Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446776

ABSTRACT

Streptococcus agalactiae is a significant pathogen that can affect both human beings and animals. The extensive current use of antibiotics has resulted in antibiotic resistance. In our previous research, we found that zinc oxide quantum dots (ZnO QDs) had inhibitory effects on antibiotic-resistant microorganisms. In this study, a strain of Streptococcus agalactiaeWJYT1 with a broad antibiotic-resistant spectrum was isolated and identified from Lama glama at Sichuan Agricultural University Teaching Animal Hospital. The genome for the resistance and virulence genes was analyzed. Additionally, the antibacterial effects and anti-virulence mechanism of ZnO QDs for S. agalactiaeWJYT1 were investigated. The results showed that the genome of S. agalactiaeWJYT1 is 1,943,955 bp, containing 22 resistance genes and 95 virulence genes. ZnO QDs have a good antibacterial effect against S. agalactiaeWJYT1 by reducing bacterial growth and decreasing the expression of virulence genes, including bibA, hylB, sip, and cip, which provides a novel potential treatment for S. agalactiae.


Subject(s)
Camelids, New World , Quantum Dots , Streptococcal Infections , Zinc Oxide , Humans , Animals , Streptococcus agalactiae , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology
2.
Biosens Bioelectron ; 61: 344-50, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-24912034

ABSTRACT

We reported here the preparation of "dioscorea batatas bean"-like silver nanoparticles (AgNPs) and the unique structure provided the AgNPs good localized surface plasmon resonance (LSPR) property. In addition, zinc oxide quantum dots (ZnO QDs) were also synthesized and found with good fluorescent property. Furthermore, the ZnO QDs decorated exfoliated graphene oxide (EGO-ZnO) was prepared via electrostatic interaction. The named nanomaterials were applied in a LSPR-induced fluorescent DNA sensor. To fabricate the DNA sensor, the EGO-ZnO was modified on the silica glass as the supporter for the capture probe ssDNA, and the complementary ssDNA was labeled on the surface of the AgNPs. After the hybridization step by step, the AgNPs was fastened on the surface of the EGO-ZnO, and the fluorescent intensity of the EGO-ZnO increased as a result. The prepared DNA sensor enabled the target ssDNA to be detected in the concentration range of 10(-19)-10(-14)M, and the limit of detection was 4.3 × 10(-20)M.


Subject(s)
DNA/analysis , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , Silver/chemistry , Surface Plasmon Resonance/methods , Zinc Oxide/chemistry , Dioscorea/chemistry , Limit of Detection , Metal Nanoparticles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL