Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.046
Filter
Add more filters

Publication year range
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Article in English | LILACS | ID: biblio-1538056

ABSTRACT

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Subject(s)
Animals , Rats , Plant Extracts/administration & dosage , Croton/chemistry , Inflammation/drug therapy , Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Phenols/analysis , Plant Extracts/chemistry , Plant Leaves , Disease Models, Animal , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry
2.
Medicina (B.Aires) ; Medicina (B.Aires);84(2): 206-220, jun. 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1564775

ABSTRACT

Abstract Introduction : Chia and flax seeds are rich in alpha-linolenic acid (ALA), which is bioconverted into the active derivatives eicosapentaenoic (EPA) and doco sahexaenoic (DHA) having multiple beneficial effects. However, there is limited knowledge about the anti-inflammatory effects of chia and flax integral flours diets rich in ALA. Objective : The study aimed to evaluate the anti-inflammatory effect of dietary supplementation with integral chia and flax flours in a murine model of LPS-induced systemic inflammation. Methods : Balb/c mice were distributed into three groups: diet A (control), diet B (supplemented with inte gral chia flour), and diet C (supplemented with integral flax flour). Nutritional, hematological, and biochemical determinations were performed. ALA, EPA, and DHA were assessed by GC-MS in the liver, brain, cardiac and skeletal muscles. NF-kB immunoassays were per formed in kidney, liver, and peritoneal macrophages, respectively. The phagocytic capacity was determined in peritoneal macrophages and the expression of the pro- and anti-inflammatory cytokines was assessed by RT-qPCR in the kidney, liver, and spleen. Results : Diets B and C exhibited optimal nutritional adequacy and caused increased levels of ALA, EPA, and DHA in critical tissues compared to the control. The phagocytic capacity of murine peritoneal macrophages (p< 0.01) and IL-10 transcription increased, whereas the expression of NF-κB, IL-1β, IL-6, and TNF-α decreased in animals fed both experimental diets. Conclusions : This work contributes to the current knowledge of the anti-inflammatory effects of chia and flax integral flours rich in ALA and reinforces the health advantages of their consumption.


Resumen Introducción : Las semillas de chía y lino son ricas en ácido alfa-linolénico (ALA), sus derivados activos eico sapentaenoico (EPA) y docosahexaenoico (DHA) ejercen probados efectos beneficiosos. Existe un conocimiento limitado sobre los efectos protectores de ambas semillas bajo la forma de harinas integrales, siendo de particular interés el efecto antiinflamatorio. Objetivo : El objetivo de este trabajo fue evaluar el efecto antiinflamatorio de la suplementación dietaria con harinas integrales de semillas de chía y lino en un modelo murino de inflamación sistémica inducido por LPS. Métodos : Ratones de la cepa Balb/c fueron distribui dos en tres grupos: dieta A (control), dieta B (suplemen tada con harina integral de chía) y dieta C (suplementa da con harina integral de lino). Se efecturaron determi naciones nutricionales, hematológicas y bioquímicas. El contenido de ALA, EPA y DHA en hígado, cerebro, corazón y músculo esquelético se determinó por cromatografía GC-MS. Se realizó la inmunodetección de NF-kB en macrófagos peritoneales, riñón e hígado. Se determinó la capacidad fagocítica de macrófagos peritoneales y se evaluó la expresión de citoquinas pro y antiinflamatorias por RT-qPCR en riñón, hígado y bazo. Resultados : Las dietas B y C mostraron una adecua ción nutricional óptima y generaron niveles elevados de ALA, EPA y DHA en tejidos críticos. La capacidad fagocítica de los macrófagos peritoneales (p< 0.01) y la transcripción de IL-10 aumentó, mientras que la expre sión de NF-κB, IL-1β, IL-6 y TNF-α disminuyó en animales de los grupos B y C. Conclusiones : Este trabajo contribuye al conocimien to actual de los efectos antiinflamatorios de ambas hari nas integrales y refuerza los beneficios de su consumo.

3.
J Agric Food Chem ; 72(20): 11503-11514, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634424

ABSTRACT

The fruits of Rosa roxburghii Tratt. are edible nutritional food with high medicinal value and have been traditionally used as Chinese folk medicine for a long time. In this study, 26 triterpenoids including four new pentacyclic triterpenoids, roxbuterpenes A-D (1, 4, 5, and 24), along with 22 known analogues (2, 3, 6-23, 25, and 26), were isolated from the fruits of R. roxburghii. Their chemical structures were determined on the basis of extensive spectroscopic analyses (including IR, HRESIMS and NMR spectroscopy). The absolute configuration of roxbuterpene A (1) was determined by an X-ray crystallographic analysis. This is the first report of the crystal structure of 5/6/6/6/6-fused system pentacyclic triterpenoid. Notably, roxbuterpenes A and B (1 and 4) possessed the A-ring contracted triterpenoid and nortriterpenoid skeletons with a rare 5/6/6/6/6-fused system, respectively. Compounds 1-7, 11, 13-15, 18-20, 24, and 25 exhibited moderate or potent inhibitory activities against α-glucosidase. Compounds 2, 4, 6, 11, and 14 showed strong activities against α-glucosidase with IC50 values of 8.4 ± 1.6, 7.3 ± 2.2, 13.6 ± 1.4, 0.9 ± 0.4, and 12.5 ± 2.4 µM, respectively (positive control acarbose, 10.1 ± 0.8 µM). Compounds 13, 14, and 16 moderately inhibited the release of NO (nitric oxide) with IC50 values ranging from 25.1 ± 2.0 to 51.4 ± 3.1 µM. Furthermore, the expressions of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) were detected by ELISA (enzyme-linked immunosorbent assay), and compounds 13, 14, and 16 exhibited moderate inhibitory effects on TNF-α and IL-6 release in a dose-dependent manner ranging from 12.5 to 50 µM.


Subject(s)
Anti-Inflammatory Agents , Fruit , Glycoside Hydrolase Inhibitors , Rosa , Triterpenes , alpha-Glucosidases , Animals , Mice , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Fruit/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , RAW 264.7 Cells , Rosa/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology
4.
Trop Anim Health Prod ; 56(4): 142, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662082

ABSTRACT

Incorporating Curcumin into animal diets holds significant promise for enhancing both animal health and productivity, with demonstrated positive impacts on antioxidant activity, anti-microbial responses. Therefore, this study aimed to determine whether adding Curcumin to the diet of dairy calves would influence ruminal fermentation, hematologic, immunological, oxidative, and metabolism variables. Fourteen Jersey calves were divided into a control group (GCON) and a treatment group (GTRA). The animals in the GTRA received a diet containing 65.1 mg/kg of dry matter (DM) Curcumin (74% purity) for an experimental period of 90 days. Blood samples were collected on days 0, 15, 45, and 90. Serum levels of total protein and globulins were higher in the GTRA group (P < 0.05) than the GCON group. In the GTRA group, there was a reduction in pro-inflammatory cytokines (IL-1ß and IL-6) (P < 0.05) and an increase in IL-10 (which acts on anti-inflammatory responses) (P < 0.05) when compared to the GCON. There was a significantly higher (P < 0.05) concentration of immunoglobulin A (IgA) in the serum of the GTRA than the GCON. A Treatment × Day interaction was observed for haptoglobin levels, which were higher on day 90 in animals that consumed Curcumin than the GCON (P < 0.05). The catalase and superoxide dismutase activities were significantly higher (P < 0.05) in GTRA, reducing lipid peroxidation when compared to the GCONT. Hematologic variables did not differ significantly between groups. Among the metabolic variables, only urea was higher in the GTRA group when compared to the GCON. Body weight and feed efficiency did not differ between groups (meaning the percentage of apparent digestibility of dry matter, crude protein, and acid detergent fiber (ADF) and neutral detergent fiber (NDF). There was a tendency (P = 0.09) for treatment effect and a treatment x day interaction (P = 0.05) for levels of short-chain fatty acids in rumen fluid, being lower in animals that consumed curcumin. There was a treatment vs. day interaction (P < 0.05) for the concentration of acetate in the rumen fluid (i.e., on day 45, had a reduction in acetate; on day 90, values were higher in the GTRA group when compared to the GCON). We conclude that there was no evidence in the results from this preliminary trial that Curcumin in the diet of dairy calves interfered with feed digestibility. Curcumin may have potential antioxidant, anti-inflammatory, and immune effects that may be desirable for the production system of dairy calves.


Subject(s)
Animal Feed , Curcumin , Diet , Dietary Supplements , Fermentation , Rumen , Animals , Curcumin/administration & dosage , Curcumin/pharmacology , Rumen/metabolism , Rumen/drug effects , Cattle , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Oxidative Stress/drug effects , Male , Cytokines/metabolism , Weaning , Antioxidants/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Female
5.
Virol J ; 21(1): 95, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664855

ABSTRACT

BACKGROUND: African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS: Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS: Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.


Subject(s)
African Swine Fever Virus , Anti-Inflammatory Agents , Antiviral Agents , Animals , African Swine Fever Virus/drug effects , African Swine Fever Virus/physiology , Antiviral Agents/pharmacology , Swine , Anti-Inflammatory Agents/pharmacology , Chlorocebus aethiops , Vero Cells , Macrophages/drug effects , Macrophages/virology , Macrophages/immunology , African Swine Fever/virology , Virus Replication/drug effects , Biological Products/pharmacology , Drug Evaluation, Preclinical , Cytopathogenic Effect, Viral/drug effects , Cytokines/metabolism , Virus Internalization/drug effects
6.
3 Biotech ; 14(5): 126, 2024 May.
Article in English | MEDLINE | ID: mdl-38585411

ABSTRACT

Genus Mucuna encompasses several plant species renowned for their utilization in traditional Ayurvedic medicine for the treatment of Parkinson's disease, chiefly due to their exceptionally high L-dopa content relative to other plants. However, limited information exists regarding Mucuna laticifera, a newly identified species within the Mucuna genus. This study unveils a remarkable L-dopa content of 174.3 mg/g in M. laticifera seeds, surpassing all previously documented Mucuna species. Moreover, this research marks the first documentation of L-dopa, flavonoids, and phenolics within M. laticifera seeds. Furthermore, the aqueous extract derived from these seeds exhibits robust antioxidant properties. Investigation into its anti-inflammatory potential reveals a significant reduction in paw swelling and neutrophil infiltration at inflammatory sites in a carrageenan-induced rat model. Gene expression analysis utilizing a rat paw model demonstrates that the seed extract significantly downregulates the expression of various inflammation-related genes compared to carrageenan-treated rats. Collectively, these findings clearly substantiate the anti-inflammatory activity of M. laticifera seed extract. The exceptional L-dopa content combined with its anti-inflammatory properties position M. laticifera seeds as a promising therapeutic option for neurodegenerative diseases like Parkinson's, as well as various inflammatory conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03969-w.

7.
Fitoterapia ; 175: 105939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570096

ABSTRACT

Sesquiterpenes are a class of metabolites derived from plant species with immunomodulatory activity. In this study, we evaluated the effects of treatment with costic acid on inflammation, angiogenesis, and fibrosis induced by subcutaneous sponge implants in mice. One sponge disc per animal was aseptically implanted in the dorsal region of the mice and treated daily with costic acid (at concentrations of 0.1, 1, and 10 µg diluted in 10 µL of 0.5% DMSO) or 0.5% DMSO (control group). After 9 days of treatment, the animals were euthanized, and the implants collected for further analysis. Treatment with costic acid resulted in the reduction of the inflammatory parameters evaluated compared to the control group, with a decrease in the levels of inflammatory cytokines and chemokines (TNF, CXCL-1, and CCL2) and in the activity of MPO and NAG enzymes. Costic acid administration altered the process of mast cell degranulation. We also observed a reduction in angiogenic parameters, such as a decrease in the number of blood vessels, the hemoglobin content, and the levels of VEGF and FGF cytokines. Finally, when assessing implant-induced fibrogenesis, we observed a reduction in the levels of the pro-fibrogenic cytokine TGF-ß1, and lower collagen deposition. The results of this study demonstrate, for the first time, the anti-inflammatory, anti-angiogenic, and anti-fibrotic effects of costic acid in an in vivo model of chronic inflammation and reinforce the therapeutic potential of costic acid.


Subject(s)
Collagen , Cytokines , Inflammation , Sesquiterpenes , Animals , Mice , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Collagen/metabolism , Inflammation/drug therapy , Cytokines/metabolism , Male , Fibrosis , Porifera , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Neovascularization, Pathologic/drug therapy , Angiogenesis
8.
Fitoterapia ; 175: 105954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583638

ABSTRACT

Six previously undescribed diterpenoid glucosides, along with four known compounds, were isolated from the aerial parts of Sigesbeckia glabrescens. The structures and absolute configurations of undescribed compounds were elucidated using extensive spectroscopic techniques, ECD calculations and chemical methods. Compounds 1 and 8 exhibited anti-inflammatory activity against LPS-induced NO production in RAW 264.7 macrophages, with compound 8 demonstrating significant inhibitory activity compared to positive control minocycline, boasting an IC50 value at 14.20 µM.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Glucosides , Nitric Oxide , Phytochemicals , Plant Components, Aerial , Animals , RAW 264.7 Cells , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Glucosides/pharmacology , Glucosides/isolation & purification , Diterpenes/pharmacology , Diterpenes/isolation & purification , Nitric Oxide/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Components, Aerial/chemistry , China , Macrophages/drug effects , Asteraceae/chemistry , Sigesbeckia
9.
Fitoterapia ; 175: 105948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588904

ABSTRACT

Four new undescribed halimane- and labdane-type diterpenoids, named zeylleucapenoids E-H (1-4), along with four known analogues (5-8), were isolated from the aerial parts of Leucas zeylanica (L.) R. Br. Their structures were determined by comprehensive spectroscopic analysis and computational calculations. Compounds 1 and 2 are the highly modified halimane diterpenoids featuring a 6/6/6-fused tricyclic system with an unusual six-membered 6,11-ether ring. Compound 8 exhibits nontoxic effects for zebrafish embryo, while it displays efficient reduction against NO production in a dose-dependent manner and strongly suppresses the secretion of LPS-induced TNF-α and IL-6 cytokines in RAW264.7 macrophages. In addition, marked reductions of iNOS and COX-2 expression were observed. Molecular docking analysis indicated that 8 has high affinities with the target amino acid residues on protein-binding sites, which may be a possible mechanism contributing to the anti-inflammatory potential of this molecule.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Molecular Docking Simulation , Plant Components, Aerial , Zebrafish , Animals , Mice , RAW 264.7 Cells , Plant Components, Aerial/chemistry , Molecular Structure , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Fabaceae/chemistry , Nitric Oxide/metabolism , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Tumor Necrosis Factor-alpha/metabolism , China , Interleukin-6/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
10.
Fitoterapia ; 175: 105963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631598

ABSTRACT

Four new monomeric sorbicillinoids, trichillinoids A - D (1-4), along with two known dimeric sorbicillinoids (5 and 6), and five known monomeric sorbicillinoids (7-11), were obtained from the marine-fish-derived fungus Trichoderma sp. G13. They were structurally characterized on the basis of comprehensive spectroscopic investigations (NMR, HRESIMS, and ECD). Compounds 1-4 displayed moderate anti-inflammatory activities, according to inhibiting the production of NO in RAW264.7 cells activated with IC50 values ranging from 14 to 20 µM.


Subject(s)
Anti-Inflammatory Agents , Trichoderma , Mice , Animals , RAW 264.7 Cells , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Trichoderma/chemistry , Nitric Oxide/metabolism , Fishes/microbiology , China
11.
Food Chem ; 450: 139296, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636381

ABSTRACT

Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.


Subject(s)
Chitosan , Folic Acid , Nanoparticles , Quercetin , Resveratrol , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Folic Acid/chemistry , Folic Acid/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Quercetin/pharmacology , Quercetin/administration & dosage , Nanoparticles/chemistry , Resveratrol/chemistry , Resveratrol/pharmacology , Resveratrol/administration & dosage , Animals , Mice , Humans , Drug Carriers/chemistry , Drug Delivery Systems , RAW 264.7 Cells
12.
Fitoterapia ; 175: 105970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653340

ABSTRACT

Eleven new highly oxygenated eremophilane-type sesquiterpenoids were isolated from the whole plant of Synotis solidaginea, including two pairs of C-8 S/R epimers. The structures of the new compounds were elucidated on the basis of detailed spectroscopic analysis and the absolute configurations of 1 and 9 were confirmed by single-crystal X-ray crystallography using Cu Kα radiation. All the isolates were tested for the inhibition of LPS-stimulated NO production in macrophage-like mouse monocytic leukemia RAW264.7 cells. Compound 1 exhibited weak inhibitory effects with an IC50 of 71.2 µM.


Subject(s)
Nitric Oxide , Phytochemicals , Sesquiterpenes , Mice , Animals , RAW 264.7 Cells , Molecular Structure , Nitric Oxide/metabolism , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , China , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/isolation & purification
13.
Front Pharmacol ; 15: 1328977, 2024.
Article in English | MEDLINE | ID: mdl-38645561

ABSTRACT

Introduction: P. candolleana Wight et Arn. Is a traditional Chinese herbal medicine used by the Gelao nationality in southwest China, has been historically applied to treat various gastrointestinal disorders. Despite its traditional usage, scientific evidence elucidating its efficacy and mechanisms in treating ulcerative colitis (UC) remains sparse. This study aimed to determine the quality and chemical composition of Pimpinella candolleana and to identify its potential therapeutic targets and mechanisms in acetic acid-induced ulcerative colitis (UC) rats through integrated approaches. Methods: Morphological and microscopic characteristics, thin layer chromatography (TLC) identification, and quantitative analysis of P. candolleana were performed. UPLC-Q-TOF-MS, network pharmacology, and molecular docking were used to identify its chemical composition and predict its related targets in UC. Furthermore, a rat model was established to evaluate the therapeutic effect and potential mechanism of P. candolleana on UC. Results: Microscopic identification revealed irregular and radial arrangement of the xylem in P. candolleana, with a light green cross-section and large medullary cells. UPLC-Q-TOF-MS analysis detected and analyzed 570 metabolites, including flavonoids, coumarins, and terpenoids. Network pharmacology identified 12 effective components and 176 target genes, with 96 common targets for P. candolleana-UC, including quercetin, luteolin, and nobiletin as key anti-inflammatory components. GO and KEGG revealed the potential involvement of their targets in RELA, JUN, TNF, IKBKB, PTGS2, and CHUK, with action pathways such as PI3K-Akt, TNF, IL-17, and apoptosis. Molecular docking demonstrated strong affinity and binding between these key components (quercetin, luteolin, and nobiletin) and the key targets of the pathway, including JUN and TNF. Treatment with P. candolleana improved body weight loss, the disease activity index, and colonic histological damage in UC rats. Pimpinella candolleana also modulated the levels of IL-2 and IL-6 in UC rats, reduced the expression of pro-inflammatory cytokines such as IL-6, MAPK8, TNF-α, CHUK, and IKBKB mRNA, and decreased the expression of TNF, IKBKB, JUN, and CHUK proteins in the colon of UC rats, thereby reducing inflammation and alleviating UC symptoms. Conclusion: P. candolleana exerts its protective effect on UC by reducing the expression of proinflammatory cytokines and inhibiting inflammation, providing scientific evidence for its traditional use in treating gastrointestinal diseases. This study highlights the potential of P. candolleana as a natural therapeutic agent for UC and contributes to the development of novel medicines for UC treatment.

14.
Korean J Pain ; 37(2): 151-163, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557656

ABSTRACT

Background: Galangin, commonly employed in traditional Chinese medicine for its diverse medicinal properties, exhibits potential in treating inflammatory pain. Nevertheless, its mechanism of action remains unclear. Methods: Mice were randomly divided into 4 groups for 7 days: a normal control group, a galangin-treated (25 and 50 mg/kg), and a positive control celecoxib (20 mg/kg). Analgesic and anti-inflammatory effects were evaluated using a hot plate test, acetic acid-induced writhing test, acetic acid-induced vascular permeability test, formalininduced paw licking test, and carrageenan-induced paw swelling test. The interplay between galangin, transient receptor potential vanilloid 1 (TRPV1), NF-κB, COX-2, and TNF-α proteins was evaluated via molecular docking. COX- 2, PGE2, IL-1ß, IL-6, and TNF-α levels in serum were measured using ELISA after capsaicin administration (200 nmol/L). TRPV1 expression in the dorsal root ganglion was analyzed by Western blot. The quantities of substance P (SP) and calcitonin gene-related peptide (CGRP) were assessed using qPCR. Results: Galangin reduced hot plate-induced licking latency, acetic acid-induced contortions, carrageenantriggered foot inflammation, and capillary permeability in mice. It exhibited favorable affinity towards TRPV1, NF- κB, COX-2, and TNF-α, resulting in decreased levels of COX-2, PGE2, IL-1ß, IL-6, and TNF-α in serum following capsaicin stimulation. Galangin effectively suppressed the upregulation of TRPV1 protein and associated receptor neuropeptides CGRP and SP mRNA, while concurrently inhibiting the expression of NF-κB, TNF-α, COX-2, and PGE2 mRNA. Conclusions: Galangin exerts its anti-inflammatory pain effects by inhibiting TRPV1 activation and regulating COX-2, NF-κB/TNF-α expression, providing evidence for the use of galangin in the management of inflammatory pain.

15.
J Ethnopharmacol ; 329: 118163, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plants in the genus Hypericum (Hypericaceae), include more than 500 species worldwide, and many are valued for their medicinal properties, and are used as traditional herbal medicines. However, only H. perforatum is officially recognized as herbal drug in several pharmacopoeias, and used as an antidepressant clinically. Hypericum perforatum had been used as an herbal medicine since the Han Dynasty (206 B.C. -220 A.D.) in China. It taxonomically belongs to the section Hypericum in the genus Hypericum. There are about 42 species in the section Hypericum, with six species occurring in China. All six are recorded as traditional herbal medicines for treating aliments, including hepatitis, malaria, traumatic hemorrhage, irregular menstruation, wounds, and bruises. AIM OF THE STUDY: The study aimed to characterize the chemical profiles of five phylogenetically related Hypericum species, and compare their metabolites with three H. perforatum products. Informed by ethnobotanical use, the extracts prepared from the five species were further investigated into anticancer, anti-inflammatory and antiplasmodial activity. This study tested the hypothesis that systematic metabolomic and bioactivity characterization of species in section Hypericum will help to validate their phytotherapeutic use and reveal potential drug lead compounds. MATERIALS AND METHODS: Targeted and non-targeted metabolic analyses coupled with chemometrics were conducted on H. perforatum and four medicinal species, H. attenuatum, H. enshiense, H. erectum, and H. faberi, native to China from section Hypericum. UPLC-QTOF-MS/MS and UPLC-TQD-MS/MS were used for non-targeted and targeted metabolic analyses, respectively. Cytotoxicity bioassays on four cancer cell lines, anti-inflammation tests and anti-plasmodial activity on Plasmodium falciparum 3D7, selected based on traditional medicinal use, were evaluated on extracts from Hypericum species. Progenesis QI and EZinfo were used for chemometrics analysis to link the chemical profile and bioassay activity to aid in the identification of bioactive compounds. RESULTS: In total, 58 compounds were identified from the five species, including compounds with well-characterized bioactivity. Hypericum attenuatum, H. erectum, and H. perforatum, displayed the highest cytotoxicity, and contain the cytotoxic compounds petiolin A, prolificin A, and hypercohin G, respectively. Hypericum faberi and H. perforatum showed the highest anti-inflammatory activity, with pseudohypericin, quercetin and chlorogenic acid being observed at higher concentrations. Hypericum perforatum and H. erectum showed anti-plasmodial activity, with higher hyperforin and xanthones in these species that may account for the anti-plasmodial activity. CONCLUSIONS: This study characterized the chemical differences among five Hypericum species using metabolomics. These ethnomedically important species were tested for their biological activities in three distinct in vitro assays. The ethnobotanical data were useful for identifying bioactive Hypericum species. Hypericum attenuatum, H. erectum and H. faberi are promising phytotherapeutic species, although they are much less studied than H. perforatum, St. John's wort. Combining ethnobotanical surveys with chemometric analyses and bioactivity screening can greatly enhance the discovery of promising active constituents.


Subject(s)
Hypericum , Metabolomics , Plant Extracts , Hypericum/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Antimalarials/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Plasmodium falciparum/drug effects , Animals
16.
J Ethnopharmacol ; 329: 118137, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38574778

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: When exacerbated, inflammatory processes can culminate in physical and emotional disorders and, if not stopped, can be lethal. The high prevalence of inflammation has become a public health problem, and the need for new drugs to treat this pathology is imminent. The use of medicinal plants has emerged as an alternative, and a survey of data that corroborates its application in inflammatory diseases is the starting point. Furthermore, Brazil harbors a megadiversity, and the traditional use of plants is relevant and needs to be preserved and carefully explored for the discovery of new medicines. AIM OF THE STUDY: This review sought to survey the medicinal plants traditionally used in Brazil for the treatment of inflammatory processes and to perform, in an integrative way, a data survey of these species and analysis of their phytochemical, pharmacological, and molecular approaches. MATERIALS AND METHODS: Brazilian plants that are traditionally used for inflammation (ophthalmia, throat inflammation, orchitis, urinary tract inflammation, ear inflammation, and inflammation in general) are listed in the DATAPLAMT database. This database contains information on approximately 3400 native plants used by Brazilians, which were registered in specific documents produced until 1950. These inflammatory disorders were searched in scientific databases (PubMed/Medline, Scopus, Web of Science, Lilacs, Scielo, Virtual Health Library), with standardization of DECS/MESH descriptors for inflammation in English, Spanish, French, and Portuguese, without chronological limitations. For the inclusion criteria, all articles had to be of the evaluated plant species, without association of synthesized substances, and full articles free available in any of the four languages searched. Duplicated articles and those that were not freely available were excluded. RESULTS: A total of 126 species were identified, culminating in 6181 articles in the search. After evaluation of the inclusion criteria, 172 articles representing 40 different species and 38 families were included in the study. Comparison of reproducibility in intra-species results became difficult because of the large number of extraction solvents tested and the wide diversity of evaluation models used. Although the number of in vitro and in vivo evaluations was high, only one clinical study was found (Abrus precatorius). In the phytochemical analyses, more than 225 compounds, mostly phenolic compounds, were identified. CONCLUSION: This review allowed the grouping of preclinical and clinical studies of several Brazilian species traditionally used for the treatment of many types of inflammation, corroborating new searches for their pharmacological properties as a way to aid public health. Furthermore, the large number of plants that have not yet been studied has encouraged new research to revive traditional knowledge.


Subject(s)
Anti-Inflammatory Agents , Ethnopharmacology , Medicine, Traditional , Phytotherapy , Plants, Medicinal , Brazil , Humans , Plants, Medicinal/chemistry , Ethnopharmacology/methods , Medicine, Traditional/methods , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Animals , Inflammation/drug therapy , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Plant Preparations/therapeutic use , Plant Preparations/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/pharmacology
17.
Phytother Res ; 38(6): 3169-3189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616356

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles, leading to neuronal loss. Curcumin, a polyphenolic compound derived from Curcuma longa, has shown potential neuroprotective effects due to its anti-inflammatory and antioxidant properties. This review aims to synthesize current preclinical data on the anti-neuroinflammatory mechanisms of curcumin in the context of AD, addressing its pharmacokinetics, bioavailability, and potential as a therapeutic adjunct. An exhaustive literature search was conducted, focusing on recent studies within the last 10 years related to curcumin's impact on neuroinflammation and its neuroprotective role in AD. The review methodology included sourcing articles from specialized databases using specific medical subject headings terms to ensure precision and relevance. Curcumin demonstrates significant neuroprotective properties by modulating neuroinflammatory pathways, scavenging reactive oxygen species, and inhibiting the production of pro-inflammatory cytokines. Despite its potential, challenges remain regarding its limited bioavailability and the scarcity of comprehensive human clinical trials. Curcumin emerges as a promising therapeutic adjunct in AD due to its multimodal neuroprotective benefits. However, further research is required to overcome challenges related to bioavailability and to establish effective dosing regimens in human subjects. Developing novel delivery systems and formulations may enhance curcumin's therapeutic potential in AD treatment.


Subject(s)
Alzheimer Disease , Anti-Inflammatory Agents , Curcumin , Neuroprotective Agents , Curcumin/pharmacology , Curcumin/therapeutic use , Alzheimer Disease/drug therapy , Humans , Neuroprotective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Animals , Neuroinflammatory Diseases/drug therapy , Antioxidants/pharmacology , Curcuma/chemistry , Biological Availability
18.
Discov Med ; 36(183): 799-815, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665028

ABSTRACT

BACKGROUND: Calcium oxalate monohydrate (COM) forms the most common type of kidney stones observed in clinics, elevated levels of urinary oxalate being the principal risk factor for such an etiology. The objective of the present study was to evaluate the anti-nephrolithiatic effect of herbo-mineral formulation, Lithom. METHODS: The in vitro biochemical synthesis of COM crystals in the presence of Lithom was performed and observations were made by microscopy and Scanning Electron Microscope (SEM) based analysis for the detection of crystal size and morphology. The phytochemical composition of Lithom was evaluated by Ultra-High-Performance Liquid Chromatography (UHPLC). The in vivo model of Ethylene glycol-induced hyperoxaluria in Sprague-Dawley rats was used for the evaluation of Lithom. The animals were randomly allocated to 5 different groups namely Normal control, Disease control (ethylene glycol (EG), 0.75%, 28 days), Allopurinol (50 mg/kg, q.d.), Lithom (43 mg/kg, b.i.d.), and Lithom (129 mg/kg, b.i.d.). Analysis of crystalluria, oxalate, and citrate levels, oxidative stress parameters (malondialdehyde (MDA), catalase, myeloperoxidase (MPO)), and histopathology by hematoxylin and eosin (H&E) and Von Kossa staining was performed for evaluation of Lithom. RESULTS: The presence of Lithom during COM crystals synthesis significantly reduced the average crystal area, feret's diameter, and area-perimeter ratio, in a dose-dependent manner. SEM analysis revealed that COM crystals synthesized in the presence of 100 and 300 µg/mL of Lithom exhibited a veritable morphological transition from irregular polygons with sharp edges to smoothened smaller cuboid polygons. UHPLC analysis of Lithom revealed the presence of Trigonelline, Bergenin, Xanthosine, Adenosine, Bohoervinone B, Vanillic acid, and Ellagic acid as key phytoconstituents. In EG-induced SD rats, the Lithom-treated group showed a decrease in elevated urinary oxalate levels, oxidative stress, and renal inflammation. Von Kossa staining of kidney tissue also exhibited a marked reduction in crystal depositions in Lithom-treated groups. CONCLUSION: Taken together, Lithom could be a potential clinical-therapeutic alternative for management of nephrolithiasis.


Subject(s)
Calcium Oxalate , Disease Models, Animal , Hyperoxaluria , Nephrolithiasis , Oxidative Stress , Rats, Sprague-Dawley , Animals , Calcium Oxalate/metabolism , Calcium Oxalate/chemistry , Hyperoxaluria/chemically induced , Hyperoxaluria/metabolism , Oxidative Stress/drug effects , Rats , Nephrolithiasis/chemically induced , Nephrolithiasis/metabolism , Nephrolithiasis/pathology , Male , Crystallization , Ethylene Glycol/toxicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
19.
Cureus ; 16(3): e55987, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38606241

ABSTRACT

Background Herbal medicine, or phytotherapy, has been used for centuries in traditional healing practices to harness the therapeutic properties of different plant-derived elements. Acorus calamus, a perennial herbaceous plant, has significant historical importance in traditional medicine, specifically in Ayurveda, where it is referred to as "Vacha." This study investigates the antioxidant, anti-inflammatory, and antimicrobial characteristics of the A. calamus dimethyl sulfoxide (DMSO) extract. The objectives of the research are to provide valuable knowledge about the preparation of A. calamus DMSO extract and to explore its potential anti-inflammatory, antioxidant, and antimicrobial effects. Materials and methods The A. calamus DMSO extract was derived from leaves, and its antioxidant activity was evaluated through the use of the 2,2-diphenyl-1-picryl hydrazyl (DPPH) assay, hydroxyl radical scavenging assay (H2O2 assay), and ferric reducing antioxidant power (FRAP) assay. The anti-inflammatory activity was assessed using the Bovine serum albumin (BSA) denaturation assay, egg albumin (EA) denaturation assay, and membrane stabilization assays. The antimicrobial activity was analyzed using the agar well diffusion technique and the time-kill curve assay. Results In DPPH and H2O2 tests, the DMSO extract of A. calamus showed significant antioxidant activity, near that of standard ascorbic acid. The FRAP assay demonstrated a correlation between the dose and the activity of reducing ferric ions. The A. calamus DMSO extract exhibited significant anti-inflammatory properties in BSA and EA denaturation assays, similar to the standard diclofenac sodium. The anti-inflammatory potential of the A. calamus DMSO extract was further confirmed through the membrane stabilization assay. The DMSO extract of A. calamus exhibited a significant inhibition zone against the pathogens Streptococcus mutans and Pseudomonas aeruginosa during the antimicrobial evaluation, surpassing the efficacy of the standard antibiotic. The time-kill curve assay validated the antibacterial efficacy, which was dependent on the concentration. Conclusion The A. calamus DMSO extract exhibited promising antioxidant, anti-inflammatory, and antimicrobial properties, supporting its traditional use in alternative medicine. The findings suggest its potential as a natural resource of compounds with bioactive properties for use in pharmaceutical and nutraceutical applications.

20.
Foods ; 13(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38611422

ABSTRACT

Clovamide (N-caffeoyl-L-3,4-dihydroxyphenylalanine, N-caffeoyldopamine, N-caffeoyl-L-DOPA) is a derivative of caffeic acid, belonging to phenolamides (hydroxycinnamic acid amides). Despite a growing interest in the biological activity of natural polyphenolic substances, studies on the properties of clovamide and related compounds, their significance as bioactive components of the diet, as well as their effects on human health are a relatively new research trend. On the other hand, in vitro and in vivo evidence indicates the considerable potential of these substances in the context of maintaining human health or using them as pharmacophores. The name "clovamide" directly derives from red clover (Trifolium pratense L.), being the first identified source of this compound. In the human diet, clovamides are mainly present in chocolate and other cocoa-containing products. Furthermore, their occurrence in some medicinal plants has also been confirmed. The literature reports deal with the antioxidant, anti-inflammatory, neuroprotective, antiplatelet/antithrombotic and anticancer properties of clovamide-type compounds. This narrative review summarizes the available data on the biological activity of clovamides and their potential health-supporting properties, including prospects for the use of these compounds for therapeutic purposes.

SELECTION OF CITATIONS
SEARCH DETAIL