Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
Add more filters

Publication year range
1.
Circ Res ; 134(9): 1083-1097, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662860

ABSTRACT

Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.


Subject(s)
Air Pollution , Cardiovascular Diseases , Environmental Exposure , Humans , Air Pollution/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Environmental Exposure/adverse effects , Air Pollutants/adverse effects , Cardiometabolic Risk Factors , Exposome , Metabolic Diseases/epidemiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Particulate Matter/adverse effects
2.
Circ Res ; 134(9): 1197-1217, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662863

ABSTRACT

Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Environmental Exposure , Humans , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Exercise , Particulate Matter/adverse effects , Air Pollutants/adverse effects , Air Pollution/adverse effects
3.
Sensors (Basel) ; 24(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475068

ABSTRACT

Inadequate air quality has adverse impacts on human well-being and contributes to the progression of climate change, leading to fluctuations in temperature. Therefore, gaining a localized comprehension of the interplay between climate variations and air pollution holds great significance in alleviating the health repercussions of air pollution. This study uses a holistic approach to make air quality predictions and multivariate modelling. It investigates the associations between meteorological factors, encompassing temperature, relative humidity, air pressure, and three particulate matter concentrations (PM10, PM2.5, and PM1), and the correlation between PM concentrations and noise levels, volatile organic compounds, and carbon dioxide emissions. Five hybrid machine learning models were employed to predict PM concentrations and then the Air Quality Index (AQI). Twelve PM sensors evenly distributed in Craiova City, Romania, provided the dataset for five months (22 September 2021-17 February 2022). The sensors transmitted data each minute. The prediction accuracy of the models was evaluated and the results revealed that, in general, the coefficient of determination (R2) values exceeded 0.96 (interval of confidence is 0.95) and, in most instances, approached 0.99. Relative humidity emerged as the least influential variable on PM concentrations, while the most accurate predictions were achieved by combining pressure with temperature. PM10 (less than 10 µm in diameter) concentrations exhibited a notable correlation with PM2.5 (less than 2.5 µm in diameter) concentrations and a moderate correlation with PM1 (less than 1 µm in diameter). Nevertheless, other findings indicated that PM concentrations were not strongly related to NOISE, CO2, and VOC, and these last variables should be combined with another meteorological variable to enhance the prediction accuracy. Ultimately, this study established novel relationships for predicting PM concentrations and AQI based on the most effective combinations of predictor variables identified.

4.
Environ Sci Technol ; 58(10): 4680-4690, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412365

ABSTRACT

Formaldehyde (HCHO) exposures during a full year were calculated for different race/ethnicity groups living in Southeast Texas using a chemical transport model tagged to track nine emission categories. Petroleum and industrial emissions were the largest anthropogenic sources of HCHO exposure in Southeast Texas, accounting for 44% of the total HCHO population exposure. Approximately 50% of the HCHO exposures associated with petroleum and industrial sources were directly emitted (primary), while the other 50% formed in the atmosphere (secondary) from precursor emissions of reactive compounds such as ethylene and propylene. Biogenic emissions also formed secondary HCHO that accounted for 11% of the total population-weighted exposure across the study domain. Off-road equipment contributed 3.7% to total population-weighted exposure in Houston, while natural gas combustion contributed 5% in Beaumont. Mobile sources accounted for 3.7% of the total HCHO population exposure, with less than 10% secondary contribution. Exposure disparity patterns changed with the location. Hispanic and Latino residents were exposed to HCHO concentrations +1.75% above average in Houston due to petroleum and industrial sources and natural gas sources. Black and African American residents in Beaumont were exposed to HCHO concentrations +7% above average due to petroleum and industrial sources, off-road equipment, and food cooking. Asian residents in Beaumont were exposed to HCHO concentrations that were +2.5% above average due to HCHO associated with petroleum and industrial sources, off-road vehicles, and food cooking. White residents were exposed to below average HCHO concentrations in all domains because their homes were located further from primary HCHO emission sources. Given the unique features of the exposure disparities in each region, tailored solutions should be developed by local stakeholders. Potential options to consider in the development of those solutions include modifying processes to reduce emissions, installing control equipment to capture emissions, or increasing the distance between industrial sources and residential neighborhoods.


Subject(s)
Air Pollutants , Formaldehyde/adverse effects , Petroleum , Respiratory Hypersensitivity , Air Pollutants/analysis , Vehicle Emissions/analysis , Texas , Natural Gas , Environmental Monitoring , Formaldehyde/analysis
5.
Plant Physiol Biochem ; 207: 108400, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38295526

ABSTRACT

Lead (Pb) is a widespread highly toxic and persistent environmental pollutant. Plant leaves play a key role in accumulating atmospheric Pb, but its distribution in different cells and subcellular structures and the factors affecting it have been little studied. Here, Tillandsia usneoides, an indicator plant for atmospheric heavy metals, was treated with an aerosol generation device to analyze Pb contents in different cells (three types of cells in leaf surface scales, epidermal cells, mesophyll cells, vascular bundle cells), subcellular structures (cell wall, cell membrane, vacuoles, and organelles) and cell wall components (pectin, hemicellulose 1 and 2, and cellulose). Results show the different cells of T. usneoides leaves play distinct roles in the process of Pb retention. The outermost wing cells are structures that capture external pollutants, while mesophyll cells, as the aggregation site after material transport, ring cells, disc cells, epidermal cells, and vascular cells are material transporters. Pb was only detected in the cell wall and pectin, indicating the cell wall was the dominant subcellular structure for Pb retention, while pectin was the main component affecting Pb retention. FTIR analysis of cell wall components indicated the esterified carboxyl (CO) functional group in pectin may function in absorbing Pb. Pb entered leaf cells mainly in the form of low toxicity and activity to enhance its resistance.


Subject(s)
Lead , Plant Leaves , Tillandsia , Environmental Pollutants , Lead/toxicity , Lead/metabolism , Metals, Heavy/metabolism , Pectins/metabolism , Plant Leaves/metabolism
6.
Cancer Causes Control ; 35(2): 281-292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37733135

ABSTRACT

PURPOSE: Gallbladder cancers (GBC), unique to certain geographical regions, are lethal digestive tract cancers, disproportionately affecting women, with limited information on risk factors. METHODS: We evaluated the association between household cooking fuel and GBC risk in a hospital-based case-control study conducted in the North-East and East Indian states of Assam and Bihar. We explored the potential mediation by diet, fire-vents, 'daily exposure duration' and parity (among women). We recruited biopsy-confirmed GBC (n = 214) men and women aged 30-69 years between 2019 and 2021, and controls frequency-matched by age, sex and region (n = 166). Information about cooking fuel, lifestyle, personal and family history, female reproductive factors, socio-demographics, and anthropometrics was collected. We tested associations using multivariable logistic regression analyses. RESULTS: All participants (73.4% women) were categorised based on predominant cooking fuel use. Group-1: LPG (Liquefied Petroleum Gas) users in the previous 20 years and above without concurrent biomass use (26.15%); Group-2: LPG users in the previous 20 years and above with concurrent secondary biomass use (15.9%); Group-3: Biomass users for ≥ 20 years (57.95%). Compared to group-1, accounting for confounders, GBC risk was higher in group-2 [OR: 2.02; 95% CI: 1.00-4.07] and group-3 [OR: 2.01; 95% CI: 1.08-3.73] (p-trend:0.020). These associations strengthened among women that attenuated with high daily consumption of fruits-vegetables but not with fire-vents, 'daily exposure duration' or parity. CONCLUSION: Biomass burning was associated with a high-risk for GBC and should be considered as a modifiable risk factor for GBC. Clean cooking fuel can potentially mitigate, and a healthy diet can partially reduce the risk among women.


Subject(s)
Air Pollution, Indoor , Gallbladder Neoplasms , Petroleum , Male , Pregnancy , Humans , Female , Gallbladder Neoplasms/epidemiology , Gallbladder Neoplasms/etiology , Air Pollution, Indoor/adverse effects , Case-Control Studies , Cooking , Risk Factors , India/epidemiology
7.
Environ Sci Pollut Res Int ; 30(57): 120483-120495, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945953

ABSTRACT

Potato is an important crop worldwide and threatened by various environmental stresses, including elevated ozone (e[O3]). Here, we conducted a meta-analysis to quantify the effect of e[O3] on potato plants and how it varies depending upon different experimental conditions. Regarding plant growth and biomass, e[O3] significantly decreased shoot biomass by 18% and belowground biomass by 35%, while it increased the leaf area index by 19% and total number of injured leaves by 146%. As for yield, e[O3] significantly decreased the total tuber number by 21%. A relatively pronounced effect of e[O3] on the stomatal conductance was observed when exposure lasted 31-60 days, which was significantly greater than that after exposure lasted 96-311 days. The overall quantity of leaves was mainly decreased by higher (100-150 ppb) than lower (30-80 ppb) concentrations of e[O3] compared to ambient O3. The effect of e[O3] on the total tuber number was significant mainly when exposure lasted 31-90 days and was greater in plants grown in growth chambers than those planted in open-top chambers and glasshouses. The effect of e[O3] stress on physiology, growth, and yield varied among cultivars, with some cultivars showing marked tolerance relative to other cultivars. The findings can guide strategies to manage the negative impacts of e[O3] stress on potato production.


Subject(s)
Ozone , Plant Leaves , Solanum tuberosum , Air Pollutants/toxicity , Ozone/toxicity , Photosynthesis , Stress, Physiological
8.
J Allergy Clin Immunol Glob ; 2(4): 100177, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37876758

ABSTRACT

Background: Air pollutants, including particulates from wood smoke, are a significant cause of exacerbation of lung disease. γ-Tocopherol is an anti-inflammatory isoform of vitamin E that has been shown to reduce allergen-, ozone-, and endotoxin-induced inflammation. Objective: The objective of this study was to determine whether γ-tocopherol would prevent experimental wood smoke-induced airway inflammation in humans. Methods: This was a randomized, placebo-controlled clinical trial testing the effect of a short course of γ-tocopherol-enriched supplementation on airway inflammation following a controlled exposure to wood smoke particulates. Results: Short-course γ-tocopherol intervention did not reduce wood smoke-induced neutrophilic airway inflammation, but it did prevent wood smoke-induced eosinophilic airway inflammation. Conclusion: γ-Tocopherol is a potential intervention for exacerbation of allergic airway inflammation, but further study examining longer dosing periods is required.

9.
Sci Total Environ ; 905: 167042, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37709071

ABSTRACT

Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are described.


Subject(s)
Air Pollutants , Asthma , Allergens/analysis , Pollen/chemistry , Particulate Matter/analysis , Europe , Air Pollutants/analysis
10.
Environ Int ; 179: 108160, 2023 09.
Article in English | MEDLINE | ID: mdl-37660633

ABSTRACT

BACKGROUND: Reducing household air pollution (HAP) to levels associated with health benefits requires nearly exclusive use of clean cooking fuels and abandonment of traditional biomass fuels. METHODS: The Household Air Pollution Intervention Network (HAPIN) trial randomized 3,195 pregnant women in Guatemala, India, Peru, and Rwanda to receive a liquefied petroleum gas (LPG) stove intervention (n = 1,590), with controls expected to continue cooking with biomass fuels (n = 1,605). We assessed fidelity to intervention implementation and participant adherence to the intervention starting in pregnancy through the infant's first birthday using fuel delivery and repair records, surveys, observations, and temperature-logging stove use monitors (SUMs). RESULTS: Fidelity and adherence to the HAPIN intervention were high. Median time required to refill LPG cylinders was 1 day (interquartile range 0-2). Although 26% (n = 410) of intervention participants reported running out of LPG at some point, the number of times was low (median: 1 day [Q1, Q3: 1, 2]) and mostly limited to the first four months of the COVID-19 pandemic. Most repairs were completed on the same day as problems were reported. Traditional stove use was observed in only 3% of observation visits, and 89% of these observations were followed up with behavioral reinforcement. According to SUMs data, intervention households used their traditional stove a median of 0.4% of all monitored days, and 81% used the traditional stove < 1 day per month. Traditional stove use was slightly higher post-COVID-19 (detected on a median [Q1, Q3] of 0.0% [0.0%, 3.4%] of days) than pre-COVID-19 (0.0% [0.0%, 1.6%] of days). There was no significant difference in intervention adherence pre- and post-birth. CONCLUSION: Free stoves and an unlimited supply of LPG fuel delivered to participating homes combined with timely repairs, behavioral messaging, and comprehensive stove use monitoring contributed to high intervention fidelity and near-exclusive LPG use within the HAPIN trial.


Subject(s)
Air Pollution , COVID-19 , Petroleum , Female , Humans , Infant , Pregnancy , Pandemics , Research Design
11.
Environ Int ; 180: 108223, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37748372

ABSTRACT

BACKGROUND: Exclusive clean fuel use is essential for realizing health and other benefits but is often unaffordable. Decreasing household-level fuel needs could make exclusive clean fuel use more affordable, but there is a lack of knowledge on the amount of fuel savings that could be achieved through fuel conservation behaviors relevant to rural settings in low- and middle-income countries. METHODS: Within a trial in Peru, we trained a random half of intervention participants, who had previously received a liquefied petroleum gas (LPG) stove and were purchasing their own fuel, on fuel conservation strategies. We measured the amount of fuel and mega joules (MJ) of energy consumed by all participants, including control participants who were receiving free fuel from the trial. We administered surveys on fuel conservation behaviors and assigned a score based on the number of behaviors performed. RESULTS: Intervention participants with the training had a slightly higher conservation score than those without (7.2 vs. 6.6 points; p = 0.07). Across all participants, average daily energy consumption decreased by 9.5 MJ for each 1-point increase in conservation score (p < 0.001). Among households who used exclusively LPG (n = 99), each 1-point increase in conservation score was associated with a 0.04 kg decrease in LPG consumption per household per day (p = 0.03). Using pressure cookers and heating water in the sun decreased energy use, while using clay pots and forgetting to close stove knobs increased energy use. CONCLUSION: Our findings suggest that a household could save 1.16 kg of LPG per month for each additional fuel conservation behavior, for a maximum potential savings of 8.1 kg per month. Fuel conservation messaging could be integrated into national household energy policies to increase the affordability of exclusive clean fuel use, and subsequently achieve the environmental and health benefits that could accompany such a transition.


Subject(s)
Air Pollution, Indoor , Household Articles , Petroleum , Humans , Air Pollution, Indoor/analysis , Cooking , Public Policy , Costs and Cost Analysis
12.
Curr Allergy Asthma Rep ; 23(9): 541-553, 2023 09.
Article in English | MEDLINE | ID: mdl-37440094

ABSTRACT

PURPOSE OF REVIEW: To provide a review of emerging literature describing the impact of diet on the respiratory response to air pollution in asthma. RECENT FINDINGS: Asthma phenotyping (observable characteristics) and endotyping (mechanistic pathways) have increased the specificity of diagnostic and treatment pathways and opened the doors to the identification of subphenotypes with enhanced susceptibility to exposures and interventions. Mechanisms underlying the airway immune response to air pollution are still being defined but include oxidative stress, inflammation, and activation of adaptive and innate immune responses, with genetic susceptibility highlighted. Of these, neutrophil recruitment and activation appear prominent; however, understanding neutrophil function in response to pollutant exposures is a research gap. Diet may play a role in asthma pathogenesis and morbidity; therefore, diet modification is a potential target opportunity to protect against pollutant-induced lung injury. In particular, in vivo and in vitro data suggest the potential for diet to modify the inflammatory response in the airways, including impacts on neutrophil recruitment and function. Murine models provide compelling results in regard to the potential for dietary components (including fiber, antioxidants, and omega-3 fatty acids) to buffer against the inflammatory response to air pollution in the lung. Precision lifestyle approaches to asthma management and respiratory protection in the context of air pollution exposures may evolve to include diet, pending the results of further epidemiologic and causal investigation and with neutrophil recruitment and activation as a candidate mechanism.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Humans , Mice , Animals , Air Pollutants/adverse effects , Air Pollution/adverse effects , Lung , Diet/adverse effects , Environmental Exposure/adverse effects
13.
Environ Int ; 178: 108059, 2023 08.
Article in English | MEDLINE | ID: mdl-37413928

ABSTRACT

Household air pollution from solid cooking fuel use during gestation has been associated with adverse pregnancy and birth outcomes. The Household Air Pollution Intervention Network (HAPIN) trial was a randomized controlled trial of free liquefied petroleum gas (LPG) stoves and fuel in Guatemala, Peru, India, and Rwanda. A primary outcome of the main trial was to report the effects of the intervention on infant birth weight. Here we evaluate the effects of a LPG stove and fuel intervention during pregnancy on spontaneous abortion, postpartum hemorrhage, hypertensive disorders of pregnancy, and maternal mortality compared to women who continued to use solid cooking fuels. Pregnant women (18-34 years of age; gestation confirmed by ultrasound at 9-19 weeks) were randomly assigned to an intervention (n = 1593) or control (n = 1607) arm. Intention-to-treat analyses compared outcomes between the two arms using log-binomial models. Among the 3195 pregnant women in the study, there were 10 spontaneous abortions (7 intervention, 3 control), 93 hypertensive disorders of pregnancy (47 intervention, 46 control), 11 post postpartum hemorrhage (5 intervention, 6 control) and 4 maternal deaths (3 intervention, 1 control). Compared to the control arm, the relative risk of spontaneous abortion among women randomized to the intervention was 2.32 (95% confidence interval (CI): 0.60, 8.96), hypertensive disorders of pregnancy 1.02 (95% CI: 0.68, 1.52), postpartum hemorrhage 0.83 (95% CI: 0.25, 2.71) and 2.98 (95% CI: 0.31, 28.66) for maternal mortality. In this study, we found that adverse maternal outcomes did not differ based on randomized stove type across four country research sites.


Subject(s)
Abortion, Spontaneous , Air Pollution, Indoor , Air Pollution , Hypertension, Pregnancy-Induced , Petroleum , Postpartum Hemorrhage , Infant , Female , Humans , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Abortion, Spontaneous/etiology , Abortion, Spontaneous/chemically induced , Postpartum Hemorrhage/prevention & control , Postpartum Hemorrhage/chemically induced , Cooking
14.
Sci Total Environ ; 896: 165337, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37414168

ABSTRACT

The influence of the most frequent patterns of synoptic circulation on the dynamics of airborne pollen/spores recorded at the Barcelona Aerobiological Station (BCN) was analysed. Six pollen types (Platanus, Cupressaceae, Olea, Poaceae, Urticaceae and Amaranthaceae), and one fungal spore (Alternaria) were selected for their high allergenic effect in sensitive people. Six synoptic meteorological patterns were identified through cluster analysis of sea level pressure fields as the main responsible of the weather conditions in the Iberian Peninsula. The local meteorological conditions in Barcelona associated with each one of the synoptic types were also stablished. Different statistical methods were applied to analyse possible relationships between concentrations and timing of the recorded aerobiological particles and specific synoptic types. The study, focused in the 19-year period 2001-2019, shows that one of the scenarios, frequent in winter and linked to high stability and air-mass blockage, registered the highest mean and median values for Platanus and Cupressaceae, but it was not very relevant for the other taxa. It was also this scenario that turned out to be the most influent on the pollination timing showing a significant influence on the start occurrence of Urticaceae flowering and on the peak date of Platanus. On the other hand, the most frequent synoptic type in the period, relevant in spring and summer, was linked to sporadic episodes of levels considered to be of high risk of allergy to Platanus, Poaceae, and Urticaceae pollen, and Alternaria fungal spore. This synoptic pattern, characterized by the presence of the Azores anticyclone and the Atlantic low located in the north of the United Kingdom, was associated with high temperatures, low relative humidity and moderate winds from the NW in Barcelona. The identification of an interaction between synoptic meteorology and pollen/spore dynamics will allow better abatement measures, reducing adverse health effects on sensitive population.


Subject(s)
Air Pollutants , Meteorology , Humans , Environmental Monitoring , Spores, Fungal , Pollen/chemistry , Allergens/analysis , Seasons , Poaceae , Air Pollutants/analysis , Spain/epidemiology
15.
Environ Sci Technol ; 57(31): 11465-11475, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37493575

ABSTRACT

To examine the associations between macrosomia risk and exposure to fine particulate matter (PM2.5) and its chemical components during pregnancy, we collected birth records between 2010 and 2015 in mainland China from the National Free Preconception Health Examination Project and used satellite-based models to estimate concentrations of PM2.5 mass and five main components, namely, black carbon (BC), organic carbon (OC), nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+). Associations between macrosomia risk and prenatal exposure to PM2.5 were examined by logistic regression analysis, and the sensitive subgroups were explored by stratified analyses. Of the 3,248,263 singleton newborns from 336 cities, 165,119 (5.1%) had macrosomia. Each interquartile range increase in concentration of PM2.5 during the entire pregnancy was associated with increased risk of macrosomia (odds ratio (OR) = 1.18; 95% confidence interval (CI), 1.17-1.20). Among specific components, the largest effect estimates were found on NO3- (OR = 1.36; 95% CI, 1.35-1.38) followed by OC (OR = 1.23; 95% CI, 1.22-1.24), NH4+ (OR = 1.22; 95% CI, 1.21-1.23), and BC (OR = 1.21; 95% CI, 1.20-1.22). We also that found boys, women with a normal or lower prepregnancy body mass index, and women with irregular or no folic acid supplementation experienced higher risk of macrosomia associated with PM2.5 exposure.


Subject(s)
Air Pollutants , Air Pollution , Male , Pregnancy , Humans , Female , Infant, Newborn , Particulate Matter/analysis , Fetal Macrosomia/epidemiology , Fetal Macrosomia/chemically induced , Air Pollutants/adverse effects , Air Pollutants/analysis , Cohort Studies , Cities/epidemiology , China/epidemiology , Carbon , Soot/analysis , Air Pollution/analysis , Environmental Exposure/analysis
16.
J Am Coll Cardiol ; 82(9): 833-955, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37480922

ABSTRACT

AIM: The "2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease" provides an update to and consolidates new evidence since the "2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease" and the corresponding "2014 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease." METHODS: A comprehensive literature search was conducted from September 2021 to May 2022. Clinical studies, systematic reviews and meta-analyses, and other evidence conducted on human participants were identified that were published in English from MEDLINE (through PubMed), EMBASE, the Cochrane Library, Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. STRUCTURE: This guideline provides an evidenced-based and patient-centered approach to management of patients with chronic coronary disease, considering social determinants of health and incorporating the principles of shared decision-making and team-based care. Relevant topics include general approaches to treatment decisions, guideline-directed management and therapy to reduce symptoms and future cardiovascular events, decision-making pertaining to revascularization in patients with chronic coronary disease, recommendations for management in special populations, patient follow-up and monitoring, evidence gaps, and areas in need of future research. Where applicable, and based on availability of cost-effectiveness data, cost-value recommendations are also provided for clinicians. Many recommendations from previously published guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.


Subject(s)
Cardiology , Coronary Disease , Heart Diseases , Myocardial Ischemia , United States , Humans , Proliferating Cell Nuclear Antigen , American Heart Association , Chronic Disease
17.
Circulation ; 148(9): e9-e119, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37471501

ABSTRACT

AIM: The "2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease" provides an update to and consolidates new evidence since the "2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease" and the corresponding "2014 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease." METHODS: A comprehensive literature search was conducted from September 2021 to May 2022. Clinical studies, systematic reviews and meta-analyses, and other evidence conducted on human participants were identified that were published in English from MEDLINE (through PubMed), EMBASE, the Cochrane Library, Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. STRUCTURE: This guideline provides an evidenced-based and patient-centered approach to management of patients with chronic coronary disease, considering social determinants of health and incorporating the principles of shared decision-making and team-based care. Relevant topics include general approaches to treatment decisions, guideline-directed management and therapy to reduce symptoms and future cardiovascular events, decision-making pertaining to revascularization in patients with chronic coronary disease, recommendations for management in special populations, patient follow-up and monitoring, evidence gaps, and areas in need of future research. Where applicable, and based on availability of cost-effectiveness data, cost-value recommendations are also provided for clinicians. Many recommendations from previously published guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.


Subject(s)
Cardiology , Coronary Disease , Myocardial Ischemia , Humans , American Heart Association , Myocardial Ischemia/diagnosis , Proliferating Cell Nuclear Antigen , United States
18.
Adv Exp Med Biol ; 1426: 25-41, 2023.
Article in English | MEDLINE | ID: mdl-37464115

ABSTRACT

Human activity and increased use of fossil fuels have led to climate change. These changes are adversely affecting human health, including increasing the risk of developing asthma. Global temperatures are predicted to increase in the future. In 2019, asthma affected an estimated 262 million people and caused 455,000 deaths. These rates are expected to increase. Climate change by intensifying climate events such as drought, flooding, wildfires, sand storms, and thunderstorms has led to increases in air pollution, pollen season length, pollen and mold concentration, and allergenicity of pollen. These effects bear implications for the onset, exacerbation, and management of childhood asthma and are increasing health inequities. Global efforts to mitigate the effects of climate change are urgently needed with the goal of limiting global warming to between 1.5 and 2.0 °C of preindustrial times as per the 2015 Paris Agreement. Clinicians need to take an active role in these efforts in order to prevent further increases in asthma prevalence. There is a role for clinician advocacy in both the clinical setting as well as in local, regional, and national settings to install measures to control and curb the escalating disease burden of childhood asthma in the setting of climate change.


Subject(s)
Air Pollution , Asthma , Humans , Climate Change , Asthma/epidemiology , Allergens/adverse effects , Air Pollution/adverse effects , Pollen/adverse effects
19.
Soc Sci Med ; 329: 116040, 2023 07.
Article in English | MEDLINE | ID: mdl-37356190

ABSTRACT

OBJECTIVE: Although exposure to air/noise pollution and greenspace has been found to significantly affect people's physical and mental health outcomes, there is still a lack of knowledge on what built-environment and socioeconomic factors are significantly associated with people's tri-exposure to air/noise pollution and greenspace. This study analyzes the associations between built-environment and socioeconomic factors and the tri-exposure to greenspace and air/noise pollution in Hong Kong. METHOD: Based on individual-level activity data, real-time GPS trajectories, and exposure data collected by portable sensors as well as remote sensing satellite imagery, we employ multinomial logistic regression to determine the socioeconomic and built-environment factors that are significantly associated with the type of participants' tri-exposure at the grid cell level. RESULTS: The results show that higher transit nodal accessibility, building density, building height and land-use mix are significantly associated with a higher likelihood of being disadvantaged in terms of tri-exposure to air/noise pollution and greenspace. While more advantageous tri-exposures are significantly related to higher median monthly household income and sky view factor. CONCLUSION: Old high-rise high-density neighborhoods are more likely to be triply disadvantaged with low greenspace exposure but high air pollution and noise pollution exposure. The findings provide policymakers with critical reference in terms of addressing the inequalities in the tri-exposure outcomes.


Subject(s)
Air Pollution , Noise , Humans , Parks, Recreational , Air Pollution/adverse effects , Socioeconomic Factors , Residence Characteristics , Environmental Exposure/adverse effects
20.
Clin Epigenetics ; 15(1): 84, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179367

ABSTRACT

BACKGROUND: Higher exposure to traffic-related air pollution (TRAP) is related to lower fertility, with specific adverse effects on the ovary. Folic acid may attenuate these effects. Our goal was to explore the relation of TRAP exposure and supplemental folic acid intake with epigenetic aging and CpG-specific DNA methylation (DNAm) in granulosa cells (GC). Our study included 61 women undergoing ovarian stimulation at a fertility center (2005-2015). DNAm levels were profiled in GC using the Infinium MethylationEPIC BeadChip. TRAP was defined using a spatiotemporal model to estimate residence-based nitrogen dioxide (NO2) exposure. Supplemental folic acid intake was measured with a validated food frequency questionnaire. We used linear regression to evaluate whether NO2 or supplemental folic acid was associated with epigenetic age acceleration according to the Pan-tissue, mural GC, and GrimAge clocks or DNAm across the genome adjusting for potential confounders and accounting for multiple testing with a false discovery rate < 0.1. RESULTS: There were no associations between NO2 or supplemental folic acid intake and epigenetic age acceleration of GC. NO2 and supplemental folic acid were associated with 9 and 11 differentially methylated CpG sites. Among these CpGs, only cg07287107 exhibited a significant interaction (p-value = 0.037). In women with low supplemental folic acid, high NO2 exposure was associated with 1.7% higher DNAm. There was no association between NO2 and DNAm in women with high supplemental folic acid. The genes annotated to the top 250 NO2-associated CpGs were enriched for carbohydrate and protein metabolism, postsynaptic potential and dendrite development, and membrane components and exocytosis. The genes annotated to the top 250 supplemental folic acid-associated CpGs were enriched for estrous cycle, learning, cognition, synaptic organization and transmission, and size and composition of neuronal cell bodies. CONCLUSIONS: We found no associations between NO2, supplemental folic acid, and DNAm age acceleration of GC. However, there were 20 differentially methylated CpGs and multiple enriched GO terms associated with both exposures suggesting that differences in GC DNAm could be a plausible mechanism underlying the effects of TRAP and supplemental folic acid on ovarian function.


Subject(s)
Air Pollution , DNA Methylation , Humans , Female , Air Pollution/adverse effects , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Aging/genetics , Folic Acid/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL