Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 329: 117092, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36571950

ABSTRACT

Artemia egg shell loaded with nano-magnesium (shell-Mg) can be used to recover phosphorus from wastewater. The exhausted Artemia egg shell-Mg (denoted as shell-Mg-P) can be used as a slow-release fertilizer for phosphorus reuse. However, due to the coexistence of heavy metal ions in the environment, the application of slow-release fertilizer for phosphorus removal and reuse may have potential risks. In this paper, the potential risks of Pb2+, Cd2+, Zn2+ and Cu2+ in phosphorus wastewater and soil were studied from the formation and application process of shell-Mg-P. The result showed that shell-Mg adsorbed Pb2+, Cd2+, Zn2+ and Cu2+ in phosphate wastewater during the formation of shell-Mg-P and became shell-Mg-P-metal hybrid biomaterial. Although the experiment proved that the existence of heavy metal ions did not affect the phosphorus slow-release behavior of slow-release fertilizer, but the heavy metal ions in the shell-Mg-P-metal were also slow released. The pot experiment results confirmed that the slow-release phosphorus fertilizers (shell-Mg-P and shell-Mg-P-metal) in the soil polluted in low concentration of heavy metals can reduce the amount of heavy metals in whole wheat seedlings and promote wheat seedling growth. However, the application of slow-release fertilizers increased the translocation efficiency (TFR to SL) of metal from root (R) to aboveground part (stem and leaves, SL), promoted the transportation of heavy metals from roots to the stems and leaves, and increased the safety risk of the wheat seedling edible. Therefore, besides the positive role of slow-release fertilizers in retaining heavy metals and reducing the amount of heavy metals in whole seedlings, the risk that it may aggravate the translocation of heavy metals to stems and leaves should be paid more attention, so as to ensure the safe and reliable application of slow-release fertilizers.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Fertilizers/analysis , Phosphorus , Artemia , Cadmium , Wastewater , Egg Shell/chemistry , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Risk Assessment , Soil , Triticum , Seedlings/chemistry
2.
Food Chem ; 317: 126388, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32078993

ABSTRACT

Policosanols is a health promoting aliphatic alcohol known as lipid-lowing agent. To enable maximising the functional properties of wheat, this research investigates the policosanol profiles and adenosine 5'-monophosphate-activated protein kinase (AMPK) activation potential of Korean wheat seedlings according to cultivars and growth times. GC-MS revealed six policosanols that differed markedly in content between 17 cultivars, especially, octacosanol (8) showed the most predominant component (49-83%), varying significantly in average concentrations with growth times as 361.4 (3 days) â†’ 613.0 (6 days) â†’ 203.1 (9 days) â†’ 196.5 (12 days) â†’ 50.9 mg/100 g (19 days). The highest average policosanol (738.7 mg/100 g) exhibited after 6 days, while the lowest was 104.4 mg/100 g on 19 days. Moreover, the wheat cultivars including Shinmichal 1, Anbaek, Namhae, and Joah at 6 days may be recommended as potential sources because of high policosanols (921.7-990.6 mg/100 g). Western blot analysis revealed markedly higher AMPK activation in cells treated with the hexane extracts (150-370% at 100 µg/ml) and octacosanol (8) possessed potent AMPK activator (control; 100 â†’ 280% at 200 µg/ml). It is confirmed that the AMPK activation by wheat seedlings are positively related to the highest policosanol content at the 6 days of growth time, independent of the cultivar. Our results may be contributed to enhance the wheat value regarding development of new cultivars and functional foods.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fatty Alcohols/analysis , Plant Extracts/chemistry , Triticum/chemistry , Enzyme Activation , Gas Chromatography-Mass Spectrometry , Hexanes , Seedlings/chemistry , Seedlings/enzymology , Seedlings/growth & development , Triticum/enzymology , Triticum/growth & development
3.
Appl Microbiol Biotechnol ; 101(11): 4669-4681, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28188339

ABSTRACT

The association between microbial communities and plant growth in long-term fertilization system has not been fully studied. In the present study, impacts of long-term fertilization have been determined on the size and activity of soil microbial communities and wheat performance in a red soil (Ultisol) collected from Qiyang Experimental Station, China. For this, different microbial communities originating from long-term fertilized pig manure (M), mineral fertilizer (NPK), pig manure plus mineral fertilizer (MNPK), and no fertilizer (CK) were used as inocula for the Ultisol tested. Changes in total bacterial and fungal community composition and structures using Ion Torrent sequencing were determined. The results show that the biomass of wheat was significantly higher in both sterilized soil inoculated with NPK (SNPK) and sterilized soil inoculated with MNPK (SMNPK) treatments than in other treatments (P < 0.05). The activities of ß-1,4-N-acetylglucosaminidase (NAG) and cellobiohydrolase (CBH) were significantly correlated with wheat biomass. Among the microbial communities, the largest Ascomycota phylum in soils was negatively correlated with ß-1,4-glucosidase (ßG) (P < 0.05). The phylum Basidiomycota was negatively correlated with plant biomass (PB) and tillers per plant (TI) (P < 0.05). Nonmetric multidimensional scaling analysis shows that fungal community was strongly correlated with long-term fertilization strategy, while the bacterial community was strongly correlated with ß-1,4-N-acetylglucosaminidase activity. According to the Mantel test, the growth of wheat was affected by fungal community. Taken together, microbial composition and diversity in soils could be a good player in predicting soil fertility and consequently plant growth.


Subject(s)
Fertilizers , Genetic Variation , Microbial Consortia/drug effects , Soil Microbiology , Soil/chemistry , Triticum/growth & development , Animals , Ascomycota/enzymology , Ascomycota/genetics , Basidiomycota/genetics , Biomass , Manure , Microbial Consortia/genetics , Minerals/pharmacology , Nitrogen/pharmacology , Phosphorus/pharmacology , Potassium/pharmacology , Swine , Time Factors , Triticum/drug effects , Triticum/microbiology
4.
Complement Ther Med ; 22(2): 333-40, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24731905

ABSTRACT

OBJECTIVE: This study sought to verify whether the droplet evaporation method (DEM) can be applied to assess the effectiveness of ultra-high dilutions (UHDs). We studied the shape characteristics of the polycrystalline structures formed during droplet evaporation of wheat seed leakages. METHODS: The experimental protocol tested both unstressed seeds and seeds stressed with arsenic trioxide 5mM, treated with either ultra-high dilutions of the same stressor substance, or with water as a control. The experimental groups were analyzed by DEM and in vitro growth tests. DEM patterns were evaluated for their local connected fractal dimension (measure of complexity) and fluctuating asymmetry (measure of symmetry exactness). RESULTS: Treatment with arsenic at UHD of both stressed and non-stressed seeds increased the local connected fractal dimension levels and bilateral symmetry exactness values in the polycrystalline structures, as compared to the water treatment. The results of in vitro growth tests revealed a stimulating effect of arsenic at UHD vs. control, and a correlation between the changes in growth rate and the crystallographic values of the polycrystalline structures was observed. CONCLUSIONS: The results indicate that polycrystalline structures are sensitive to UHDs, and so for the first time provide grounds for the use of DEM as a new tool for testing UHD effectiveness. DEM could find application as a treatment pre-selection tool, or to monitor sample conditions during treatment. Moreover, when applied to biological liquids (such as saliva, blood, blood serum, etc.), DEM might provide information about UHD effectiveness on human and animal health.


Subject(s)
Chemistry Techniques, Analytical/methods , Microscopy/methods , Water/chemistry , Arsenic Trioxide , Arsenicals/chemistry , Crystallization , Germination/drug effects , Oxides/chemistry , Seeds/chemistry , Seeds/drug effects , Triticum/chemistry , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL