16.
Food Chem ; 447: 138743, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38452535

ABSTRACT

Nitraria roborowskii Kom (NRK), with high economic and ecological value, is mainly distributed in the Qaidam Basin, China. However, research on its chemical components and bioactivities is still rare. In this study, its chemical constituents (52) including 10 ß-carboline alkaloids, nine cyclic peptides, three indole alkaloids, five pyrrole alkaloids, eight phenolic acids and 17 flavonoids were identified tentatively using UPLC-triple-TOF-MS/MS. Notablely, one new ß-carboline alkaloid and five new cyclic peptides were confirmed using MS/MS fragmentation pathways. In addition, experiments in vitro indicated that NRK-C had strong maltase and sucrase inhibitory activities (IC50 of 0.202 and 0.103 mg/mL, respectively). Polysaccharide tolerance experiments confirmed NRK-C (400 mg/kg) was associated with decreased postprandial blood glucose (PBG) in diabetic mice. These results suggested that NRK fruit might be used as a functional ingredient in food products.


Subject(s)
Alkaloids , Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Mice , Animals , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , alpha-Glucosidases/analysis , Fruit/chemistry , Sucrase , Alkaloids/analysis , Phenols/analysis , Carbolines/analysis , Peptides, Cyclic/analysis , Drugs, Chinese Herbal/analysis
17.
J Pharm Biomed Anal ; 243: 116077, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460276

ABSTRACT

BACKGROUND: Dendrobium officinale Kimura et Migo (DO), a valuable Chinese herbal medicine, has been reported to exhibit potential effects in the prevention and treatment of lung cancer. However, its material basis and mechanism of action have not been comprehensively analyzed. PURPOSE: The objective of this study was to preliminarily elucidate the active components and pharmacological mechanisms of DO in treating lung cancer, according to UPLC-Q/TOF-MS, HPAEC-PAD, network pharmacology, molecular docking, and experimental verification. METHODS: The chemical components of DO were identified via UPLC-Q/TOF-MS, while the monosaccharide composition of Dendrobium officinale polysaccharide (DOP) was determined by HPAEC-PAD. The prospective active constituents of DO as well as their respective targets were predicted in the combined database of Swiss ADME and Swiss Target Prediction. Relevant disease targets for lung cancer were searched in OMIM, TTD, and Genecards databases. Further, the active compounds and potential core targets of DO against lung cancer were found by the C-T-D network and the PPI network, respectively. The core targets were then subjected to enrichment analysis in the Metascape database. The main active compounds were molecularly docked to the core targets and visualized. Finally, the viability of A549 cells and the relative quantity of associated proteins within the major signaling pathway were detected. RESULTS: 249 ingredients were identified from DO, including 39 flavonoids, 39 bibenzyls, 50 organic acids, 8 phenanthrenes, 27 phenylpropanoids, 17 alkaloids, 17 amino acids and their derivatives, 7 monosaccharides, and 45 others. Here, 50 main active compounds with high degree values were attained through the C-T-D network, mainly consisting of bibenzyls and monosaccharides. Based on the PPI network analysis, 10 core targets were further predicted, including HSP90AA1, SRC, ESR1, CREBBP, MAPK3, AKT1, PIK3R1, PIK3CA, HIF1A, and HDAC1. The results of the enrichment analysis and molecular docking indicated a close association between the therapeutic mechanism of DO and the PI3K-Akt signaling pathway. It was confirmed that the bibenzyl extract and erianin could inhibit the multiplication of A549 cells in vitro. Furthermore, erianin was found to down-regulate the relative expressions of p-AKT and p-PI3K proteins within the PI3K-Akt signaling pathway. CONCLUSIONS: This study predicted that DO could treat lung cancer through various components, multiple targets, and diverse pathways. Bibenzyls from DO might exert anti-lung cancer activity by inhibiting cancer cell proliferation and modulating the PI3K-Akt signaling pathway. A fundamental reference for further studies and clinical therapy was given by the above data.


Subject(s)
Bibenzyls , Dendrobium , Drugs, Chinese Herbal , Lung Neoplasms , Phenol , Lung Neoplasms/drug therapy , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Prospective Studies , Proto-Oncogene Proteins c-akt , Monosaccharides , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
18.
J Pharm Biomed Anal ; 243: 116069, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460275

