Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Publication year range
1.
J Appl Physiol (1985) ; 135(5): 1070-1081, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37795531

ABSTRACT

Menopause is associated with reduced nitric oxide bioavailability and vascular function. Although exercise is known to improve vascular function, this is blunted in estrogen-deficient females post-menopause (PM). Here, we examined the effects of acute exercise at differing intensities with and without inorganic nitrate (NO3-) supplementation on vascular function in females PM. Participants were tested in a double-blinded, block-randomized design, consuming ∼13 mmol NO3- in the form of beetroot juice (BRJ; n = 12) or placebo (PL; n = 12) for 2 days before experimental visits and 2 h before testing. Visits consisted of vascular health measures before (time point 0) and every 30 min after (time points 60, 90, 120, 150, and 180) calorically matched high-intensity exercise (HIE), moderate-intensity exercise (MIE), and a nonexercise control (CON). Blood was sampled at rest and 5-min postexercise for NO3-, NO2-, and ET-1. BRJ increased N-oxides and decreased ET-1 compared with PL, findings which were unchanged after experimental conditions (P < 0.05). BRJ improved peak Δflow-mediated dilation (FMD) compared with PL (P < 0.05), defined as the largest ΔFMD for each individual participant across all time points. FMD across time revealed an improvement (P = 0.05) in FMD between BRJ + HIE versus BRJ + CON, while BRJ + MIE had medium effects compared with BRJ + CON. In conclusion, NO3- supplementation combined with HIE improved FMD in postmenopausal females. NO3- supplementation combined with MIE may offer an alternative to those unwilling to perform HIE. Future studies should test whether long-term exercise training at high intensities with NO3- supplementation can enhance vascular health in females PM.NEW & NOTEWORTHY This study compared exercise-induced changes in flow-mediated dilation after acute moderate- and high-intensity exercise in females postmenopause supplementing either inorganic nitrate (beetroot juice) or placebo. BRJ improved peak ΔFMD postexercise, and BRJ + HIE increased FMD measured as FMD over time. Neither PL + MIE nor PL + HIE improved FMD. These findings suggest that inorganic nitrate supplementation combined with high-intensity exercise may benefit vascular health in females PM.


Subject(s)
Beta vulgaris , Nitrates , Humans , Female , Dietary Supplements , Exercise , Antioxidants , Nitric Oxide , Postmenopause , Double-Blind Method , Cross-Over Studies , Fruit and Vegetable Juices
2.
Nutrients ; 15(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686795

ABSTRACT

BACKGROUND: Beetroot juice (BRJ) contains various bioactive compounds suggested to be effective in improving athlete recovery. However, the number of studies evaluating the effects of BRJ on recovery and muscle soreness (MS) indicators in female athletes is limited. Therefore, the present study aimed to determine the effects of BRJ consumption on the performance recovery indicators and MS after exercise-induced muscle damage (EIMD) in female volleyball players. METHODS: Twelve young female volleyball players were evaluated in this study. We utilized a randomized, cross-over, and double-blind design during two phases with a 30-day interval (wash-out). During each phase, EIMD was performed first, followed by BRJ or placebo (PLA) supplementation for two days (eight servings of 50 mL). Recovery monitoring of performance indicators and MS was performed after EIMD. The results of wall-sit, V sit and reach (VSFT), vertical jump height (VJH), pressure pain threshold (PPT), and thigh swelling (Sw-T) tests were recorded 48 h after EIMD. Also, the Perceived Muscle Soreness was recorded using the visual analog scale (VAS) 12 (MS-12 h), 24 (MS-24 h), and 48 (MS-48 h) hours after EIMD. RESULTS: The data were analyzed using two-way repeated measures of ANOVA at p < 0.05. Compared to PLA, BRJ supplementation improves wall-sit performance after EIMD (p < 0.05), while reducing Sw-T and perceived muscle soreness (p < 0.05). However, no significant difference was observed between PLA and BRJ in VJH and VSFT performance after EIMD (p > 0.05). CONCLUSIONS: Our findings indicate that the consumption of BRJ in female volleyball players can be useful for improving some recovery indicators, such as muscle endurance, perceived muscle soreness, and tissue edema, after EIMD.


