Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Assist Surg (Abingdon) ; 29(1): 2327981, 2024 12.
Article in English | MEDLINE | ID: mdl-38468391

ABSTRACT

Radiotherapy commonly utilizes cone beam computed tomography (CBCT) for patient positioning and treatment monitoring. CBCT is deemed to be secure for patients, making it suitable for the delivery of fractional doses. However, limitations such as a narrow field of view, beam hardening, scattered radiation artifacts, and variability in pixel intensity hinder the direct use of raw CBCT for dose recalculation during treatment. To address this issue, reliable correction techniques are necessary to remove artifacts and remap pixel intensity into Hounsfield Units (HU) values. This study proposes a deep-learning framework for calibrating CBCT images acquired with narrow field of view (FOV) systems and demonstrates its potential use in proton treatment planning updates. Cycle-consistent generative adversarial networks (cGAN) processes raw CBCT to reduce scatter and remap HU. Monte Carlo simulation is used to generate CBCT scans, enabling the possibility to focus solely on the algorithm's ability to reduce artifacts and cupping effects without considering intra-patient longitudinal variability and producing a fair comparison between planning CT (pCT) and calibrated CBCT dosimetry. To showcase the viability of the approach using real-world data, experiments were also conducted using real CBCT. Tests were performed on a publicly available dataset of 40 patients who received ablative radiation therapy for pancreatic cancer. The simulated CBCT calibration led to a difference in proton dosimetry of less than 2%, compared to the planning CT. The potential toxicity effect on the organs at risk decreased from about 50% (uncalibrated) up the 2% (calibrated). The gamma pass rate at 3%/2 mm produced an improvement of about 37% in replicating the prescribed dose before and after calibration (53.78% vs 90.26%). Real data also confirmed this with slightly inferior performances for the same criteria (65.36% vs 87.20%). These results may confirm that generative artificial intelligence brings the use of narrow FOV CBCT scans incrementally closer to clinical translation in proton therapy planning updates.


Subject(s)
Protons , Spiral Cone-Beam Computed Tomography , Humans , Radiotherapy Dosage , Artificial Intelligence , Feasibility Studies , Image Processing, Computer-Assisted/methods
2.
Med Phys ; 51(3): 1653-1673, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38323878

ABSTRACT

BACKGROUND: Dual-energy (DE) detection of bone marrow edema (BME) would be a valuable new diagnostic capability for the emerging orthopedic cone-beam computed tomography (CBCT) systems. However, this imaging task is inherently challenging because of the narrow energy separation between water (edematous fluid) and fat (health yellow marrow), requiring precise artifact correction and dedicated material decomposition approaches. PURPOSE: We investigate the feasibility of BME assessment using kV-switching DE CBCT with a comprehensive CBCT artifact correction framework and a two-stage projection- and image-domain three-material decomposition algorithm. METHODS: DE CBCT projections of quantitative BME phantoms (water containers 100-165 mm in size with inserts presenting various degrees of edema) and an animal cadaver model of BME were acquired on a CBCT test bench emulating the standard wrist imaging configuration of a Multitom Rax twin robotic x-ray system. The slow kV-switching scan protocol involved a 60 kV low energy (LE) beam and a 120 kV high energy (HE) beam switched every 0.5° over a 200° angular span. The DE CBCT data preprocessing and artifact correction framework consisted of (i) projection interpolation onto matched LE and HE projections views, (ii) lag and glare deconvolutions, and (iii) efficient Monte Carlo (MC)-based scatter correction. Virtual non-calcium (VNCa) images for BME detection were then generated by projection-domain decomposition into an Aluminium (Al) and polyethylene basis set (to remove beam hardening) followed by three-material image-domain decomposition into water, Ca, and fat. Feasibility of BME detection was quantified in terms of VNCa image contrast and receiver operating characteristic (ROC) curves. Robustness to object size, position in the field of view (FOV) and beam collimation (varied 20-160 mm) was investigated. RESULTS: The MC-based scatter correction delivered > 69% reduction of cupping artifacts for moderate to wide collimations (> 80 mm beam width), which was essential to achieve accurate DE material decomposition. In a forearm-sized object, a 20% increase in water concentration (edema) of a trabecular bone-mimicking mixture presented as ∼15 HU VNCa contrast using 80-160 mm beam collimations. The variability with respect to object position in the FOV was modest (< 15% coefficient of variation). The areas under the ROC curve were > 0.9. A femur-sized object presented a somewhat more challenging task, resulting in increased sensitivity to object positioning at 160 mm collimation. In animal cadaver specimens, areas of VNCa enhancement consistent with BME were observed in DE CBCT images in regions of MRI-confirmed edema. CONCLUSION: Our results indicate that the proposed artifact correction and material decomposition pipeline can overcome the challenges of scatter and limited spectral separation to achieve relatively accurate and sensitive BME detection in DE CBCT. This study provides an important baseline for clinical translation of musculoskeletal DE CBCT to quantitative, point-of-care bone health assessment.


Subject(s)
Bone Marrow , Cone-Beam Computed Tomography , Humans , Bone Marrow/diagnostic imaging , Feasibility Studies , Cone-Beam Computed Tomography/methods , Algorithms , Phantoms, Imaging , Edema , Cadaver , Water , Scattering, Radiation , Image Processing, Computer-Assisted/methods
3.
Int J Hyperthermia ; 39(1): 967-976, 2022.
Article in English | MEDLINE | ID: mdl-35853735

ABSTRACT

PURPOSE: Hyperthermia treatments are successful adjuvants to conventional cancer therapies in which the tumor is sensitized by heating. To monitor and guide the hyperthermia treatment, measuring the tumor and healthy tissue temperature is important. The typical clinical practice heavily relies on intraluminal probe measurements that are uncomfortable for the patient and only provide spatially sparse temperature information. A solution may be offered through recent advances in magnetic resonance thermometry, which allows for three-dimensional internal temperature measurements. However, these measurements are not widely used in the pelvic region due to a low signal-to-noise ratio and presence of image artifacts. METHODS: To advance the clinical integration of magnetic resonance-guided cancer treatments, we consider the problem of removing air-motion-induced image artifacts. Thereto, we propose a new combined thermal and magnetic susceptibility model-based temperature estimation scheme that uses temperature estimates to improve the removal of air-motion-induced image artifacts. The method is experimentally validated using a dedicated phantom that enables the controlled injection of air-motion artifacts and with in vivo thermometry from a clinical hyperthermia treatment. RESULTS: We showed, using probe measurements in a heated phantom, that our method reduced the mean absolute error (MAE) by 58% compared to the state-of-the-art near a moving air volume. Moreover, with in vivo thermometry our method obtained a MAE reduction between 17% and 95% compared to the state-of-the-art. CONCLUSION: We expect that the combined thermal and magnetic susceptibility modeling used in model-based temperature estimation can significantly improve the monitoring in hyperthermia treatments and enable feedback strategies to further improve MR-guided hyperthermia cancer treatments.


Subject(s)
Hyperthermia, Induced , Neoplasms , Thermometry , Artifacts , Humans , Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , Protons , Thermometry/methods
4.
Med Phys ; 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29888791

ABSTRACT

PURPOSE: The purpose of this study is to investigate the necessity of detruncation for scatter estimation of truncated cone-beam CT (CBCT) data and to evaluate different detruncation algorithms. Scattered radiation results in some of the most severe artifacts in CT and depends strongly on the size and the shape of the scanned object. Especially in CBCT systems the large cone-angle and the small detector-to-isocenter distance lead to a large amount of scatter detected, resulting in cupping artifacts, streak artifacts, and inaccurate CT-values. If a small field of measurement (FOM) is used, as it is often the case in CBCT systems, data are truncated in longitudinal and lateral direction. Since only truncated data are available as input for the scatter estimation, the already challenging correction of scatter artifacts becomes even more difficult. METHODS: The following detruncation methods are compared and evaluated with respect to scatter estimation: constant detruncation, cosine detruncation, adaptive detruncation, and prior-based detruncation using anatomical data from a similar phantom or patient, also compared to the case where no detruncation was performed. Each of the resulting, detruncated reconstructions serve as input volume for a Monte Carlo (MC) scatter estimation and subsequent scatter correction. An evaluation is performed on a head simulation, measurements of a head phantom and a patient using a dental CBCT geometry with a FOM diameter of 11 cm. Additionally, a thorax phantom is measured to assess performance in a C-Arm geometry with a FOM of up to 20 cm. RESULTS: If scatter estimation is based on simple detruncation algorithms like a constant or a cosine detruncation scatter is estimated inaccurately, resulting in incorrect CT-values as well as streak artifacts in the corrected volume. For the dental CBCT phantom measurement CT-values for soft tissue were corrected from -204 HU (no scatter correction) to -87 HU (no detruncation), -218 HU (constant detruncation), -141 HU (cosine detruncation), -91 HU (adaptive detruncation), -34 HU (prior-based detruncation using a different prior) and -24 HU (prior-based detruncation using the identical prior) for a reference value of -26 HU measured in slit scan mode. In all cases the prior-based detruncation results in the best scatter correction, followed by the adaptive detruncation, as these algorithms provide a rather accurate model of high-density structures outside the FOM, compared to a simple constant or a cosine detruncation. CONCLUSIONS: Our contribution is twofold: first we give a comprehensive comparison of various detruncation methods for the purpose of scatter estimation. We find that the choice of the detruncation method has a significant influence on the quality of MC-based scatter correction. Simple or no detruncation is often insufficient for artifact removal and results in inaccurate CT-values. On the contrary, prior-based detruncation can achieve a high CT-value accuracy and nearly artifact-free volumes from truncated CBCT data when combined with other state-of-the-art artifact corrections. Secondly, we show that prior-based detruncation is effective even with data from a different patient or phantom. The fact that data completion does not require data from the same patient dramatically increases the applicability and usability of this scatter estimation.

5.
Int J Comput Assist Radiol Surg ; 11(7): 1233-46, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26514684

ABSTRACT

PURPOSE: Cone-beam breast computed tomography (CBBCT), a promising breast cancer diagnostic technique, has been under investigation for the past decade. However, owing to scattered radiation and beam hardening, CT numbers are not uniform on CBBCT images. This is known as cupping artifact, and it presents an obstacle for threshold-based volume segmentation. In this study, we proposed a general post-reconstruction method for cupping artifact correction. METHODS: There were four steps in the proposed method. First, three types of local region histogram peaks were calculated: adipose peaks with low CT numbers, glandular peaks with high CT numbers, and unidentified peaks. Second, a linear discriminant analysis classifier, which was trained by identified adipose and glandular peaks, was employed to identify the unidentified peaks as adipose or glandular peaks. Third, adipose background signal profile was fitted according to the adipose peaks using the least squares method. Finally, the adipose background signal profile was subtracted from original image to obtain cupping corrected image RESULTS: In experimental study, standard deviation of adipose tissue CT numbers was obviously reduced and the CT numbers were more uniform after cupping correction by proposed method; in simulation study, root-mean-square errors were significantly reduced for both symmetric and asymmetric cupping artifacts, indicating that the proposed method was effective to both artifacts. CONCLUSIONS: A general method without a circularly symmetric assumption was proposed to correct cupping artifacts in CBBCT images for breast. It may be properly applied to images of real patient breasts with natural pendent geometry.


Subject(s)
Artifacts , Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Cone-Beam Computed Tomography/methods , Mammography/methods , Algorithms , Female , Humans , Phantoms, Imaging
6.
Magn Reson Med ; 73(6): 2142-51, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24975329

ABSTRACT

PURPOSE: To describe how B0 inhomogeneities can cause errors in proton resonance frequency (PRF) shift thermometry, and to correct for these errors. METHODS: With PRF thermometry, measured phase shifts are converted into temperature measurements through the use of a scaling factor proportional to the echo time, TE. However, B0 inhomogeneities can deform, spread, and translate MR echoes, potentially making the "true" echo time vary spatially within the imaged object and take on values that differ from the prescribed TE value. Acquisition and reconstruction methods able to avoid or correct for such errors are presented. RESULTS: Tests were performed in a gel phantom during sonication, and temperature measurements were made with proper shimming as well as with intentionally introduced B0 inhomogeneities. Errors caused by B0 inhomogeneities were observed, described, and corrected by the proposed methods. No statistical difference was found between the corrected results and the reference results obtained with proper shimming, while errors by more than 10% in temperature elevation were corrected for. The approach was also applied to an abdominal in vivo dataset. CONCLUSION: Field variations induce errors in measured field values, which can be detected and corrected. The approach was validated for a PRF thermometry application.


Subject(s)
Magnetic Resonance Imaging/methods , Thermography/methods , Abdomen/anatomy & histology , Healthy Volunteers , Humans , Hyperthermia, Induced , Phantoms, Imaging , Protons , Ultrasonic Therapy
SELECTION OF CITATIONS
SEARCH DETAIL