Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230017, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38583481

ABSTRACT

Ecosystem response to climate change is complex. In order to forecast ecosystem dynamics, we need high-quality data on changes in past species abundance that can inform process-based models. Sedimentary ancient DNA (sedaDNA) has revolutionised our ability to document past ecosystems' dynamics. It provides time series of increased taxonomic resolution compared to microfossils (pollen, spores), and can often give species-level information, especially for past vascular plant and mammal abundances. Time series are much richer in information than contemporary spatial distribution information, which have been traditionally used to train models for predicting biodiversity and ecosystem responses to climate change. Here, we outline the potential contribution of sedaDNA to forecast ecosystem changes. We showcase how species-level time series may allow quantification of the effect of biotic interactions in ecosystem dynamics, and be used to estimate dispersal rates when a dense network of sites is available. By combining palaeo-time series, process-based models, and inverse modelling, we can recover the biotic and abiotic processes underlying ecosystem dynamics, which are traditionally very challenging to characterise. Dynamic models informed by sedaDNA can further be used to extrapolate beyond current dynamics and provide robust forecasts of ecosystem responses to future climate change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Subject(s)
DNA, Ancient , Ecosystem , Animals , Climate Change , Biodiversity , Pollen , Mammals
2.
Mol Biol Evol ; 40(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37562011

ABSTRACT

In this study, we report 21 ancient shotgun genomes from present-day Western Hungary, from previously understudied Late Copper Age Baden, and Bronze Age Somogyvár-Vinkovci, Kisapostag, and Encrusted Pottery archeological cultures (3,530-1,620 cal Bce). Our results indicate the presence of high steppe ancestry in the Somogyvár-Vinkovci culture. They were then replaced by the Kisapostag group, who exhibit an outstandingly high (up to ∼47%) Mesolithic hunter-gatherer ancestry, despite this component being thought to be highly diluted by the time of the Early Bronze Age. The Kisapostag population contributed the genetic basis for the succeeding community of the Encrusted Pottery culture. We also found an elevated hunter-gatherer component in a local Baden culture-associated individual, but no connections were proven to the Bronze Age individuals. The hunter-gatherer ancestry in Kisapostag is likely derived from two main sources, one from a Funnelbeaker or Globular Amphora culture-related population and one from a previously unrecognized source in Eastern Europe. We show that this ancestry not only appeared in various groups in Bronze Age Central Europe but also made contributions to Baltic populations. The social structure of Kisapostag and Encrusted Pottery cultures is patrilocal, similarly to most contemporaneous groups. Furthermore, we developed new methods and method standards for computational analyses of ancient DNA, implemented to our newly developed and freely available bioinformatic package. By analyzing clinical traits, we found carriers of aneuploidy and inheritable genetic diseases. Finally, based on genetic and anthropological data, we present here the first female facial reconstruction from the Bronze Age Carpathian Basin.


Subject(s)
Genome, Human , Human Migration , Humans , History, Ancient , Hungary , Europe , DNA, Ancient
3.
Curr Biol ; 33(3): 423-433.e5, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36638796

ABSTRACT

The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.


Subject(s)
Gene Pool , Genome, Human , Humans , History, Ancient , Infant, Newborn , Asia , Russia , Siberia , Human Migration , Genetics, Population
4.
Proc Natl Acad Sci U S A ; 119(41): e2205272119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191217

ABSTRACT

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.


Subject(s)
Archaeology , Military Personnel , Archaeology/methods , Europe , Greece , History, Ancient , Humans , Warfare
5.
Curr Biol ; 32(12): 2668-2680.e6, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35588742

ABSTRACT

Archaeological consideration of maritime connectivity has ranged from a biogeographical perspective that considers the sea as a barrier to a view of seaways as ancient highways that facilitate exchange. Our results illustrate the former. We report three Late Neolithic human genomes from the Mediterranean island of Malta that are markedly enriched for runs of homozygosity, indicating inbreeding in their ancestry and an effective population size of only hundreds, a striking illustration of maritime isolation in this agricultural society. In the Late Neolithic, communities across mainland Europe experienced a resurgence of hunter-gatherer ancestry, pointing toward the persistence of different ancestral strands that subsequently admixed. This is absent in the Maltese genomes, giving a further indication of their genomic insularity. Imputation of genome-wide genotypes in our new and 258 published ancient individuals allowed shared identity-by-descent segment analysis, giving a fine-grained genetic geography of Neolithic Europe. This highlights the differentiating effects of seafaring Mediterranean expansion and also island colonization, including that of Ireland, Britain, and Orkney. These maritime effects contrast profoundly with a lack of migratory barriers in the establishment of Central European farming populations from Anatolia and the Balkans.