ABSTRACT

Fuke Qianjin capsules (FKQJ) exhibit obvious advantages and characteristics in the treatment of pelvic inflammatory disease. At present, information regarding the in vivo process of FKQJ is lacking, which has become a bottleneck in further determining the therapeutic effect of this traditional Chinese medicine. In the present study, a sensitive, simple and reliable method was developed and validated for the simultaneous quantification of 12 main components (4 flavonoids, 4 alkaloids, 2 phthalides and 2 diterpene lactones) in plasma and seven tissues of rats to study the pharmacokinetic and distribution characteristics of these components in vivo by using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the first time. Plasma and tissue were prepared by protein precipitation with acetonitrile and methanol, followed by its separation on a Waters Acquity UPLC BEH C18 column. The quantification was performed via multiple reaction monitoring (MRM) by a triple quadrupole mass spectrometer under positive electrospray ionization (ESI) mode. The method was validated to demonstrate its selectivity, linearity, accuracy, precision, recovery, matrix effect and stability. For 12 analytes, the low limit of quantification (LLOQs) reached 0.005-2.44 ng/mL, and all calibration curves showed good linearity (r2 ≥ 0.990) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.96%, and the accuracies were in the range of 85.29%-114.97%. Extraction recoveries and matrix effects of analytes were acceptable. The pharmacokinetic results showed that the main components could be absorbed quickly, had a short residence time, and were eliminated quickly in vivo. At different time points, the 12 components were widely distributed with uneven characteristics in the body, which tended to be distributed in the liver, kidney and lung and to a lesser extent in the uterus, brain and heart. The pharmacokinetic process and tissue distribution characteristics of FKQJ were expounded in this study, which can provide a scientific theory for in-depth development of FKQJ and guide FKQJ use in the clinic.


Subject(s)
Drugs, Chinese Herbal , Female , Rats , Animals , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Tandem Mass Spectrometry/methods , Tissue Distribution , Reproducibility of Results
19.
J Pharm Biomed Anal ; 243: 116115, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38513497

ABSTRACT

Crocus sativus L. (C. sativus) has its stigma as the main valuable part used. With extremely low production and high prices, stigma is considered a scarce resource. As a result, its petals, considered as by-products, are often discarded, leading to significant waste. We developed a UPLC-Q-Orbitrap HRMS method for qualitative analysis of stigmas and petals and a UHPLC-QQQ-MS/MS method for simultaneous quantification of 9 characteristic active compounds for the first time, and compared their biological activity in vitro. The results indicated that a total of 63 compounds were identified in the petals and stigmas. The content of flavonoids in the petals was significantly superior to that in the stigma, and the content of quercetin in the petals was 50 times higher than that in the stigma. The results of the in vitro evaluation of biological activity indicated that both the petals (•OH: IC50=39.70 mg/mL; DPPH: IC50=28.37 mg/mL; ABTS: IC50=0.9868 mg/mL)and stigma (•OH: IC50=34.41 mg/mL; DPPH: IC50=38.99 mg/mL; ABTS: IC50=3.194 mg/mL)demonstrated comparable antioxidant activities. However, the tyrosinase inhibitory activity in petals (IC50=21.17 mg/mL) was weaker than that in stigma(IC50=1.488 mg/mL). This study provides a fast, reliable, and efficient analytical method that can be used for the quality assessment of petals as a natural resource and its related products in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Benzothiazoles , Sulfonic Acids , Tandem Mass Spectrometry , Antioxidants/pharmacology , Flavonoids/pharmacology , Quercetin , Plant Extracts/pharmacology
20.
J Ethnopharmacol ; 328: 118050, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38518966

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Linderae Radix (Lindera aggregata (Sims) Kosterm) is a traditional Chinese medicine known for its capability to regulate qi and relieve pain, particularly in the context of gastrointestinal disorders. AIM OF THE STUDY: While our previous research has demonstrated the efficacy of the Linderae Radix water extract (LRWE) in the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), the precise mechanisms remain elusive. This study aims to provide a comprehensive understanding of the therapeutic effects of LRWE on IBS-D through multi-omics techniques. MATERIALS AND METHODS: 16 S rRNA gene sequencing combined with LC-MS metabolomics was employed to investigate the effect of LRWE on the gut microbiota and metabolites of IBS-D rats. Spearman correlation analysis was performed on the gut microbiota and metabolites. RESULTS: LRWE administration significantly ameliorated IBS-D rats' symptoms, including diarrhea, visceral hypersensitivity, and low-grade intestinal inflammation. Gut microbiota analysis revealed that LRWE influenced the diversity of the gut microbiota in IBS-D rats by significantly reducing the relative abundance of Patescibacteria and Candidatus Saccharimonas, while increasing the relative abundance of Jeotgalicoccus. Serum metabolomic analysis identified 16 differential metabolites, associated with LRWE's positive effects on IBS-D symptoms, focusing on glyoxylate and dicarboxylic acid metabolism, and cysteine and methionine metabolism. Spearman analysis demonstrated a strong correlation between cecal microbiota composition and serum metabolite levels. CONCLUSIONS: This study elucidates that LRWE plays a crucial role in the comprehensive therapeutic approach to IBS-D by restoring the relative abundance of gut microbiota and addressing the disturbed metabolism of endogenous biomarkers. The identified bacteria and metabolites present potential therapeutic targets for IBS-D.


Subject(s)
Irritable Bowel Syndrome , Rats , Animals , Irritable Bowel Syndrome/drug therapy , Multiomics , Diarrhea/drug therapy , Diarrhea/microbiology , Metabolomics/methods , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL