Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Fitoterapia ; 175: 105958, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604262

ABSTRACT

In our quest to discover advanced glycation end products (AGEs) inhibitors from Clinacanthus nutans (Burm.f.) Lindau leaves, we conducted a bioactivity-based molecular networking. This approach integrates LC-MS2 profiling and in vitro antiglycation data to predict bioactive compounds. We began by screening three extracts: 100% ethanol, 70% ethanol and 100% water alongside the in vitro antioxidant activity, total phenolics content (TPC) and schaftoside content. Among these extracts, 100% ethanol extract exhibited the highest total AGEs inhibition effects (IC50 = 80.18 ± 11.6 µg/mL), DPPH scavenging activity (IC50 = 747.40 ± 10.30 µg/mL) and TPC (26.54 ± 2.09 µg GAE /mg extract). Intriguingly, 100% ethanol extract contained the lowest amount of schaftoside, suggesting the involvement of other phytochemicals in the antiglycation effects. The molecular networking and in silico structural annotations of 401 LC-MS features detected in the fractions from 100% ethanol extract predicted 21 bioactive compounds (p < 0.05, r > 0.90), including several C40 carotenoids, alkaloids containing tetrapyrrole structures and fatty acids. On the contrary, all phenolics showed weak correlations with antiglycation effects. These predictions were further validated in vitro, where carotenoid lutein showed half maximal inhibitory concentration, IC50 = 96 ± 8 µM and selected flavonoid-C-glycosides exhibited weaker inhibitions (IC50 between 568 and 1922 µM). Notably, lutein content was higher in freeze-dried leaves (12.42 ± 0.82 mg/100 g) than oven-dried, although the former was associated with elevated mercury levels. In summary, C. nutans exhibited potential antiglycation and antioxidant activity, and lutein was identified as the main bioactive principle.


Subject(s)
Acanthaceae , Antioxidants , Glycation End Products, Advanced , Phenols , Phytochemicals , Plant Extracts , Plant Leaves , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Glycation End Products, Advanced/antagonists & inhibitors , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Acanthaceae/chemistry , Phenols/pharmacology , Phenols/analysis , Phenols/isolation & purification , Molecular Structure
2.
Nutrients ; 16(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542752

ABSTRACT

Probiotic fermentation of plant-based materials can lead to the generation of various bioactive substances via bacterial metabolites and the biotransformation of phenolic compounds. We compared the metabolic differences between fermentation by Limosilactobacillus fermentum KCTC15072BP (LFG) and fermentation by Lactiplantibacillus plantarum KGMB00831 (LPG) in guava leaf extract (0%, 0.5%, and 2% (w/v))-supplemented medium via non-targeted metabolite profiling. By performing multivariate statistical analysis and comparing the different guava leaf extract groups, 21 guava-derived and 30 bacterial metabolites were identified. The contents of guava-derived glucogallin, gallic acid, and sugar alcohols were significantly higher in LFG than they were in LPG. Similarly, significantly higher contents of guava-derived pyrogallol, vanillic acid, naringenin, phloretin, and aromatic amino acid catabolites were obtained with LPG than with LFG. LFG led to significantly higher antioxidant activities than LPG, while LPG led to significantly higher antiglycation activity than LFG. Interestingly, the fermentation-induced increase in the guava-leaf-extract-supplemented group was significantly higher than that in the control group. Thus, the increased bioactivity induced by guava fermentation with the Lactobacillaceae strain may be influenced by the synergistic effects between microbial metabolites and plant-derived compounds. Overall, examining the metabolic changes in plant-based food fermentation by differentiating the origin of metabolites provides a better understanding of food fermentation.


Subject(s)
Limosilactobacillus fermentum , Psidium , Antioxidants/metabolism , Psidium/chemistry , Phenols/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
J Wound Care ; 33(Sup3a): xlviii-lx, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38457268

ABSTRACT

OBJECTIVE: To investigate the role of Mentha piperita silver nanoparticle-loaded carbopol gel for enhanced wound healing in a diabetic rat model. This research further aims to explore bioactive compounds derived from Mentha piperita obtained from high altitude. METHOD: Methanolic extracts of Mentha piperita (MP), Mentha spicata (MS) and Mentha longifolia (ML) were used to synthesise silver nanoparticles (AgNP). AgNP synthesis was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antioxidant activity was assessed by 2, 2-diphenyl-1-picrylhydrazyl (DDPH) assay. Antiglycation potential was determined by measuring the fluorescent advanced glycation end products. The bioactive compound identified in the Mentha piperita methanolic (MPM) fraction through electrospray ionisation tandem mass spectrometric analysis (ESI-MS) was responsible for the highest antiglycation. The effects of MPM and MPM.AgNP-loaded Carbopol (Sanare Lab, India) on wound healing were compared in male, alloxan-induced, diabetic albino rats (200-250g), divided into control and treated groups. Effects on wound healing were assessed via histopathology. RESULTS: UV-Vis and FTIR confirmed NP synthesis with peaks for flavonoids and polyphenols. SEM and XRD explored the cubical, 30-63nm crystalline NP. The maximum antioxidant and antiglycation potential was observed in order of; MP.AgNP>MS.AgNP>ML.AgNP. The highest antioxidant activity was observed by methanolic and aqueous MP.AgNPs (88.55% and 83.63%, respectively) at 2mg.ml-1, and (75.16% and 69.73%, respectively) at 1mg.ml-1, compared to ascorbic acid (acting as a positive control, 90.01%). MPM.AgNPs demonstrated the best antiglycation potential of 75.2% and 83.3% at 1mg.ml-1 and 2mg.ml-1, respectively, comparable to positive control (rutin: 88.1%) at 14 days post-incubation. A similar trend was observed for antimicrobial activity against Bacillus subtilis, Micrococcus luteus and Escherichia coli with an inhibition zone of 21mm, 21.6mm and 24.6mm. Rosmarinic acid was the active compound present in Mentha piperita, as identified by ESI-MS. MPM.AgNP-loaded Carbopol resulted in 100% wound closure compared with control at 20 days post-wounding. In the treatment group, re-epithelialisation was achieved by day 18, compared with 25 days for the positive control group. CONCLUSION: MPM.AgNP-loaded Carbopol demonstrated safer and more effective biological properties, hence accelerating the diabetic excision wound healing process in alloxan-induced diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Mentha , Metal Nanoparticles , Rats , Male , Animals , Silver/pharmacology , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Mentha piperita , Antioxidants/pharmacology , Alloxan/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Wound Healing , Colloids , Anti-Bacterial Agents/pharmacology
4.
Chem Biodivers ; 21(4): e202400319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423999

ABSTRACT

A new oxidized heptene, 7-benzoyloxy-4-hydroxy-1-ethoxy-2E,4Z-heptadiene-1,6-dione, namely siamheptene A (1), together with eight known compounds (2-9), were isolated from the leaves of Uvaria siamensis. Their structures were elucidated by detailed analysis of spectroscopic (IR, 1D and 2D NMR) and mass spectrometric data. Compound 9 is reported for the first time from Uvaria genus. Siamheptene A was evaluated for cytotoxicity against HeLa (cervical cancer cells), A549 (lung cancer cells), and Vero cells using the MTT assay and screened for antibacterial activities. In addition, the isolated compounds (1-7, and 9) were investigated for their antioxidant (DPPH, FRAP and ABTS+ assays), anti-glycation, and anti-tyrosinase properties. Based on our results, compound 1 had mild cytotoxicity against Hela and A549 cancer cell lines, with IC50 ranging from 31.09 to 31.67 µg/mL. Compound 1 also showed antioxidant activities in all tasted assays. However, it showed no detectable activity (>128 µg/mL) against various bacterial strains, and it has no inhibitory effects on tyrosinase enzymes. Among of all tested compounds, chrysin (5), showcased highest anti-glycation and anti-tyrosinase activities. This comprehensive analysis provides highlighting the potential of 1 as a lead compound for further structural modification and development of cytotoxic or antioxidant agents.


Subject(s)
Antineoplastic Agents , Uvaria , Animals , Chlorocebus aethiops , Humans , Monophenol Monooxygenase , Uvaria/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Vero Cells , Antineoplastic Agents/pharmacology , Plant Extracts/chemistry
5.
Plants (Basel) ; 12(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37896069

ABSTRACT

Crocin, a glycoside carotenoid that exhibits several health benefits, is mainly obtained from saffron (Crocus sativus L.), whose quality and content of phytochemicals can be strongly affected by environmental conditions. Therefore, in this work, the crocin content and in vitro antioxidant activity of saffron extracts obtained from three different varieties (Greek, Sicilian, and Iranian saffron) were assessed. Crocin content in saffron extracts was quantified via ultra-performance liquid chromatography coupled with mass spectrometry. The antioxidant activity of saffron extracts was evaluated using the oxygen radical absorbance capacity (ORAC) assay and nitric oxide (NO) radical scavenging test. The Maillard reaction was used to assess anti-glycation activity. Although the Sicilian and Iranian saffron extracts contained higher amounts of crocin (128 ± 6 ng/mL and 126 ± 4 ng/mL, respectively) compared to the Greek extracts (111 ± 2 ng/mL), ORAC values (50.9 ± 0.5) and % NO inhibition (35.2 ± 0.2) were higher for the Greek variety, which displayed a total phenolic content about two-fold greater than that of the other two extracts. Sicilian and Greek saffron had similar anti-glycation activities, while Iranian saffron was less effective. These results suggest that the antioxidant activity of saffron extracts could be ascribed to their naturally occurring complex mixture of phytochemicals, deserving further investigation as supplements to prevent pathological conditions induced by radical species.

6.
Molecules ; 28(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836640

ABSTRACT

Sugar carbonyl groups interact with protein amino groups, forming toxic components referred to as advanced glycation end products (AGEs). The glycation system (BSA, a model protein, and fructose) was incubated for five weeks at 37 °C in the presence and absence of Stevia leaf extract. The results indicated that the leaf extract (0.5 mg/mL) decreased the incidence of browning (70.84 ± 0.08%), fructosamine (67.27 ± 0.08%), and carbonyl content (64.04 ± 0.09%). Moreover, we observed an 81 ± 8.49% reduction in total AGEs. The inhibition of individual AGE (argpyrimidine, vesper lysine, and pentosidine) was ~80%. The decrease in the protein aggregation was observed with Congo red (46.88 ± 0.078%) and the Thioflavin T (31.25 ± 1.18%) methods in the presence of Stevia leaf extract. The repercussion of Stevia leaf extract on DNA glycation was examined using agarose gel electrophoresis, wherein the DNA damage was reversed in the presence of 1 mg/mL of leaf extract. When the HDF cell line was treated with 0.5 mg/mL of extract, the viability of cells decreased by only ~20% along with the same cytokine IL-10 production, and glucose uptake decreased by 28 ± 1.90% compared to the control. In conclusion, Stevia extract emerges as a promising natural agent for mitigating glycation-associated challenges, holding potential for novel therapeutic interventions and enhanced management of its related conditions.


Subject(s)
Stevia , Antiglycation Agents , Sugars , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Glycation End Products, Advanced , Plant Leaves
7.
Future Med Chem ; 15(13): 1149-1165, 2023 07.
Article in English | MEDLINE | ID: mdl-37551660

ABSTRACT

Aim: The deaths of thousands of people and millions affected by diabetes mellitus triggered us to look for alternative possible solutions to cure diabetes and its complications. Materials & methods: A series of hydrazinylthiazole carboxylates (3a-n) was prepared by cyclocondensation reaction of thiosemicarbazones with ethyl 2-chloroacetoacetate. These compounds were screened for antidiabetic potential through α-amylase inhibition, antiglycation and antioxidant assays. Results & conclusion: Most of the compounds exhibited a promising antidiabetic property. Compounds 3e and 3h showed excellent α-amylase and glycation inhibition properties. The hemolytic assay indicated that all compounds are biocompatible. Docking studies carried out on α-amylase target showed correlation between in vitro inhibition and binding energy.


Subject(s)
Diabetes Mellitus , Plant Extracts , Humans , Plant Extracts/chemistry , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Antioxidants/pharmacology , alpha-Amylases/metabolism , Molecular Docking Simulation
8.
Molecules ; 28(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298887

ABSTRACT

A total of 147 oral Kampo prescriptions, which are used clinically in Japan, were evaluated for their anti-glycation activity. Kakkonto demonstrated significant anti-glycation activity, prompting further analysis of its chemical constituents using LC-MS, which revealed the presence of two alkaloids, fourteen flavonoids, two but-2-enolides, five monoterpenoids, and four triterpenoid glycosides. To identify the components responsible for its anti-glycation activity, the Kakkonto extract was reacted with glyceraldehyde (GA) or methylglyoxal (MGO) and analyzed using LC-MS. In LC-MS analysis of Kakkonto reacted with GA, the peak intensity of ephedrine was attenuated, and three products from ephedrine-scavenging GA were detected. Similarly, LC-MS analysis of Kakkonto reacted with MGO revealed two products from ephedrine reacting with MGO. These results indicated that ephedrine was responsible for the observed anti-glycation activity of Kakkonto. Ephedrae herba extract, which contains ephedrine, also showed strong anti-glycation activity, further supporting ephedrine's contribution to Kakkonto's reactive carbonyl species' scavenging ability and anti-glycation activity.


Subject(s)
Drugs, Chinese Herbal , Ephedrine , Ephedrine/pharmacology , Ephedrine/analysis , Chromatography, Liquid , Magnesium Oxide , Tandem Mass Spectrometry , Pyruvaldehyde , Glycation End Products, Advanced/analysis
9.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175851

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that causes a gradual loss of normal motor and cognitive function. The complex AD pathophysiology involves various factors such as oxidative stress, neuroinflammation, amyloid-beta (Aß) aggregation, disturbed neurotransmission, and apoptosis. The available drugs suffer from a range of side effects and are not able to cover different aspects of the disease. Therefore, finding a safer therapeutic approach that can affect multiple targets at a time is highly desirable. In the present study, the underlying neuroprotective mechanism of an important culinary spice, Syzygium aromaticum (Clove) extract, and major bioactive compounds were studied in hydrogen peroxide-induced oxidative stress in human neuroblastoma SH-SY5Y cell lines as a model. The extracts were subjected to GC-MS to identify important bioactive components. The extracts and key bio-actives reduced reactive oxygen species (ROS), restored mitochondrial membrane potential (MMP), and provided neuroprotection from H2O2-induced oxidative stress in cell-based assays due to the antioxidant action. They also reduced lipid peroxidation significantly and restored GSH content. Clove extracts have also displayed anti-acetylcholinesterase (AChE) activity, anti-glycation potential, and Aß aggregation/fibrilization inhibition. The multitarget neuroprotective approach displayed by Clove makes it a potential candidate for AD drug development.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neurodegenerative Diseases , Neuroprotective Agents , Syzygium , Humans , Neuroprotective Agents/pharmacology , Syzygium/metabolism , Neurodegenerative Diseases/drug therapy , Hydrogen Peroxide/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism
10.
Drug Discov Ther ; 17(2): 114-123, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37081689

ABSTRACT

Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit these three reactions. In this study, the antioxidant, antiglycation and anti-inflammatory activities of ethanol extracts from four edible plants that are commonly used as Thai folk medicine were compared. Among these extracts, Caesalpinia mimosoides extract (CME) showed the highest antioxidant potential with Trolox equivalent antioxidant activity (TEAC) of 5.9 ± 0.1 mM/mg followed closely by Zingiber officinale extract (ZOE) with a TEAC value of 5.4 ± 0.2 mM/mg. However, CME showed no cytotoxicity, whereas ZOE greater than 60 µg/mL showed cytotoxicity to normal human cells. Antiglycation assay using bovine serum albumin-ribose showed comparable potency between CME and Spondias dulcis extract (SDE). However, CME exhibited a high anti-inflammatory activity, significantly higher than SDE and activity depending on the dose. At a concentration of 60 µg/mL, approximately 85% of the interleukin-6 pro-inflammatory cytokine produced from human monocytes, induced by lipopolysaccharides, was completely inhibited by CME whereas SDE showed no inhibition. In summary, CME is the most potential extract with simultaneously activity of these three reactions. CME has the highest total phenolic content expressed as gallic acid equivalent to 301 ± 8 mg/g. Identification using high-performance liquid chromatography revealed the presence of at least four phenolic compounds, gallic acid, syringic acid, p-coumaric acid, and ellagic acid are existed in CME. Our finding suggests that CME is a promising natural source for inhibition of oxidative stress, glycation, and inflammation.


Subject(s)
Antioxidants , Caesalpinia , Humans , Antioxidants/pharmacology , Plant Extracts/pharmacology , Phenols/pharmacology , Gallic Acid , Anti-Inflammatory Agents/pharmacology , Inflammation
11.
Chem Biol Interact ; 376: 110452, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36933777

ABSTRACT

Artemisia is one of the largest genera in the plant family Asteraceae and has long been used in traditional medicine for its antitussive, analgesic, antihypertensive, antitoxic, antiviral, antimalarial, and anti-inflammatory properties. However, the anti-diabetic activity of Artemisia montana has not been broadly studied. The goal of this study was to determine whether extracts of the aerial parts of A. montana and its main constituents inhibit protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase activities. We isolated nine compounds from A. montana including ursonic acid (UNA) and ursolic acid (ULA), which significantly inhibited PTP1B with IC50 values of 11.68 and 8.73 µM, respectively. In addition, UNA showed potent inhibitory activity against α-glucosidase (IC50 = 61.85 µM). Kinetic analysis of PTP1B and α-glucosidase inhibition revealed that UNA was a non-competitive inhibitor of both enzymes. Docking simulations of UNA demonstrated negative binding energies and close proximity to residues in the binding pockets of PTP1B and α-glucosidase. Molecular docking simulations between UNA and human serum albumin (HSA) revealed that UNA binds tightly to all three domains of HSA. Furthermore, UNA significantly inhibited fluorescent AGE formation (IC50 = 4.16 µM) in a glucose-fructose-induced HSA glycation model over the course of four weeks. Additionally, we investigated the molecular mechanisms underlying the anti-diabetic effects of UNA in insulin-resistant C2C12 skeletal muscle cells and discovered that UNA significantly increased glucose uptake and decreased PTP1B expression. Further, UNA increased GLUT-4 expression level by activating the IRS-1/PI3K/Akt/GSK-3 signaling pathway. These findings clearly demonstrate that UNA from A. montana shows great potential for treatment of diabetes and its complications.


Subject(s)
Artemisia , Diabetes Mellitus , Insulins , Humans , Infant , Hypoglycemic Agents/pharmacology , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Kinetics , Artemisia/chemistry , Artemisia/metabolism , Molecular Docking Simulation , Glycogen Synthase Kinase 3/metabolism , Montana , Diabetes Mellitus/drug therapy , Signal Transduction , Protein Tyrosine Phosphatase, Non-Receptor Type 1
12.
Antioxidants (Basel) ; 12(2)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36830081

ABSTRACT

BACKGROUND: Varronia curassavica Jacq. (Boraginaceae) is traditionally used in the treatment of inflammatory processes. The ethanolic extract of its leaves (EEVc) showed anti-inflammatory properties and low toxicity. Medicinal plants have aroused interest for their antiglycation activities. The formation and accumulation of advanced glycation end products (AGEs) are associated with several chronic diseases. The objective of this study was to evaluate the antiglycation potential of EEVc and two isolated compounds. METHODS: The compounds brickellin and cordialin A were obtained by chromatographic methods and identified by spectrometric techniques. Analysis of fluorescent AGEs, biomarkers of amino acid residue oxidation, protein carbonyl groups and crosslink formation were performed in samples obtained from an in vitro model system of protein glycation with methylglyoxal. RESULTS: EEVc, brickellin and cordialin A significantly reduced the in vitro formation of AGEs, and reduced the damage caused by oxidative damage to the protein. CONCLUSIONS: According to the results, EEVc, brickellin and cordialin A are potential candidates against AGEs formation, which opens the way to expand the therapeutic arsenal for many pathologies resulting from glycoxidative stress.

13.
Biomed Pharmacother ; 160: 114393, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36774725

ABSTRACT

Diabetes and its complications are closely correlated with chronic hyperglycemia, causing severe oxidative stress and leading to glycation reaction with formation of advanced glycation end products. However, medicinal plants are still a source of inspiration for the discovery of new treatments of several diseases, including diabetes. The present study was aimed to evaluate the antioxidant and antidiabetic properties of Oxalis pes-caprae flowers extract in alloxan-induced diabetic mice. The phytochemical and antioxidant activities of both aqueous and methanolic extracts were assessed by in-vitro testing such as free radical scavenging assays (DPPH and ABTS+), ferrous ions (Fe2+) chelating activity and reducing power assay. Additionally, the detection of Amadori products and advanced glycation end products was used to determine the antiglycation potential. α-glucosidase and α-amylase inhibitory assessment was employed to determine the antidiabetic effect, while alloxan-induced diabetic mice were used to measure the in-vivo activities of antioxidants and carbohydrates enzymes. The effect of the methanolic extract on body weight and blood glucose level of extract-treated diabetic mice were also investigated. Among the tested extract, the methanolic extract was the richest in phenolic compounds which is directly related with their remarkable antioxidant, enzyme inhibitory and antiglycation activity. The oral administration of the two doses of Oxalis pes-caprae flowers (150 mg/kg and 250 mg/kg) daily for 3 weeks resulted in hypoglycemic effect compared to the reference drug, glibenclamide (10 mg/kg). Furthermore, the extract was shown to significantly increase the activities of antioxidants and glycolysis enzymes in the liver, kidney and spleen of diabetic mice, compared to diabetic control group. Therefore, Oxalis pes-caprae extract effectively exhibited hypoglycemic and antidiabetic effects as indicated by in-vitro and in-vivo studies, confirming the protective effects on hyperglycemia and oxidative damage.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Mice , Animals , Antioxidants/therapeutic use , alpha-Glucosidases , Alloxan , alpha-Amylases , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hyperglycemia/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Glycation End Products, Advanced
14.
Molecules ; 28(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36615587

ABSTRACT

Tamarindus indica and Mitragyna inermis are widely used by herbalists to cure diabetes mellitus. The aim of this study is to investigate the inhibitory potential of aqueous and various organic solvent fractions from both plants and some isolated compounds against advanced glycation end-products (AGEs). For this purpose, an in vitro BSA-fructose glycation model was used to evaluate the inhibition of AGE formation. Furthermore, the effects of the fractions on mouse fibroblast (NIH-3T3) and human hepatocyte (HepG2) survival were evaluated. The leaf, stem, and root fractions of both plants exhibited significant inhibition of AGEs formation. The IC50 values appeared to be less than 250 µg/mL; however, all fractions presented no adverse effects on NIH-3T3 up to 500 µg/mL. Otherwise, our phytochemical investigation afforded the isolation of a secoiridoid from the Mitragyna genus named secoiridoid glucoside sweroside (1), along with three known quinovic acid glycosides: quinovic acid-3ß-O-ß-d-glucopyranoside (2), quinovic acid-3-O-ß-d-6-deoxy-glucopyranoside, 28-O-ß-d-glucopyranosyl ester (3), and quinovic acid 3-O-α-l-rhamnopyranosyl-(4→1)-ß-d-glucopyranoside (4). In particular, 1-3 are compounds which have not previously been described in Mitragyna inermis roots. However, the isolated compounds did not exhibit AGE inhibitory activity. Further investigation on these potent antiglycation fractions may allow for the isolation of new antidiabetic drug candidates.


Subject(s)
Mitragyna , Tamarindus , Mice , Animals , Humans , Mitragyna/chemistry , Maillard Reaction , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hepatocytes , Glycation End Products, Advanced
15.
Food Chem ; 404(Pt B): 134650, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36283320

ABSTRACT

Hylocereus spp. known as dragon fruit is an exotic fruit that belongs to the Cactaceae family. LC-QTOF-MS and multivariate statistical tools were established to analyze differences in the composition of dragon fruit peel and pulp from Egypt, Germany, Philippines, and China. The α-glucosidase inhibitory effects of different extracts were carried out along with the anti-glycation end products (AGE) using BSA-fructose, BSA-methylglyoxal, and arginine-methylglyoxal assays. In addition, the total antioxidant capacity was investigated as a complementary mechanism to AGE formation. Principal component analysis revealed that dragon fruits from China and Egypt were the most distinct among all samples due to betalains content. Orthogonal projection to latent structures-discriminant analysis identified 16 compounds highly correlated to the antiglycation activity such as betanin, γ-aminobutyric acid, neobetanin, and portulacaxanthin II. Pulp extracts were more active than peels as inhibitors of α-glucosidase. While peels were more active as AGE formation inhibitors and as antioxidants.


Subject(s)
Cactaceae , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , alpha-Glucosidases/metabolism , Pyruvaldehyde/metabolism , Chemometrics , Cactaceae/metabolism , Fruit/chemistry , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/metabolism
16.
Environ Sci Pollut Res Int ; 30(6): 16687-16693, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36190633

ABSTRACT

Bioactive natural products are essential components for drug development. Protein glycation in diabetic subjects leads to diabetic complications as nephropathy and neuropathy. We investigated the impact of pomegranate hexane extract (PHE) as antioxidant, anti-inflammatory, and antiglycation in diabetic rats. Gas chromatography/mass spectrum (GC/MS) analysis of PHE revealed presence of resorcinol, catechol, tau-cadinol, metacetamol, scopoletin, phytol, and phenol, 3-pentadecyl as the most active ingredients that related to biological activity. Results obtained showed that, PHE increased serum aldose reductase and total antioxidant activity compared with untreated diabetic rats (p < 0.001). In addition, PHE exert antioxidant by enhancing, catalase and SOD (p < 0.001) and decreased MDA (p < 0.001), anti-inflammatory by inhibition production of 1 ß (IL-1ß), tumor necrosis factor (TNF-α) (p < 0.001), and AGEs (p < 0.001) against nephropathy in diabetic rats compared with untreated group. It was concluded that, pomegranate is promising in development a functional biomolecule in treatment and protection against diabetic complications as nephropathy. More study required to investigate the molecular action of these molecules.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Lythraceae , Pomegranate , Rats , Animals , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/complications , Antioxidants/metabolism , Flavonoids/pharmacology , Pomegranate/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Oxygen , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diabetes Complications/drug therapy , Lythraceae/metabolism , Anti-Inflammatory Agents/pharmacology , Oxidative Stress
17.
Nat Prod Res ; 37(12): 2065-2069, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36093565

ABSTRACT

Genipa americana L. is a plant widely used by folk medicine for the prevention and as an aid in the treatment of various diseases. In this work, we evaluated the anti-glycant and antioxidant activities of genipap fruit juice, as well as the influence of different temperatures (-6 °C and -80 °C) on the preservation of phenolic compounds. Purified extract from G. americana showed anti-glycant activity reducing the formation of fructosamine by up to 53% and recovered viability of cells under oxidative stress induced by H2O2. HPLC/UV-Vis analysis identified cinnamic acid as a bioactive substance and possibly responsible for the biological activities described above. Taken together, these results indicate that G. americana is a rich source of cinnamic acid with appreciable antioxidant and anti-glycant potential.


Subject(s)
Antioxidants , Antioxidants/chemistry , Antioxidants/pharmacology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cell Culture Techniques , Oxidative Stress
18.
Nat Prod Res ; 37(12): 2018-2023, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35997246

ABSTRACT

Phytochemical investigation of dried flower buds of Syzygium aromaticum (L.) Merr. & L.M.Perry. (clove) led to the isolation and identification of fourteen known compounds, oleanolic acid (1), betulinic acid (2), para methyl benzoic acid (3), sabrinic acid (4) eucalyptolic acid (5), nigricin (6), 3-O-trans-para-coumaroylmaslinic acid (7), methyl maslinate (8), maslinic acid (9), 3, 4, 5-trimethoxy-3',4'-O,O-methylideneflavellagic acid (10), lantanone (11) 3,4,3'-trimethoxyellagic acid (12), 11-oxo-oleanolic acid (13), and ß-sitosterol-3-O-ß-D-glucopyranoside (14). Their structures were identified by 1H NMR, 13C NMR, Mass spectroscopic techniques, and comparison with the literature data. Compounds 3, and 7-9 showed a strong mortality against root knot nematode, Meloidogyne incognita at 0.125% concentration after 72 hours (88-92% inhibition). Compound 4 showed a good anti-glycation activity with IC50 = 142.0 ± 1.8 µM when compared with standard, i.e. rutin (IC50 = 54.59 ± 2.20 µM). Compound 10 showed a comparable urease inhibitory activity (IC50 = 26.1 ± 0.19 µM) with the positive control thiourea (IC50 = 24.5 ± 0.34 µM).


Subject(s)
Oleanolic Acid , Syzygium , Syzygium/chemistry , Plant Extracts/pharmacology , Magnetic Resonance Spectroscopy
19.
Food Chem ; 398: 133886, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35963218

ABSTRACT

In this study, pectic oligosaccharides of orange peel (OPOs) were isolated and their structure characterized, and then screened according to anti-glycation level compared with aminoguanidine (AG). The results indicated that OPOs mainly included two components, and the main component has more than 50 % inhibition level for the seven glycation products at 60 °C for 40 h. At the accelerated storage temperature, OPOs demonstrated a better anti-glycation level than AG, and this inhibition was concentration-dependent. In addition, the main component in OPOs was separated into 10 fractions by DEAE Sephadex A-25 gel chromatography, the group of 5-7 monosaccharide polymerization showed the best anti-glycation effect, average anti-glycation capability on six products was over 70 % in the 40th hour. The anti-glycation level of this group was closely related to its high content of GalA and molar ratio of GalA: Rha, and positively correlated with time at moderate temperature.


Subject(s)
Citrus sinensis , Pectins , Monosaccharides/analysis , Oligosaccharides , Pectins/chemistry , Temperature
20.
Phytochem Anal ; 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36453173

ABSTRACT

INTRODUCTION: Mentha arvensis L. is the most valuable medicinal plant that possesses anti-inflammatory, hepatoprotective, antimicrobial, and antioxidant properties. There are few studies available in the literature about M. arvensis L nanoparticles, but their nanosuspensions-based information remains unclear and needs further study. OBJECTIVE: This study was designed to explore the nanotechnology approach for biochemical characterisation, enhanced bioactivities, and photochemistry of freshly prepared M. arvensis L. nanosuspensions. METHODOLOGY: Nanosuspensions of M. arvensis L. leaves were prepared by following the nanoprecipitation method. In this study, we performed structural and biochemical characterisation through analyses of Fourier-transform infrared (FTIR) spectroscopy, high-performance liquid chromatography (HPLC), phase contrast microscopy and enhanced bioactivities; antioxidant, alpha-amylase inhibition, glycation inhibition and cytotoxicity assays. RESULTS: FTIR analysis revealed the presence of phenols, amines hydroxyl, carboxylic acid, alkenes, alkenes and alkynes. HPLC analysis revealed the presence of chlorogenic acid, a principal phenolic component. Biofilm inhibition activity revealed that the growth formation of Escherichia coli inhibited up to 62.4% and 53.35% by leaves extract and nanosuspension, respectively. However, the growth of Staphylococcus aureus was not inhibited by nanosuspension and extract. Nanosuspension and extract exhibited 155.92 mg, 108.11 mg gallic acids per 100 g of dry weight total phenolic content and 233.44 mg, 163.933 mg catechin per 100 g of dried weight total flavonoid content in extract and nanosuspension, respectively. Antioxidant activity revealed the scavenging potential of nanosuspensions and extract was 41.01% and 12.07%, respectively. Alpha-amylase inhibiting activity of nanosuspension and extract was 36% and 33%, while, the antiglycation potential of nanosuspension and extract were 41.68% and 35.18%, respectively. Nanosuspensions and extract showed maximum hemolytic activity at 12.91% and 17.18%, respectively. CONCLUSION: These cost-effective nanoformulations could serve as a platform for therapeutic purposes in controlling the high risk of infectious diseases and designing efficient plant nanosuspensions by discovering novel bioactive compounds in an adequate manner.

SELECTION OF CITATIONS
SEARCH DETAIL