Subject(s)
Archaeology , Genome, Human , Agriculture , DNA, Ancient , DNA, Mitochondrial/genetics , Europe , Geography , History, Ancient , Human Migration , Humans
6.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35578825

ABSTRACT

Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation. Here, we present high quality genome-wide data from the Linear Pottery Culture site Derenburg-Meerenstieg II (DER) (N = 32 individuals) in Central Germany. Population genetic analyses show that the DER individuals carried predominantly Anatolian Neolithic-like ancestry and a very limited degree of local hunter-gatherer admixture, similar to other early European farmers. Increasing the Linear Pottery culture cohort size to ∼100 individuals allowed us to perform various frequency- and haplotype-based analyses to investigate signatures of selection associated with changes following the adoption of the Neolithic lifestyle. In addition, we developed a new method called Admixture-informed Maximum-likelihood Estimation for Selection Scans that allowed us test for selection signatures in an admixture-aware fashion. Focusing on the intersection of results from these selection scans, we identified various loci associated with immune function (JAK1, HLA-DQB1) and metabolism (LMF1, LEPR, SORBS1), as well as skin color (SLC24A5, CD82) and folate synthesis (MTHFR, NBPF3). Our findings shed light on the evolutionary pressures, such as infectious disease and changing diet, that were faced by the early farmers of Western Eurasia.


Subject(s)
Farmers , Human Migration , Agriculture , DNA, Ancient , DNA, Mitochondrial/genetics , Europe , Genetics, Population , History, Ancient , Humans
7.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35131896

ABSTRACT

Orkney was a major cultural center during the Neolithic, 3800 to 2500 BC. Farming flourished, permanent stone settlements and chambered tombs were constructed, and long-range contacts were sustained. From ∼3200 BC, the number, density, and extravagance of settlements increased, and new ceremonial monuments and ceramic styles, possibly originating in Orkney, spread across Britain and Ireland. By ∼2800 BC, this phenomenon was waning, although Neolithic traditions persisted to at least 2500 BC. Unlike elsewhere in Britain, there is little material evidence to suggest a Beaker presence, suggesting that Orkney may have developed along an insular trajectory during the second millennium BC. We tested this by comparing new genomic evidence from 22 Bronze Age and 3 Iron Age burials in northwest Orkney with Neolithic burials from across the archipelago. We identified signals of inward migration on a scale unsuspected from the archaeological record: As elsewhere in Bronze Age Britain, much of the population displayed significant genome-wide ancestry deriving ultimately from the Pontic-Caspian Steppe. However, uniquely in northern and central Europe, most of the male lineages were inherited from the local Neolithic. This suggests that some male descendants of Neolithic Orkney may have remained distinct well into the Bronze Age, although there are signs that this had dwindled by the Iron Age. Furthermore, although the majority of mitochondrial DNA lineages evidently arrived afresh with the Bronze Age, we also find evidence for continuity in the female line of descent from Mesolithic Britain into the Bronze Age and even to the present day.


Subject(s)
DNA, Mitochondrial/genetics , Human Migration/history , Paternal Inheritance/genetics , Archaeology , DNA, Ancient/analysis , England , Europe , Female , Fossils , Gene Pool , Genome, Human/genetics , Genomics , Haplotypes , History, Ancient , History, Medieval , Humans , Ireland , Male , Scotland
8.
Tuberculosis (Edinb) ; 137: 102181, 2022 12.
Article in English | MEDLINE | ID: mdl-35210171

ABSTRACT

The Vác Mummy Collection comprises 265 well documented mummified individuals from the late 16th to the early 18th century that were discovered in 1994 inside a crypt in Vác, Hungary. This collection offers a unique opportunity to study the relationship between humans and pathogens in the pre-antibiotic era, as previous studies have shown a high proportion of tuberculosis (TB) infections among the individuals. In this study, we recovered ancient DNA with shotgun sequencing from a rib bone sample of a 18th century midwife. This individual is part of the collection and shows clear skeletal changes that are associated with tuberculosis and syphilis. To provide molecular proof, we applied a metagenomic approach to screen for ancient pathogen DNA. While we were unsuccessful to recover any ancient Treponema pallidum DNA, we retrieved high coverage ancient TB DNA and identified a mixed infection with two distinct TB strains by detailed single-nucleotide polymorphism and phylogenetic analysis. Thereby, we have obtained comprehensive results demonstrating the long-time prevalence of mixed infections with the sublineages L4.1.2.1/Haarlem and L4.10/PGG3 within the local community in preindustrial Hungary and put them in context of sociohistorical factors.


Subject(s)
Coinfection , Midwifery , Mycobacterium tuberculosis , Tuberculosis , Female , Humans , Coinfection/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Hungary , Mycobacterium tuberculosis/genetics , Phylogeny , Tuberculosis/diagnosis , Tuberculosis/history , History, 18th Century , Metagenome
9.
Am J Hum Genet ; 108(9): 1792-1806, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34411538

ABSTRACT

The Finnish population is a unique example of a genetic isolate affected by a recent founder event. Previous studies have suggested that the ancestors of Finnic-speaking Finns and Estonians reached the circum-Baltic region by the 1st millennium BC. However, high linguistic similarity points to a more recent split of their languages. To study genetic connectedness between Finns and Estonians directly, we first assessed the efficacy of imputation of low-coverage ancient genomes by sequencing a medieval Estonian genome to high depth (23×) and evaluated the performance of its down-sampled replicas. We find that ancient genomes imputed from >0.1× coverage can be reliably used in principal-component analyses without projection. By searching for long shared allele intervals (LSAIs; similar to identity-by-descent segments) in unphased data for >143,000 present-day Estonians, 99 Finns, and 14 imputed ancient genomes from Estonia, we find unexpectedly high levels of individual connectedness between Estonians and Finns for the last eight centuries in contrast to their clear differentiation by allele frequencies. High levels of sharing of these segments between Estonians and Finns predate the demographic expansion and late settlement process of Finland. One plausible source of this extensive sharing is the 8th-10th centuries AD migration event from North Estonia to Finland that has been proposed to explain uniquely shared linguistic features between the Finnish language and the northern dialect of Estonian and shared Christianity-related loanwords from Slavic. These results suggest that LSAI detection provides a computationally tractable way to detect fine-scale structure in large cohorts.


Subject(s)
Alleles , DNA, Ancient/analysis , Genome, Human , Human Migration/history , Pedigree , Estonia , Female , Finland , Gene Frequency , Genealogy and Heraldry , High-Throughput Nucleotide Sequencing , History, 21st Century , History, Ancient , History, Medieval , Humans , Language/history , Male
10.
Am J Phys Anthropol ; 176(2): 223-236, 2021 10.
Article in English | MEDLINE | ID: mdl-34308549

ABSTRACT

OBJECTIVE: We aim to identify maternal genetic affinities between the Middle to Final Neolithic (3850-2300 BC) populations from present-day Poland and possible genetic influences from the Pontic steppe. MATERIALS AND METHODS: We conducted ancient DNA studies from populations associated with Zlota, Globular Amphora, Funnel Beaker, and Corded Ware cultures (CWC). We sequenced genomic libraries on Illumina platform to generate 86 complete ancient mitochondrial genomes. Some of the samples were enriched for mitochondrial DNA using hybridization capture. RESULTS: The maternal genetic composition found in Zlota-associated individuals resembled that found in people associated with the Globular Amphora culture which indicates that both groups likely originated from the same maternal genetic background. Further, these two groups were closely related to the Funnel Beaker culture-associated population. None of these groups shared a close affinity to CWC-associated people. Haplogroup U4 was present only in the CWC group and absent in Zlota group, Globular Amphora, and Funnel Beaker cultures. DISCUSSION: The prevalence of mitochondrial haplogroups of Neolithic farmer origin identified in Early, Middle and Late Neolithic populations suggests a genetic continuity of these maternal lineages in the studied area. Although overlapping in time - and to some extent - in cultural expressions, none of the studied groups (Zlota, Globular Amphora, Funnel Beaker), shared a close genetic affinity to CWC-associated people, indicating a larger extent of cultural influence from the Pontic steppe than genetic exchange. The higher frequency of haplogroup U5b found in populations associated with Funnel Beaker, Globular Amphora, and Zlota cultures suggest a gradual maternal genetic influx from Mesolithic hunter-gatherers. Moreover, presence of haplogroup U4 in Corded Ware groups is most likely associated with the migrations from the Pontic steppe at the end of the Neolithic and supports the observed genetic distances.


Subject(s)
DNA, Ancient , DNA, Mitochondrial/genetics , White People/genetics , Anthropology, Physical , Haplotypes/genetics , History, Ancient , Humans , Poland
11.
Mol Biol Evol ; 38(11): 4908-4917, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34320653

ABSTRACT

Although Uzbekistan and Central Asia are known for the well-studied Bronze Age civilization of the Bactria-Margiana Archaeological Complex (BMAC), the lesser-known Iron Age was also a dynamic period that resulted in increased interaction and admixture among different cultures from this region. To broaden our understanding of events that impacted the demography and population structure of this region, we generated 27 genome-wide single-nucleotide polymorphism capture data sets of Late Iron Age individuals around the Historical Kushan time period (∼2100-1500 BP) from three sites in South Uzbekistan. Overall, Bronze Age ancestry persists into the Iron Age in Uzbekistan, with no major replacements of populations with Steppe-related ancestry. However, these individuals suggest diverse ancestries related to Iranian farmers, Anatolian farmers, and Steppe herders, with a small amount of West European Hunter Gatherer, East Asian, and South Asian Hunter Gatherer ancestry as well. Genetic affinity toward the Late Bronze Age Steppe herders and a higher Steppe-related ancestry than that found in BMAC populations suggest an increased mobility and interaction of individuals from the Northern Steppe in a Southward direction. In addition, a decrease of Iranian and an increase of Anatolian farmer-like ancestry in Uzbekistan Iron Age individuals were observed compared with the BMAC populations from Uzbekistan. Thus, despite continuity from the Bronze Age, increased admixture played a major role in the shift from the Bronze to the Iron Age in southern Uzbekistan. This mixed ancestry is also observed in other parts of the Steppe and Central Asia, suggesting more widespread admixture among local populations.


Subject(s)
Archaeology , Human Migration , DNA, Ancient , Farmers , Genome, Human , History, Ancient , Humans , Iran , Uzbekistan
12.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34312252

ABSTRACT

Archaeological dental calculus, or mineralized plaque, is a key tool to track the evolution of oral microbiota across time in response to processes that impacted our culture and biology, such as the rise of farming during the Neolithic. However, the extent to which the human oral flora changed from prehistory until present has remained elusive due to the scarcity of data on the microbiomes of prehistoric humans. Here, we present our reconstruction of oral microbiomes via shotgun metagenomics of dental calculus in 44 ancient foragers and farmers from two regions playing a pivotal role in the spread of farming across Europe-the Balkans and the Italian Peninsula. We show that the introduction of farming in Southern Europe did not alter significantly the oral microbiomes of local forager groups, and it was in particular associated with a higher abundance of the species Olsenella sp. oral taxon 807. The human oral environment in prehistory was dominated by a microbial species, Anaerolineaceae bacterium oral taxon 439, that diversified geographically. A Near Eastern lineage of this bacterial commensal dispersed with Neolithic farmers and replaced the variant present in the local foragers. Our findings also illustrate that major taxonomic shifts in human oral microbiome composition occurred after the Neolithic and that the functional profile of modern humans evolved in recent times to develop peculiar mechanisms of antibiotic resistance that were previously absent.


Subject(s)
Agriculture/history , DNA, Ancient , Dental Calculus/genetics , Dental Calculus/microbiology , Microbiota/genetics , Bacteria/genetics , Balkan Peninsula , Dental Calculus/chemistry , Drug Resistance, Microbial/genetics , Europe , History, Ancient , History, Medieval , Humans , Phylogeny , Plants/chemistry
13.
Curr Biol ; 31(12): 2576-2591.e12, 2021 06 21.
Article in English | MEDLINE | ID: mdl-33974848

ABSTRACT

Across Europe, the genetics of the Chalcolithic/Bronze Age transition is increasingly characterized in terms of an influx of Steppe-related ancestry. The effect of this major shift on the genetic structure of populations in the Italian Peninsula remains underexplored. Here, genome-wide shotgun data for 22 individuals from commingled cave and single burials in Northeastern and Central Italy dated between 3200 and 1500 BCE provide the first genomic characterization of Bronze Age individuals (n = 8; 0.001-1.2× coverage) from the central Italian Peninsula, filling a gap in the literature between 1950 and 1500 BCE. Our study confirms a diversity of ancestry components during the Chalcolithic and the arrival of Steppe-related ancestry in the central Italian Peninsula as early as 1600 BCE, with this ancestry component increasing through time. We detect close patrilineal kinship in the burial patterns of Chalcolithic commingled cave burials and a shift away from this in the Bronze Age (2200-900 BCE) along with lowered runs of homozygosity, which may reflect larger changes in population structure. Finally, we find no evidence that the arrival of Steppe-related ancestry in Central Italy directly led to changes in frequency of 115 phenotypes present in the dataset, rather that the post-Roman Imperial period had a stronger influence, particularly on the frequency of variants associated with protection against Hansen's disease (leprosy). Our study provides a closer look at local dynamics of demography and phenotypic shifts as they occurred as part of a broader phenomenon of widespread admixture during the Chalcolithic/Bronze Age transition.


Subject(s)
DNA, Ancient , Genome, Human/genetics , Human Migration/history , Datasets as Topic , Genetics, Population , Genomics , History, Ancient , Humans , Italy , Leprosy/genetics , Phenotype
14.
Mol Genet Genomics ; 296(4): 783-797, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34037863

ABSTRACT

East Asia, geographically extending to the Pamir Plateau in the west, to the Himalayan Mountains in the southwest, to Lake Baikal in the north and to the South China Sea in the south, harbors a variety of people, cultures, and languages. To reconstruct the natural history of East Asians is a mission of multiple disciplines, including genetics, archaeology, linguistics, and ethnology. Geneticists confirm the recent African origin of modern East Asians. Anatomically modern humans arose in Africa and immigrated into East Asia via a southern route approximately 50,000 years ago. Following the end of the Last Glacial Maximum approximately 12,000 years ago, rice and millet were domesticated in the south and north of East Asia, respectively, which allowed human populations to expand and linguistic families and ethnic groups to develop. These Neolithic populations produced a strong relation between the present genetic structures and linguistic families. The expansion of the Hongshan people from northeastern China relocated most of the ethnic populations on a large scale approximately 5300 years ago. Most of the ethnic groups migrated to remote regions, producing genetic structure differences between the edge and center of East Asia. In central China, pronounced population admixture occurred and accelerated over time, which subsequently formed the Han Chinese population and eventually the Chinese civilization. Population migration between the north and the south throughout history has left a smooth gradient in north-south changes in genetic structure. Observation of the process of shaping the genetic structure of East Asians may help in understanding the global natural history of modern humans.


Subject(s)
Chromosomes, Human, Y/genetics , Civilization/history , Ethnicity/history , Anthropology, Cultural , Asian People/classification , Asian People/ethnology , Asian People/genetics , China/ethnology , Ethnicity/classification , Ethnicity/genetics , Asia, Eastern/ethnology , Gene Flow , Genetics, Population/history , History, Ancient , Humans , Linguistics/classification , Linguistics/history , Phylogeny
15.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33723011

ABSTRACT

Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al., Nat. Clim. Chang. (3), 673-677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al., Philos. Trans. A Math. Phys. Eng. Sci. (371), 20130097 (2013) and Post et al., SciAdv (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic-documented here by multiple proxies-likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.


Subject(s)
Climate Change , DNA, Ancient/analysis , DNA, Plant/analysis , Plant Dispersal , Pollen/genetics , Arctic Regions , Fossils , Geologic Sediments/analysis , Lakes , Paleontology
16.
Am J Hum Genet ; 108(3): 517-524, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33667394

ABSTRACT

Tuberculosis (TB), usually caused by Mycobacterium tuberculosis bacteria, is the first cause of death from an infectious disease at the worldwide scale, yet the mode and tempo of TB pressure on humans remain unknown. The recent discovery that homozygotes for the P1104A polymorphism of TYK2 are at higher risk to develop clinical forms of TB provided the first evidence of a common, monogenic predisposition to TB, offering a unique opportunity to inform on human co-evolution with a deadly pathogen. Here, we investigate the history of human exposure to TB by determining the evolutionary trajectory of the TYK2 P1104A variant in Europe, where TB is considered to be the deadliest documented infectious disease. Leveraging a large dataset of 1,013 ancient human genomes and using an approximate Bayesian computation approach, we find that the P1104A variant originated in the common ancestors of West Eurasians ∼30,000 years ago. Furthermore, we show that, following large-scale population movements of Anatolian Neolithic farmers and Eurasian steppe herders into Europe, P1104A has markedly fluctuated in frequency over the last 10,000 years of European history, with a dramatic decrease in frequency after the Bronze Age. Our analyses indicate that such a frequency drop is attributable to strong negative selection starting ∼2,000 years ago, with a relative fitness reduction on homozygotes of 20%, among the highest in the human genome. Together, our results provide genetic evidence that TB has imposed a heavy burden on European health over the last two millennia.


Subject(s)
DNA, Ancient/analysis , Polymorphism, Genetic/genetics , TYK2 Kinase/genetics , Tuberculosis/genetics , Body Remains , Europe , Female , Genome, Human/genetics , History, Ancient , Humans , Male , Tuberculosis/history , Tuberculosis/microbiology
17.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33558418

ABSTRACT

The expansion of anatomically modern humans (AMHs) from Africa around 65,000 to 45,000 y ago (ca. 65 to 45 ka) led to the establishment of present-day non-African populations. Some paleoanthropologists have argued that fossil discoveries from Huanglong, Zhiren, Luna, and Fuyan caves in southern China indicate one or more prior dispersals, perhaps as early as ca. 120 ka. We investigated the age of the human remains from three of these localities and two additional early AMH sites (Yangjiapo and Sanyou caves, Hubei) by combining ancient DNA (aDNA) analysis with a multimethod geological dating strategy. Although U-Th dating of capping flowstones suggested they lie within the range ca. 168 to 70 ka, analyses of aDNA and direct AMS 14C dating on human teeth from Fuyan and Yangjiapo caves showed they derive from the Holocene. OSL dating of sediments and AMS 14C analysis of mammal teeth and charcoal also demonstrated major discrepancies from the flowstone ages; the difference between them being an order of magnitude or more at most of these localities. Our work highlights the surprisingly complex depositional history recorded at these subtropical caves which involved one or more episodes of erosion and redeposition or intrusion as recently as the late Holocene. In light of our findings, the first appearance datum for AMHs in southern China should probably lie within the timeframe set by molecular data of ca. 50 to 45 ka.


Subject(s)
Archaeology , Caves/chemistry , DNA, Ancient/analysis , Fossils , Geologic Sediments/analysis , Human Migration/history , Radiometric Dating/methods , China , History, Ancient , Humans
18.
Curr Biol ; 31(5): 1072-1083.e10, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33434506

ABSTRACT

The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.


Subject(s)
DNA, Ancient , Human Migration , Europe , France , Genome, Human , Genomics , History, Ancient , Humans
19.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443177

ABSTRACT

Humans reached the Mariana Islands in the western Pacific by ∼3,500 y ago, contemporaneous with or even earlier than the initial peopling of Polynesia. They crossed more than 2,000 km of open ocean to get there, whereas voyages of similar length did not occur anywhere else until more than 2,000 y later. Yet, the settlement of Polynesia has received far more attention than the settlement of the Marianas. There is uncertainty over both the origin of the first colonizers of the Marianas (with different lines of evidence suggesting variously the Philippines, Indonesia, New Guinea, or the Bismarck Archipelago) as well as what, if any, relationship they might have had with the first colonizers of Polynesia. To address these questions, we obtained ancient DNA data from two skeletons from the Ritidian Beach Cave Site in northern Guam, dating to ∼2,200 y ago. Analyses of complete mitochondrial DNA genome sequences and genome-wide SNP data strongly support ancestry from the Philippines, in agreement with some interpretations of the linguistic and archaeological evidence, but in contradiction to results based on computer simulations of sea voyaging. We also find a close link between the ancient Guam skeletons and early Lapita individuals from Vanuatu and Tonga, suggesting that the Marianas and Polynesia were colonized from the same source population, and raising the possibility that the Marianas played a role in the eventual settlement of Polynesia.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Ancient/analysis , DNA, Mitochondrial/genetics , Human Migration/history , Native Hawaiian or Other Pacific Islander/genetics , Archaeology , Computer Simulation , Genome , Guam , Haplotypes , History, Ancient , Humans , Indonesia , Micronesia , New Guinea , Philippines , Phylogeny , Polymorphism, Single Nucleotide , Polynesia , Vanuatu
20.
Cell ; 183(4): 890-904.e29, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33157037

ABSTRACT

The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region's population history. Here, we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.


Subject(s)
Genetics, Population , Grassland , Archaeology , Europe , Female , Gene Frequency/genetics , Gene Pool , Genetic Heterogeneity , Genome, Human , Geography , Haplotypes/genetics , History, Ancient , Humans , Male , Mongolia , Principal Component Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL