Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 702-716, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621874

ABSTRACT

Uridine diphosphate glycosyltransferase(UGT) is involved in the glycosylation of a variety of secondary metabolites in plants and plays an important role in plant growth and development and regulation of secondary metabolism. Based on the genome of a diploid Chrysanthemum indicum, the UGT gene family from Ch. indicum was identified by bioinformatics methods, and the physical and chemical properties, subcellular localization prediction, conserved motif, phylogeny, chromosome location, gene structure, and gene replication events of UGT protein were analyzed. Transcriptome and real-time fluorescence quantitative polymerase chain reaction(PCR) were used to analyze the expression pattern of the UGT gene in flowers and leaves of Ch. indicum. Quasi-targeted metabolomics was used to analyze the differential metabolites in flowers and leaves. The results showed that a total of 279 UGT genes were identified in the Ch. indicum genome. Phylogenetic analysis showed that these UGT genes were divided into 8 subfamilies. Members of the same subfamily were distributed in clusters on the chromosomes. Tandem duplications were the main driver of the expansion of the UGT gene family from Ch. indicum. Structural domain analysis showed that 262 UGT genes had complete plant secondary metabolism signal sequences(PSPG box). The analysis of cis-acting elements indicated that light-responsive elements were the most ubiquitous elements in the promoter regions of UGT gene family members. Quasi-targeted metabolome analysis of floral and leaf tissue revealed that most of the flavonoid metabolites, including luteolin-7-O-glucoside and kaempferol-7-O-glucoside, had higher accumulation in flowers. Comparative transcriptome analysis of flower and leaf tissue showed that there were 72 differentially expressed UGT genes, of which 29 genes were up-regulated in flowers, and 43 genes were up-regulated in leaves. Correlation network and phylogenetic analysis showed that CindChr9G00614970.1, CindChr2G00092510.1, and CindChr2G00092490.1 may be involved in the synthesis of 7-O-flavonoid glycosides in Ch. indicum, and real-time fluorescence quantitative PCR analysis further confirmed the reliability of transcriptome data. The results of this study are helpful to understand the function of the UGT gene family from Ch. indicum and provide data reference and theoretical basis for further study on the molecular regulation mechanism of flavonoid glycosides synthesis in Ch. indicum.


Subject(s)
Chrysanthemum , Glycosyltransferases , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Chrysanthemum/genetics , Uridine Diphosphate , Phylogeny , Reproducibility of Results , Plants/metabolism , Flavonoids , Glycosides , Gene Expression Regulation, Plant
2.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1840-1850, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282959

ABSTRACT

Uridine diphosphate glycosyltransferase(UGT) is a highly conserved protein in plants, which usually functions in secondary metabolic pathways. This study used the Hidden Markov Model(HMM) to screen out members of UGT gene family in the whole genome of Dendrobium officinale, and 44 UGT genes were identified. Bioinformatics was used to analyze the structure, phylogeny, and promoter region components of D. officinale genes. The results showed that UGT gene family could be divided into four subfamilies, and UGT gene structure was relatively conserved in each subfamily, with nine conserved domains. The upstream promoter region of UGT gene contained a variety of cis-acting elements related to plant hormones and environmental factors, indicating that UGT gene expression may be induced by plant hormones and external environmental factors. UGT gene expression in different tissues of D. officinale was compared, and UGT gene expression was found in all parts of D. officinale. It was speculated that UGT gene played an important role in many tissues of D. officinale. Through transcriptome analysis of D. officinale mycorrhizal symbiosis environment, low temperature stress, and phosphorus deficiency stress, this study found that only one gene was up-regulated in all three conditions. The results of this study can help understand the functions of UGT gene family in Orchidaceae plants and provide a basis for further study on the molecular regulation mechanism of polysaccharide metabolism pathway in D. officinale.


Subject(s)
Dendrobium , Mycorrhizae , Dendrobium/genetics , Plant Growth Regulators , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Gene Expression Profiling , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Planta ; 257(6): 119, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37178342

ABSTRACT

MAIN CONCLUSION: Two UDP-glycosyltransferases from Panax vienamensis var. fuscidiscus involved in ocotillol-type ginsenoside MR2 (majonside-R2) biosynthesis were identified. PvfUGT1 and PvfUGT2 sequentially catalyzes 20S,24S-Protopanxatriol Oxide II and 20S,24R-Protopanxatriol Oxide I to pseudoginsenoside RT4/RT5 and RT4/RT5 to 20S, 24S-MR2/20S, 24S-MR2. Ocotilol type saponin MR2 (majonside-R2) is the main active component of Panax vietnamensis var. fuscidiscus (commonly known as 'jinping ginseng') and is well known for its diverse pharmacological activities. The use of MR2 in the pharmaceutical industry currently depends on its extraction from Panax species. Metabolic engineering provides an opportunity to produce high-value MR2 by expressing it in heterologous hosts. However, the metabolic pathways of MR2 remain enigmatic, and the two-step glycosylation involved in MR2 biosynthesis has not been reported. In this study, we used quantitative real-time PCR to investigate the regulation of the entire ginsenoside pathway by MeJA (methyl jasmonate), which facilitated our pathway elucidation. We found six candidate glycosyltransferases by comparing transcriptome analysis and network co-expression analysis. In addition, we identified two UGTs (PvfUGT1 and PvfUGT2) through in vitro enzymatic reactions involved in the biosynthesis of MR2 which were not reported in previous studies. Our results show that PvfUGT1 can transfer UDP-glucose to the C6-OH of 20S, 24S-protopanaxatriol oxide II and 20S, 24R-protopanaxatriol oxide I to form pseudoginsenoside RT4 and pseudoginsenoside RT5, respectively. PvfUGT2 can transfer UDP-xylose to pseudoginsenoside RT4 and pseudoginsenoside RT5 to form 20S, 24S-MR2 and 20S, 24S-MR2. Our study paves the way for elucidating the biosynthesis of MR2 and producing MR2 by synthetic biological methods.


Subject(s)
Ginsenosides , Panax , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Uridine Diphosphate/metabolism
4.
Front Plant Sci ; 13: 1017122, 2022.
Article in English | MEDLINE | ID: mdl-36561458

ABSTRACT

The traditional Chinese medicine plant Fallopia multiflora (Thunb.) Harald. contains various pharmacodynamically active glycosides, such as stilbene glycosides, anthraquinone (AQ) glycosides, and flavonoid glycosides. Glycosylation is an important reaction in plant metabolism that is generally completed by glycosyltransferase in the last step of the secondary metabolite biosynthesis pathway, and it can improve the beneficial properties of many natural products. In this study, based on the transcriptome data of F. multiflora, we cloned two Uridine-diphosphate-dependent glycosyltransferases (UGTs) from the cDNA of F. multiflora (FmUGT1 and FmUGT2). Their full-length sequences were 1602 and 1449 bp, encoding 533 and 482 amino acids, respectively. In vitro enzymatic reaction results showed that FmUGT1 and FmUGT2 were promiscuous and could catalyze the glycosylation of 12 compounds, including stilbenes, anthraquinones, flavonoids, phloretin, and curcumin, and we also obtained and structurally identified 13 glycosylated products from both of them. Further experiments on the in vivo function of FmUGT1 and FmUGT2 showed that 2, 3, 5, 4'- tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) content in hairy roots was elevated significantly when FmUGT1 and FmUGT2 were overexpressed and decreased accordingly in the RNA interference (RNAi) groups. These results indicate that FmUGT1 and FmUGT2 were able to glycosylate a total of 12 structurally diverse types of acceptors and to generate O-glycosides. In addition, FmUGT1 and FmUGT2 efficiently catalyzed the biosynthesis of THSG, and promoted the production of AQs in transgenic hairy roots.

5.
Planta ; 253(5): 91, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33818668

ABSTRACT

MAIN CONCLUSION: Two UDP-glycosyltransferases from Panax japonicus var. major were identified, and the biosynthetic pathways of three oleanane-type ginsenosides (chikusetsusaponin IVa, ginsenoside Ro, zingibroside R1) were elucidated. Chikusetsusaponin IVa and ginsenoside Ro are primary active components formed by stepwise glycosylation of oleanolic acid in five medicinal plants of the genus Panax. However, the key UDP-glycosyltransferases (UGTs) in the biosynthetic pathway of chikusetsusaponin IVa and ginsenoside Ro are still unclear. In this study, two UGTs (PjmUGT1 and PjmUGT2) from Panax japonicus var. major involved in the biosynthesis of chikusetsusaponin IVa and ginsenoside Ro were identified based on bioinformatics analysis, heterologous expression and enzyme assays. The results show that PjmUGT1 can transfer a glucose moiety to the C-28 carboxyl groups of oleanolic acid 3-O-ß-D-glucuronide and zingibroside R1 to form chikusetsusaponin IVa and ginsenoside Ro, respectively. Meanwhile, PjmUGT2 can transfer a glucose moiety to oleanolic acid 3-O-ß-D-glucuronide and chikusetsusaponin IVa to form zingibroside R1 and ginsenoside Ro. This work uncovered the biosynthetic mechanism of chikusetsusaponin IVa and ginsenoside Ro, providing the rational production of valuable saponins through synthetic biology strategy.


Subject(s)
Ginsenosides/metabolism , Glycosyltransferases/metabolism , Oleanolic Acid/analogs & derivatives , Panax/metabolism , Uridine Diphosphate/metabolism , Glycosyltransferases/analysis , Glycosyltransferases/genetics , Oleanolic Acid/metabolism , Panax/enzymology
6.
Biotechnol Adv ; 37(7): 107394, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31078628

ABSTRACT

Triterpenoid saponins are naturally occurring structurally diverse glycosides of triterpenes that are widely distributed among plant species. Great interest has been expressed by pharmaceutical and agriculture industries for the glycosylation of triterpenes. Such modifications alter their taste and bio-absorbability, affect their intra-/extracellular transport and storage in plants, and induce novel biological activities in the human body. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze glycosylation using UDP sugar donors. These enzymes belong to a multigene family and recognize diverse natural products, including triterpenes, as the acceptor molecules. For this review, we collected and analyzed all of the UGT sequences found in Arabidopsis thaliana as well as 31 other species of triterpene-producing plants. To identify potential UGTs with novel functions in triterpene glycosylation, we screened and classified those candidates based on similarity with UGTs from Panax ginseng, Glycine max, Medicago truncatula, Saponaria vaccaria, and Barbarea vulgaris that are known to function in glycosylate triterpenes. We highlight recent findings on UGT inducibility by methyl jasmonate, tissue-specific expression, and subcellular localization, while also describing their catalytic activity in terms of regioselectivity for potential key UGTs dedicated to triterpene glycosylation in plants. Discovering these new UGTs expands our capacity to manipulate the biological and physicochemical properties of such valuable molecules.


Subject(s)
Glycosyltransferases/metabolism , Glycosylation , Panax , Phylogeny , Triterpenes , Uridine Diphosphate
SELECTION OF CITATIONS
SEARCH DETAIL