Subject(s)
Myalgia , Volleyball , Humans , Female , Myalgia/etiology , Myalgia/prevention & control , Antioxidants , Dietary Supplements , Muscles , Polyesters
3.
Trials ; 24(1): 482, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37507763

ABSTRACT

BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD) impaired nitric oxide (NO) synthesis, in part, contributes to early-onset hypertension. Beetroot juice (BRJ) reduces blood pressure (BP) by increasing NO-mediated vasodilation. The aim of this double-blind, randomised, placebo-controlled study is to test the hypothesis that BRJ reduces systolic and diastolic clinic BP in hypertensive adults with ADPKD. METHODS: Participants with ADPKD and treated hypertension (n = 60) will be randomly allocated (1:1) to receive a daily dose of either nitrate-replete (400 mg nitrate/day) or nitrate-deplete BRJ for 4 weeks. The co-primary outcomes are change in mean systolic and diastolic clinic BP before and after 4 weeks of treatment with daily BRJ. Secondary outcomes are changes in daily home BP, urinary albumin to creatinine ratio, serum and salivary nitrate/nitrite levels and serum asymmetric dimethylarginine levels before and after 4 weeks of BRJ. DISCUSSION: The effect of BRJ in ADPKD has not been previously tested. BRJ is an accessible, natural dietary supplement that, if effective, will provide a novel adjunctive approach for treating hypertension in ADPKD. TRIAL REGISTRATION: ClinicalTrials.gov NCT05401409. Retrospectively registered on 27th May 2022.


Subject(s)
Beta vulgaris , Hypertension , Hypotension , Polycystic Kidney, Autosomal Dominant , Humans , Adult , Blood Pressure , Nitrates/pharmacology , Nitrates/therapeutic use , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/drug therapy , Hypertension/diagnosis , Hypertension/drug therapy , Antioxidants/therapeutic use , Double-Blind Method , Dietary Supplements , Randomized Controlled Trials as Topic
4.
Physiol Rep ; 11(10): e15694, 2023 05.
Article in English | MEDLINE | ID: mdl-37226336

ABSTRACT

Older individuals fatigue more rapidly during, and recover more slowly from, dynamic exercise. Women are particularly vulnerable to these deleterious effects of aging, which increases their risk of falling. We have shown that dietary nitrate (NO3 - ), a source of nitric oxide (NO) via the NO3 - → nitrite (NO2 - ) → NO pathway, enhances muscle speed and power in older individuals in the non-fatigued state; however, it is unclear if it reduces fatigability and/or improves recoverability in this population. Using a double-blind, placebo-controlled, crossover design, we studied 18 older (age 70 ± 4 years) women who were administered an acute dose of beetroot juice (BRJ) containing either 15.6 ± 3.6 or <0.05 mmol of NO3 - . Blood samples were drawn throughout each ~3 h visit for plasma NO3 - and NO2 - analysis. Peak torque was measured during, and periodically for 10 min after, 50 maximal knee extensions performed at 3.14 rad/s on an isokinetic dynamometer. Ingestion of NO3 - -containing BRJ increased plasma NO3 - and NO2 - concentrations by 21 ± 8 and 4 ± 4 fold, respectively. However, there were no differences in muscle fatigue or recovery. Dietary NO3 - increases plasma NO3 - and NO2 - concentrations but does not reduce fatigability during or enhance recoverability after high intensity exercise in older women.


Subject(s)
Muscle Fatigue , Nitrates , Female , Humans , Aged , Nitrogen Dioxide , Muscle, Skeletal , Antioxidants , Fatigue , Nitric Oxide , Dietary Supplements
5.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903265

ABSTRACT

High-pressure homogenization (HPH) is considered an innovative and modern method of processing and preserving liquid and semi-liquid foods. The aim of this research was to examine the impact of HPH processing on the content of betalain pigments and physicochemical properties of beetroot juice. Combinations of the following HPH parameters were tested: the pressure used (50, 100, 140 MPa), the number of cycles (1 and 3) and the applied cooling or no cooling. The physicochemical analysis of the obtained beetroot juices was based on the determination of the extract, acidity, turbidity, viscosity and color values. Use of higher pressures and a greater number of cycles reduces the turbidity (NTU) of the juice. Moreover, in order to maintain the highest possible extract content and a slight color change of the beetroot juice, it was crucial to perform sample cooling after the HPH process. The quantitative and qualitative profiles of betalains have been also determined in the juices. In terms of the content of betacyanins and betaxanthins, the highest values were found in untreated juice at 75.3 mg and 24.8 mg per 100 mL, respectively. The high-pressure homogenization process resulted in a decrease in the content of betacyanins in the range of 8.5-20.2% and of betaxanthins in the range of 6.5-15.0%, depending on the parameters used. Studies have shown that that the number of cycles was irrelevant, but an increase in pressure from 50 MPa to 100 or 140 MPa had a negative effect on pigment content. Additionally, juice cooling significantly limits the degradation of betalains in beetroot juice.


Subject(s)
Beta vulgaris , Betalains , Betalains/chemistry , Betacyanins/analysis , Betaxanthins/analysis , Beta vulgaris/chemistry , Vegetables/chemistry , Antioxidants/analysis , Plant Extracts/metabolism
6.
Nutr Metab Cardiovasc Dis ; 33(6): 1263-1267, 2023 06.
Article in English | MEDLINE | ID: mdl-36958967

ABSTRACT

BACKGROUND & AIMS: Few studies have explored the prolonged effects of dietary nitrate on vascular health. This pilot study tested the effects of prolonged consumption (13 weeks) of a range of doses of dietary nitrate (NO3-), provided as beetroot juice (BJ), on blood pressure (BP) and endothelial function in overweight and obese older participants. METHODS AND RESULTS: Sixty-two overweight or obese older participants (60-75 years) were randomized to the following interventions: (1) high NO3- (2) medium NO3-, (3) low NO3-, or (4) placebo. Resting clinic and home BP were measured pre- and post-intervention. Laser Doppler iontophoresis was used to quantify changes in endothelial-dependent and independent microvascular blood flow. RESULTS: This pilot study showed that medium and low doses of NO3- were more effective in lowering resting-clinic SBP (P = 0.04 and, P = 0.03, respectively) than was PL. The lower doses of NO3- also resulted in significant increases in microvascular perfusion (medium, P = 0.02; low, P = 0.002) relative to baseline values. CONCLUSION: These findings indicate that supplementation with medium and low, but not high, doses of NO3- for 13 weeks had positive effects on BP and endothelial function in older overweight and obese adults. These findings require confirmation in larger studies.


Subject(s)
Nitrates , Overweight , Adult , Humans , Aged , Blood Pressure , Nitrates/pharmacology , Nitrates/therapeutic use , Pilot Projects , Overweight/diagnosis , Dietary Supplements/adverse effects , Obesity/diagnosis , Obesity/drug therapy , Double-Blind Method
7.
Br J Nutr ; 130(8): 1343-1356, 2023 10 28.
Article in English | MEDLINE | ID: mdl-36847169

ABSTRACT

This systematic review and meta-analysis aimed to investigate the effects of beetroot (BR) or nitrate supplements on body composition indices. A systematic search was conducted for randomised controlled trials (RCT) published up to August 2022 among online databases including Scopus, PubMed/Medline, Web of Science and Embase. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCT. A total of twelve RCT met the inclusion criteria for this meta-analysis. The pooled effect size of included studies indicated that BR or nitrate supplementation did not change body weight (weighted mean differences (WMD): -0·14 kg, 95 % CI -1·22, 1·51; P = 0·836; I2 = 0 %), BMI (WMD: -0·07 kg/m2, 95 % CI -0·19,0·03; P = 0·174, I2 = 0 %), fat mass (WMD: -0·26 kg, 95 % CI -1·51, 0·98; P = 0·677, I2 = 0 %), waist circumference (WMD: -0·28 cm, 95 % CI -2·30, 1·74; P = 0·786, I2 = 0 %), body fat percentage (WMD: 0·18 %, 95 % CI -0·62, 0·99; P = 0·651, I2 = 0 %), fat-free mass (WMD: 0·31 kg, 95 % CI -0·31, 1·94; P = 0·703, I2 = 0 %) and waist-to-hip ratio (WMD: 0, 95 % CI -0·01, 0·02; P = 0·676, I2 = 0 %). Subgroup analyses based on trial duration, BR or nitrate dose, study design, baseline BMI and athletic status (athlete v. non-athlete) demonstrated similar results. Certainty of evidence across outcomes ranged from low to moderate. This meta-analysis study suggests that BR or nitrate supplements cannot efficiently ameliorate body composition indices regardless of supplement dosage, trial duration and athletic status.


Subject(s)
Dietary Supplements , Nitrates , Humans , Nitrates/pharmacology , Body Weight , Waist-Hip Ratio , Body Composition , Body Mass Index
8.
J Am Nutr Assoc ; 42(2): 195-206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35512758

ABSTRACT

OBJECTIVE: The impact of high-nitrate beetroot juice (BRJ) supplementation has seen a recent explosion of interest in sports science. This study examined the potential influence of 7-day BRJ supplementation on the endurance performance of winter triathletes. METHODS: Eighty young active winter triathletes (44 males, age = 21.50 ± 1.15 yrs; 36 females, age = 20.66 ± 1.45 yrs) participated in this study and were provided with either BRJ (6.5 mmol NO3-/70 mL) or a placebo (PL, 0.065 mmol NO3-/70 mL) for 7 days (a dose of ×3 per day) in a randomized, double-blind design. The athletes then completed a submaximal treadmill run, intraday cycling exhaustion testing, and a 10-km cross country (XC) skiing competition on the second day. RESULTS: There was a significant decrease in the oxygen uptake, respiratory exchange ratio, and blood lactic acid level (p < 0.05) between the BRJ and PL treatment groups during V3 speed running (males: 13.3 km·h-1, females: 11.6 km·h-1). BRJ treatment also remarkably increased the time to exhaustion (TTE) during cycling exhaustion testing (males: p = 0.02, females: p = 0.04). No significant differences were observed in medium- or low-speed submaximal treadmill runs and 10-km XC skiing performance. CONCLUSIONS: One week of daily nitrate-rich BRJ supplementation improved running economy at high speed during the submaximal treadmill running test and extended the TTE of athletes during cycling exhaustion testing. However, BRJ supplementation did not improve the performance in 10-km on-snow time trials in XC skiing. Regarding nutritional strategies to improve endurance performance in exercise training and competition, these results should be carefully considered owing to the different motor skill levels and competitive abilities of participants.


Subject(s)
Beta vulgaris , Nitrates , Male , Female , Humans , Young Adult , Adult , Dietary Supplements , Fruit and Vegetable Juices , Antioxidants
9.
Eur J Appl Physiol ; 123(1): 91-102, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36175576

ABSTRACT

PURPOSE: To determine the effects of dietary nitrate (NO3-) supplementation on physiological responses, cognitive function, and performance during heavy load carriage in military cadets. METHODS: Ten healthy males (81.0 ± 6.5 kg; 180.0 ± 4.5 cm; 56.2 ± 3.7 ml·kg·min-1 VO2max) consumed 140 mL·d-1 of beetroot juice (BRJ; 12.8 mmol NO3-) or placebo (PL) for six d preceding an exercise trial, which consisted of 45 min of load carriage (55% body mass) at 4.83 km·h-1 and 1.5% grade, followed by a 1.6-km time-trial (TT) at 4% grade. Gas exchange, heart rate, and perceptual responses were assessed during constant-load exercise and the TT. Cognitive function was assessed immediately prior to, during, and post-exercise via the psychomotor vigilance test (PVT). RESULTS: Post-TT HR (188 ± 7.1 vs. 185 ± 7.4; d = 0.40; p = 0.03), mean tidal volume (2.15 ± 0.27 vs. 2.04 ± 0.23; p = 0.02; d = 0.47), and performance (770.9 ± 78.2 s vs. 809.8 ± 61.4 s; p = 0.03; d = 0.63) were increased during the TT with BRJ versus PL. There were no effects of BRJ on constant-load gas exchange or perceptual responses, and cognitive function was unchanged at all time points. CONCLUSION: BRJ supplementation improves heavy load carriage performance in military cadets possibly as a result of attenuated respiratory muscle fatigue, rather than enhanced exercise economy.


Subject(s)
Beta vulgaris , Military Personnel , Male , Humans , Nitrates/pharmacology , Dietary Supplements , Exercise , Antioxidants , Double-Blind Method , Cross-Over Studies
10.
Microvasc Res ; 146: 104469, 2023 03.
Article in English | MEDLINE | ID: mdl-36563997

ABSTRACT

Peripheral artery disease (PAD) is an atherosclerotic disease characterized by compromised lower-extremity blood flow that impairs walking ability. We showed that a moderate dose of dietary nitrate in the form of beetroot juice (BRJ, 0.11 mmol/kg) can improve macrovascular function and maximal walking distance in patients with PAD. However, its impacts on the microcirculation and autonomic nervous system have not been examined. Therefore, we investigated the impacts of this dose of dietary nitrate on skeletal muscle microvascular function and autonomic nervous system function and further related these measurements to 6-min walking distance, pain-free walking distance, and exercise recovery in patients with PAD. Patients with PAD (n = 10) ingested either BRJ or placebo in a randomized crossover design. Heart rate variability, skeletal muscle microvascular function, and 6-min walking distance were performed pre- and post-BRJ and placebo. There were significant group × time interactions (P < 0.05) for skeletal muscle microvascular function, 6-min walking distance, and exercise recovery, but no changes (P > 0.05) in heart rate variability or pain-free walking distance were noted. The BRJ group demonstrated improved skeletal muscle microvascular function (∆ 22.1 ± 7.5 %·min-1), longer 6-min walking distance (Δ 37.5 ± 9.1 m), and faster recovery post-exercise (Δ -15.3 ± 4.2 s). Furthermore, changes in skeletal muscle microvascular function were positively associated with changes in 6-min walking distance (r = 0.5) and pain-free walking distance (r = 0.6). These results suggest that a moderate dose of dietary nitrate may support microvascular function, which is related to improvements in walking distance and claudication in patients with PAD.


Subject(s)
Nitrates , Peripheral Arterial Disease , Humans , Dietary Supplements , Hemodynamics , Intermittent Claudication/diagnosis , Intermittent Claudication/drug therapy , Muscle, Skeletal/blood supply , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/drug therapy , Cross-Over Studies
11.
Nutrients ; 14(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36364727

ABSTRACT

The purpose of this study was to test the hypothesis that acute intake of inorganic nitrate (NO3−) via supplementation would attenuate the venoconstriction and pressor response to exercise. Sixteen healthy young adults were assigned in a randomized crossover design to receive beetroot juice (BRJ) or an NO3−-depleted control beverage (prune juice: CON). Two hours after consuming the allocated beverage, participants rested in the supine position. Following the baseline period of 4 min, static handgrip exercise of the left hand was performed at 30% of the maximal voluntary contraction for 2 min. Mean arterial pressure (MAP) and heart rate (HR) were measured. Changes in venous volume in the right forearm and right calf were also measured using venous occlusion plethysmography while cuffs on the upper arm and thigh were inflated constantly to 30−40 mmHg. The plasma NO3− concentration was elevated with BRJ intake (p < 0.05). Exercise increased MAP and HR and decreased venous volume in the forearm and calf, but there were no differences between CON and BRJ. Thus, these findings suggest that acute BRJ intake does not alter the sympathetic venoconstriction in the non-exercising limbs and MAP response to exercise in healthy young adults, despite the enhanced activity of nitric oxide.


Subject(s)
Beta vulgaris , Nitrates , Humans , Young Adult , Nitrates/pharmacology , Hand Strength/physiology , Dietary Supplements , Exercise/physiology , Nitrogen Oxides , Nitric Oxide/pharmacology , Blood Pressure , Double-Blind Method , Fruit and Vegetable Juices
12.
Nitric Oxide ; 128: 59-71, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35977691

ABSTRACT

The clinical symptoms of chronic obstructive pulmonary disease (COPD) disease are accompanied by severely debilitating extra-pulmonary manifestations, including vascular dysfunction and hypertension. This systematic review evaluated the current evidence for several therapeutic interventions, targeting the nitric oxide (NO) pathway on hemodynamics and, secondarily, exercise capacity in patients with COPD. A comprehensive search on COPD and NO donors was performed on online databases. Of 934 initially found manuscripts, 27 were included in the review, and 16 in the meta-analysis. The analysis indicated inconsistent effects of dietary nitrate supplementation on exercise tolerance in COPD patients. Dietary nitrate supplementation decreased systolic (-3.7 ± 4.3 mmHg; p = 0.10) and diastolic blood pressure (BP; -2.6 ± 3.2 mmHg; p = 0.05) compared with placebo. When restricted to acute studies, a clinically relevant BP lowering effect of nitrate supplementation during diastole was observed (-4.7 ± 3.2 mmHg; n = 5; p = 0.05). In contrast, inhaled NO (iNO) at doses <20 ppm (+9.2 ± 11.3 mmHg) and 25-40 ppm (-5±2 mmHg) resulted in inconsistent effects on PaO2 (p = 0.48). Data on the effect of iNO on exercise capacity were too limited and inconsistent, but preliminary evidence suggests a possible benefit of iNO on pulmonary vascular resistance during exercise in severe COPD patients. Overall, the effects of acute dietary nitrate supplementation on BP may be of clinical relevance as an adjunct therapy and deserve further investigation in large sample size studies of COPD patients with and without cardiovascular comorbidities. iNO exerted inconsistent physiological effects, with the use of high doses posing safety risks.


Subject(s)
Nitrates , Pulmonary Disease, Chronic Obstructive , Blood Pressure , Dietary Supplements/adverse effects , Humans , Lung , Nitrogen Oxides/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy
13.
Nutrients ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889796

ABSTRACT

Nitrate (NO3−) supplementation has been reported to enhance intermittent exercise performance; however, its impact on oxygen (O2) cost during intermittent running exercise is unclear. The aim of this study was to assess if acute NO3− supplementation would elicit performance benefits in recreationally active individuals during the Yo−Yo intermittent recovery level 1 (Yo-Yo IR1) test, with its potential benefit on O2 consumption (VO2), in a double-blind, randomized, crossover study, 12 recreational males consumed NO3−-rich (NIT; ~12.8 mmol), and NO3−-depleted (PLA; 0.04 mmol) concentrated beetroot juice 3 h before completing the Yo-Yo IR1 test. VO2 was measured at 160, 280 and 440 m (sub-maximal) and when the test was terminated (peak). Performance in the Yo−Yo IR1 was greater with NIT (990 ± 442.25 m) compared to PLA (870 ± 357.4 m, p = 0.007). The VO2 was not significantly different at 160 m (1.92 ± 0.99 vs. 2.1 ± 0.88 L·min−1), 280 m (2.62 ± 0.94 vs. 2.83 ± 0.94 L·min−1), 440 m (3.26 ± 1.04 vs. 3.46 ± 0.98 L·min−1) and peak (4.71 ± 1.01 vs. 4.92 ± 1.17 L·min−1) between NIT and PLA trials (all p > 0.05). The present study has indicated that acute supplementation of NO3− enhanced intermittent running performance but had no effect on VO2 during the Yo−Yo IR1 test in recreational young adults.


Subject(s)
Beta vulgaris , Running , Antioxidants , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Fruit and Vegetable Juices , Humans , Male , Nitrates , Oxygen , Oxygen Consumption , Polyesters , Young Adult
14.
Antioxidants (Basel) ; 11(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892622

ABSTRACT

Herbal supplements rich in phenolic compounds are evidenced to have a protective effect against cardiovascular diseases. Therefore, they are suggested to be included in diets for people with hypertension (HT). HT is a global health problem and is estimated to affect billions of people until the end of 2025. For this reason, every possible and effective solution preventing HT should be considered. The aim was to perform an updated meta-analysis and review of recently published studies to evaluate the effect of selected herbal supplements on blood pressure reduction. We searched the PubMed database with specified selection criteria, analysing the RCT studies from 2011 to 2021. A total of 31 studies were included in the analysis, and the meta-analysis was conducted on the data from 16 of them. The general effect size of all the supplements via placebo was d = 1.45, p < 0.05 for systolic blood pressure (SBP) and d = 0.31, p < 0.05 for diastolic blood pressure (DBP). The meta-analysis and review of the literature demonstrated that herbal supplements, such as resveratrol, cherry juice, beetroot juice, bergamot extracts, barberry, and pycnogenol, can be effective in blood pressure reduction and cardiovascular prevention, but attention should be paid to their appropriate dosage due to the possibility of side effects from the digestive system.

15.
Am J Physiol Regul Integr Comp Physiol ; 323(3): R331-R339, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35816716

ABSTRACT

In this crossover study, we investigated the influence of inorganic nitrate ([Formula: see text]) supplementation on venous volume and compliance in the resting forearm and calf. Twenty healthy young adults were assigned to receive an [Formula: see text]-rich beverage [beetroot juice (BRJ): 140 mL; ∼8 mmol [Formula: see text]] or an [Formula: see text]-depleted control beverage [prune juice (CON): 166 mL; < 0.01 mmol [Formula: see text]). Two hours after consuming the allocated beverage, each participant rested in the supine position for 20 min. Cuffs were then placed around the right upper arm and right thigh, inflated to 60 mmHg for 8 min, and then decreased to 0 mmHg at a rate of 1 mmHg/s. During inflation and deflation of cuff pressure, changes in venous volume in the forearm and calf were measured by venous occlusion plethysmography. Venous compliance was calculated as the numerical derivative of the cuff pressure-venous volume curve in the limbs. The plasma [Formula: see text] concentration was elevated by intake of BRJ (before, 15.5 ± 5.8 µM; after, 572.0 ± 116.1 µM, P < 0.05) but not by CON (before, 14.8 ± 7.2 µM; after, 15.3 ± 7.4 µM, P > 0.05). On the other hand, there was no significant difference in venous volume or compliance in the forearm or calf between BRJ and CON. These findings suggest that although acute inorganic NO3- supplementation may enhance the activity of nitric oxide (NO) via nitrite → NO pathway, it does not influence venous volume or compliance in the limbs in healthy young adults.


Subject(s)
Beta vulgaris , Nitrates , Blood Pressure , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Fruit and Vegetable Juices , Humans , Nitric Oxide/metabolism , Nitrogen Oxides , Young Adult
17.
J Appl Physiol (1985) ; 133(1): 69-74, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35652829

ABSTRACT

Nutritional strategies to prevent endothelial dysfunction following prolonged sitting remain largely unknown. Given that beetroot juice (BRJ) ingestion enhances nitric oxide (NO) bioavailability, we aimed to evaluate whether prior BRJ ingestion would prevent sitting-induced endothelial dysfunction in the leg. Eleven healthy young males (n = 7) and females (n = 4) underwent two experimental trials of prolonged sitting with prior: 1) placebo (PL) ingestion (PL trial) and 2) BRJ ingestion (BRJ trial). All subjects ingested 140 mL of PL or BRJ (∼0.0055 or ∼12.8 mmol of nitrate, respectively) immediately before 3 h of sitting. Pre- and post-sitting measurements of popliteal artery flow-mediated dilation (FMD) and blood pressure, and blood collection were undertaken. During the sitting period, an hourly assessment of popliteal artery diameter and blood velocity, blood pressure, and blood collection were performed. Popliteal artery blood flow and shear rate were significantly and similarly reduced during the sitting period in both trials (P < 0.001). Plasma nitrate and NOx (total nitrite and nitrate) concentrations were significantly increased relative to baseline in the only BRJ trial, and the overall concentrations were significantly higher in the BRJ trial (P < 0.001). Popliteal artery FMD was significantly reduced after the sitting period in the PL trial (P < 0.05), whereas no reduction was observed in the BRJ trial. Therefore, prior BRJ ingestion would prevent sitting-induced leg endothelial dysfunction via enhancing NO bioavailability.NEW & NOTEWORTHY The present study elucidates that beetroot juice ingestion before prolonged sitting offsets sitting-induced leg endothelial dysfunction. Data from the present study provides novel physiological information that enhancing NO bioavailability by dietary nitrate supplementation is an effective tool for prevention of the detrimental vascular effects of prolonged sitting.


Subject(s)
Beta vulgaris , Vascular Diseases , Blood Pressure , Dietary Supplements , Double-Blind Method , Eating , Female , Fruit and Vegetable Juices , Humans , Male , Nitrates , Nitric Oxide/pharmacology , Nitrites
18.
Nutrients ; 14(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745210

ABSTRACT

Nitric oxide (NO) contributes to maintaining normal cardiovascular and renal function. This bioactive signalling molecule is generally formed enzymatically by NO synthase in the vascular endothelium. NO bioactivity can also be attributed to dietary intake of inorganic nitrate, which is abundant in our diet, especially in green leafy vegetables and beets. Ingested nitrate is reduced to nitrite by oral commensal bacteria and further to NO systemically. Previous studies have shown that dialysis, by means of removing nitrate and nitrite from the body, can reduce NO bioactivity. Hence, dietary intervention approaches aimed to boost the nitrate-nitrite-NO pathway may be of benefit in dialysis patients. The purpose of this study was to examine the kinetics of plasma nitrate and nitrite after a single intake of nitrate-rich concentrated beetroot juice (BJ) in adult hemodialysis (HD) patients and in age-matched healthy volunteers (HV). Eight HD patients and seven HV participated in this single center, randomized, single-blind, placebo-controlled, crossover study. Each participant received a sequential single administration of active BJ (70 mL, 400 mg nitrate) and placebo BJ (70 mL, 0 mg nitrate) in a random order separated by a washout period of seven days. For the kinetic analysis, blood samples were collected at different time-points before and up to 44 h after BJ intake. Compared with placebo, active BJ significantly increased plasma nitrate and nitrite levels both in HD patients and HV. The area under the curve and the maximal concentration of plasma nitrate, but not of nitrite, were significantly higher in HD patients as compared with HV. In both groups, active BJ ingestion did not affect blood pressure or plasma potassium levels. Both BJs were well tolerated in all participants with no adverse events reported. Our data provide useful information in planning dietary nitrate supplementation efficacy studies in patients with reduced NO bioactivity.


Subject(s)
Beta vulgaris , Nitrites , Adult , Antioxidants/analysis , Blood Pressure , Cross-Over Studies , Dietary Supplements , Fruit and Vegetable Juices/analysis , Humans , Kinetics , Nitrates , Nitric Oxide/metabolism , Renal Dialysis , Single-Blind Method
19.
Nutrients ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35565845

ABSTRACT

Beetroot juice is a food high in nitrate and is associated with cardiometabolic health benefits and enhanced exercise performance through the production of nitric oxide in the nitrate−nitrite−nitric oxide pathway. Since various food components influence this pathway, the aim of this trial was to study the effect of beetroot juice alone and in conjunction with vitamin C or protein on the acute response to plasma nitrate and nitrite levels in healthy middle- to older-aged adults. In this cross-over trial, each participant received, in a randomized order, a single dose of Beet It Sport® alone; Beet It Sport®, plus a 200 mg vitamin C supplement; and Beet It Sport® plus 15 g of whey protein. Plasma levels of nitrate and nitrite were determined prior to and at 1 and 3 h after intervention. Log plasma nitrate and nitrite was calculated to obtain data that were normally distributed, and these data were analyzed using two-way within-factors ANOVA, with time and treatment as the independent factors. There were no statistically significant differences for log plasma nitrate (p = 0.308) or log plasma nitrite (p = 0.391) values across treatments. Log plasma nitrate increased significantly from pre-consumption levels after 1 h (p < 0.001) and 3 h (p < 0.001), but plasma nitrate was lower at 3 h than 1 h (p < 0.001). Log plasma nitrite increased from pre to 1 h (p < 0.001) and 3 h (p < 0.001) with log values at 3 h higher than at 1 h (p = 0.003). In this cohort, we observed no differences in log plasma nitrate and nitrite at 1 h and 3 h after co-ingesting beetroot juice with vitamin C or a whey protein supplement compared to beetroot juice alone. Further research needs to be undertaken to expand the blood-sampling time-frame and to examine factors that may influence the kinetics of the plasma nitrate to nitrite efficacy, such as differences in fluid volume and osmolarity between treatments employed.


Subject(s)
Beta vulgaris , Nitrites , Adult , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Blood Pressure , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Fruit and Vegetable Juices , Humans , Middle Aged , Nitrates , Nitric Oxide/pharmacology , Vitamins/pharmacology , Whey Proteins/pharmacology
20.
Eur J Appl Physiol ; 122(7): 1683-1693, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35460359

ABSTRACT

BACKGROUND: Nitrate (NO3-) supplementation has been reported to lower motor unit (MU) firing rate (MUFR) during dynamic resistance exercise; however, its impact on MU activity during isometric and ischemic exercise is unknown. PURPOSE: To assess the effect of NO3- supplementation on knee extensor MU activities during brief isometric contractions and a 3 min sustained contraction with blood flow restriction (BFR). METHODS: Sixteen healthy active young adults (six females) completed two trials in a randomized, double-blind, crossover design. Trials were preceded by 5 days of either NO3- (NIT) or placebo (PLA) supplementation. Intramuscular electromyography was used to determine the M. vastus lateralis MU potential (MUP) size, MUFR and near fibre (NF) jiggle (a measure of neuromuscular stability) during brief (20 s) isometric contractions at 25% maximal strength and throughout a 3 min sustained BFR isometric contraction. RESULTS: Plasma nitrite (NO2-) concentration was elevated after NIT compared to PLA (475 ± 93 vs. 198 ± 46 nmol L-1, p < 0.001). While changes in MUP area, NF jiggle and MUFR were similar between NIT and PLA trials (all p > 0.05), MUP duration was shorter with NIT compared to PLA during brief isometric contractions and the sustained ischemic contraction (p < 0.01). In addition, mean MUP duration, MUP area and NF jiggle increased, and MUFR decreased over the 3 min sustained BFR isometric contraction for both conditions (all p < 0.05). CONCLUSIONS: These findings provide insight into the effect of NO3- supplementation on MUP properties and reveal faster MUP duration after short-term NO3- supplementation which may have positive implications for skeletal muscle contractile performance.


Subject(s)
Blood Flow Restriction Therapy , Nitrates , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Female , Humans , Isometric Contraction , Muscle, Skeletal/physiology , Polyesters/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL