Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Front Chem ; 11: 1245071, 2023.
Article in English | MEDLINE | ID: mdl-37621851

ABSTRACT

Introduction: The root of Cratoxylum cochinchinense has been widely used as Chinese folk medicine to cure fevers, burns, and abdominal complications because it contains various bioactive metabolites such as xanthones, triterpenes, and flavonoids. In this study, we estimated bacterial neuraminidase inhibition with a series of xanthones from C. cochinchinense. BNA has connected to various biological functions such as pathogenic bacteria infection inflammatory process after infection and biofilm formation. Methods: The identification of xanthones (1-6) bearing geranyl and prenyl groups was established by spectroscopic data using UV, IR, NMR, and HREIMS. BNA inhibitory modes of isolated xanthones were investigated by Double-reciprocal plots. Moreover, the competitive inhibitor was evaluated the additional kinetic modes determined by kinetic parameters (k 3, k 4, and K i app). The molecular docking (MD) and molecular dynamics simulations (MDS) studies also provided the critical information regarding the role of the geranyl and prenyl groups against BNA inhibition. Results: A series of xanthones (1-6) appended prenyl and geranyl groups on the A-ring were isolated, and compounds 1-3 were shown to be new xanthones. The analogues within this series were highly inhibited with excellent affinity against bacterial neuraminidase (BNA). A subtle change in the prenyl or geranyl motif affected the inhibitory potency and behavior significantly. For example, the inhibitory potency and binding affinity resulting from the geranyl group on C4: xanthone 1 (IC50 = 0.38 µM, KA = 2.4434 × 105 L·mol-1) were 100-fold different from those of xanthone 3 (IC50 = 35.8 µM, KA = 0.0002 × 105 L·mol-1). The most potent compound 1 was identified as a competitive inhibitor which interacted with BNA under reversible slow-binding inhibition: K i app = 0.1440 µM, k 3 = 0.1410 µM-1s-1, and k 4 = 0.0203 min-1. The inhibitory potencies (IC50) were doubly confirmed by the binding affinities (KA). Discussion: This study suggests the potential of xanthones derived from C. cochinchinense as promising candidates for developing novel BNA inhibitors. Further research and exploration of these xanthones may contribute to the development of effective treatments for bacterial infections and inflammatory processes associated with BNA activity.

2.
Biomolecules ; 10(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32532086

ABSTRACT

Petasites japonicus have been used since a long time in folk medicine to treat diseases including plague, pestilential fever, allergy, and inflammation in East Asia and European countries. Bioactive compounds that may prevent and treat infectious diseases are identified based on their ability to inhibit bacterial neuraminidase (NA). We aimed to isolate and identify bioactive compounds from leaves and stems of P. japonicas (PJA) and elucidate their mechanisms of NA inhibition. Key bioactive compounds of PJA responsible for NA inhibition were isolated using column chromatography, their chemical structures revealed using 1 H NMR, 13 C NMR, DEPT, and HMBC, and identified to be bakkenolide B (1), bakkenolide D (2), 1,5-di-O-caffeoylquinic acid (3), and 5-O-caffeoylquinic acid (4). Of these, 3 exhibited the most potent NA inhibitory activity (IC50 = 2.3 ± 0.4 µM). Enzyme kinetic studies revealed that 3 and 4 were competitive inhibitors, whereas 2 exhibited non-competitive inhibition. Furthermore, a molecular docking simulation revealed the binding affinity of these compounds to NA and their mechanism of inhibition. Negative-binding energies indicated high proximity of these compounds to the active site and allosteric sites of NA. Therefore, PJA has the potential to be further developed as an antibacterial agent for use against diseases associated with NA.


Subject(s)
Clostridium perfringens/enzymology , Glycoside Hydrolase Inhibitors/pharmacology , Neuraminidase/antagonists & inhibitors , Petasites/chemistry , Plant Extracts/pharmacology , Quinic Acid/analogs & derivatives , Sesquiterpenes/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Kinetics , Molecular Structure , Neuraminidase/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Quinic Acid/chemistry , Quinic Acid/isolation & purification , Quinic Acid/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL