Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Sci Food Agric ; 104(2): 698-706, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37653274

ABSTRACT

BACKGROUND: This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS: There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION: These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Fagopyrum , Antioxidants/chemistry , Phenols/chemistry , Fagopyrum/chemistry , Molecular Docking Simulation , Rutin , Binding Sites
2.
Article in English | MEDLINE | ID: mdl-36597505

ABSTRACT

YspD is a hydrophilic translocator forming the platform for assemblage of functional translocon. Exposure to the extra-cellular milieu makes YspD a potential therapeutic target. DoGSiteScorer predicted best druggable pocket (P0) within YspD, encompassing predominantly the C-terminal helical bundles and the long helices-9 & 5. COACH metaserver also identified ligand binding residues within the aforementioned druggable pocket mapping to helix-9. Amino acids of helix-9 are involved in oligomerization of YspD. Interaction of helix-9 and parts of C-terminal of YspD with hydrophobic translocator protein (YspB), is essential for translocation of bacterial effectors to initiate an infection. Helices-9 & 5 form an intramolecular coiled-coil structure, required for protein-protein interaction. Targeting intramolecular coiled-coil and parts of C-terminal would be important for functional inactivation of YspD. Solvent exposed surface in YspD, particularly in P0, enhances its accessibility to ligands. Nine small molecular inhibitors of TIIISS were identified and retrieved from ZINC15 database (drug-library) as putative drug candidates. Molecular docking of potential ligands with P0 was done using SwissDock server and Achilles Blind Docking server. Considering the "Significance" threshold of binding score and region of interaction, Salicylidene Acyl Hydrazide derivatives (INP0400) and Phenoxyacetamide derivative (MBX1641) were found to bind effectively with YspD. These potential ligands interact with functional domains of YspD including parts of C-terminal and the intramolecular coiled-coil, which may affect the oligomerization of YspD and disrupt the interaction of YspD with YspB, inhibiting formation of functional translocon. The identified small molecular antimicrobial ligands of YspD could be tested in vivo to attenuate Y. enterocolitica infection by deregulation of Ysa-Ysp TIIISS. Supplementary Information: The online version contains supplementary material available at 10.1007/s40011-022-01443-2.

3.
Mol Cell Proteomics ; 22(1): 100455, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36435334

ABSTRACT

Most drug molecules target proteins. Identification of the exact drug binding sites on these proteins is essential to understand and predict how drugs affect protein structure and function. To address this challenge, we developed a strategy that uses immobilized metal-affinity chromatography-enrichable phosphonate affinity tags, for efficient and selective enrichment of peptides bound to an activity-based probe, enabling the identification of the exact drug binding site. As a proof of concept, using this approach, termed PhosID-ABPP (activity-based protein profiling), over 500 unique binding sites were reproducibly identified of an alkynylated afatinib derivative (PF-06672131). As PhosID-ABPP is compatible with intact cell inhibitor treatment, we investigated the quantitative differences in approachable binding sites in intact cells and in lysates of the same cell line and observed and quantified substantial differences. Moreover, an alternative protease digestion approach was used to capture the previously reported binding site on the epidermal growth factor receptor, which turned out to remain elusive when using solely trypsin as protease. Overall, we find that PhosID-ABPP is highly complementary to biotin-based enrichment strategies in ABPP studies, with PhosID-ABPP providing the advantage of direct activity-based probe interaction site identification.


Subject(s)
Organophosphonates , Organophosphonates/pharmacology , Proteins/metabolism , Peptides/metabolism , Cell Line , Trypsin/chemistry
4.
J Clin Endocrinol Metab ; 107(10): 2883-2891, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35896147

ABSTRACT

CONTEXT: Synonymous mutations are usually nonpathogenic. OBJECTIVE: We report here a family with X-linked hypophosphatemia (XLH) due to a novel synonymous PHEX variant with a unique mechanism. METHODS: We studied a 4-member family (a mother, a son, and 2 daughters), all affected with XLH. Genomic DNA was extracted from peripheral leucocytes. Whole exome sequencing (WES) was used to identify the underlying genetic variant in the proband (the son). Sanger sequencing was used to confirm this variant in the proband and his family members. RT-PCR and sequencing of the cDNA revealed the effect of this variant on the PHEX structure and function. RESULTS: A synonymous variant in the PHEX gene (c.1701A>C) was identified in all affected members. This variant changes the first nucleotide of exon 17 from adenine to cytosine. Using RT-PCR, this variant was shown to interfere with splicing of exons 16 with 17 resulting in a single shorter PHEX transcript in the proband compared to normal control. Sanger sequencing of the cDNA revealed a complete skipping of exon 17 and direct splicing of exons 16 and 18. This led to a frameshift and an introduction of a new stop codon in the next codon (codon 568), which ultimately led to truncation and loss of the final 183 amino acids of PHEX. CONCLUSION: This novel variant shows how a synonymous exonic mutation may induce a complex series of changes in the transcription and translation of the gene and causes a disease, a mechanism that is not commonly recognized.


Subject(s)
Familial Hypophosphatemic Rickets , Genetic Diseases, X-Linked , Hypophosphatemia , Adenine , Amino Acids/genetics , Codon, Terminator , Cytosine , DNA, Complementary , Familial Hypophosphatemic Rickets/genetics , Female , Genetic Diseases, X-Linked/genetics , Humans , Male , Mutation , Nucleotides , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Pedigree , Silent Mutation
5.
Bioorg Chem ; 118: 105486, 2022 01.
Article in English | MEDLINE | ID: mdl-34801948

ABSTRACT

The colchicine binding site of tubulin is a promising target for discovering novel antitumor agents which exert the antiangiogenic effect and are not susceptible to multidrug resistance. For identifying novel tubulin inhibitors, structure-based virtual screening was applied to identify hit 9 which displayed moderate tubulin polymerization inhibition and broad-spectrum in vitro antitumor activity. Structural optimization was performed, and biological assay revealed analog E27 displayed the best antitumor activity with IC50 values ranging from 7.81 µM to 10.36 µM, and improved tubulin polymerization inhibitory activity (IC50 = 16.1 µM). It significantly inhibited cancer cell migration and invasion, induced cell apoptosis and arrested the cell cycle at G2/M phase. Moreover, the apoptotic effect of E27 is related to the increased ROS level, the decrease of MMP, and the abnormal expression of apoptosis-related proteins. Taken together, these results suggested E27 was a promising lead compound for discovering novel tubulin-targeted antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
6.
Comb Chem High Throughput Screen ; 25(5): 831-837, 2022.
Article in English | MEDLINE | ID: mdl-33538664

ABSTRACT

BACKGROUND: Deubiquitinating enzymes (DUBs) protein family have been implicated in some deregulated pathways involved in carcinogeneses, such as cell cycle, gene expression, and DNA damage response (DDR). Zinc finger with UFM1-specific peptidase domain protein (ZUFSP) is one of the recently discovered members of the DUBs. OBJECTIVES: To identify and cross-validate the ZUFSP binding site using the bioinformatic tools, including SiteMap&Metapocket, respectively. To understand the molecular basis of complementary ZUFSP-Ub interaction and associated structural events using MD Simulation. METHODS: In this study, four binding pockets were predicted, characterized, and cross-validated based on physiochemical features such as site score, druggability score, site volume, and site size. Also, a molecular dynamics simulation technique was employed to determine the impact of ubiquitin-binding on ZUFSP. RESULTS: Site 1 with a site score 1.065, Size 102, D scores 1.00, and size volume 261 was predicted to be the most druggable site. Structural studies revealed that upon ubiquitin-binding, the motional movement of ZUFSP was reduced when compared to the unbound ZUFSP. Also, the ZUFSP helical arm (ZHA) domain orient in such a way that it moves closer to the Ub; this orientation enables the formation of a UBD which is very peculiar to ZUFSP. CONCLUSION: The impact of ubiquitin on ZUFSP movement and the characterization of its predicted druggable site can be targeted in the development of therapeutics.


Subject(s)
Ubiquitin , Zinc Fingers , Peptide Hydrolases/metabolism , Protein Binding , Protein Domains , Ubiquitin/metabolism
7.
Food Chem ; 367: 130762, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34390912

ABSTRACT

Inhibitory effects of flavonoids on starch digestibility were well known, but the structural mechanism was not clear. This study was focused on the diverse effect of quercetin and rutin on digestibility of Tartary buckwheat starch. Results showed that quercetin and rutin reduced the starch digestion by altering starch structure in bound forms and inhibiting digestive enzyme activity in free forms simultaneously, and quercetin showed a stronger effect than rutin. Molecular docking and saturation transfer difference-nuclear magnetic resonance (STD-NMR) revealed different binding site of rutin from quercetin was due to its hydroxyl and hydrogen on the glycoside structure. Rutin interacted with enzymes mainly by CH and OH on the glycoside structure which induced steric hindrance and restricted the inhibitory effect of quercetin fraction. The glycoside structure weakened inhibition of rutin on digestive enzymes in free forms rather than influence its anti-digestive effects in bound forms with starch.


Subject(s)
Fagopyrum , Rutin , Binding Sites , Digestion , Molecular Docking Simulation , Quercetin , Starch
8.
Methods Mol Biol ; 2354: 315-330, 2021.
Article in English | MEDLINE | ID: mdl-34448167

ABSTRACT

The identification, understanding, and deployment of immune receptors are crucial to achieve high-level and durable resistance for crops against pathogens. In potato, many R genes have been identified using map-based cloning strategies. However, this is a challenging and laborious task that involves the development of a high number of molecular markers for the initial mapping, and the screening of thousands of plants for fine mapping. Bulked segregant RNA-Seq (BSR-Seq) has proven to be an efficient technique for the mapping of resistance genes. The RNA from two bulks of plants with contrasting phenotypes is sequenced and analyzed to identify single-nucleotide polymorphism (SNPs) markers linked to the target gene. Subsequently, the SNP markers that are identified can be used to delimit the mapping interval. Additionally, we designed an in vitro recombinant screening strategy that is advantageous for analyzing a large number of plants, in terms of time, space, and cost. Tips and detailed protocols, including BSR-Seq, bioinformatic analysis, and recombinant screening, are provided in this chapter.


Subject(s)
Solanum , Chromosome Mapping , Disease Resistance , Plant Diseases/genetics , Polymorphism, Single Nucleotide , RNA-Seq , Solanum/genetics
9.
Bioorg Chem ; 112: 104912, 2021 07.
Article in English | MEDLINE | ID: mdl-33933804

ABSTRACT

Orphan nuclear receptor Nur77 is a unique member of the NR4A nuclear receptor subfamily, which is critical for cellular processes especially the inflammatory responses. Many efforts have been made to discover novel scaffold small molecules targeting Nur77. Herein, we evaluated the previously reported binding sites in crystal structures of Nur77 with small molecules, and then discovered compound 13 as a hit of Nur77 via virtual screening targeting the best-scored binding site. Based on the results of fluorescence titration assay, structure-activity relationship (SAR) analysis was summarized for compound 13 and its analogs. Among these analogs, compound 13e displayed the most potent binding affinity (0.54 ± 0.02 µM). The binding mode of compound 13e was predicted via molecule docking. Moreover, 13e exhibited significant anti-inflammation activity in TNF-α induced HepG2 cell model. Taken together, these results provided a new insight into the understanding the functions of specific binding sites on Nur77 for small molecular compounds, and the development of new scaffold Nur77 modulators.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Binding Sites/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
10.
Molecules ; 26(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530327

ABSTRACT

While selective inhibition is one of the key assets for a small molecule drug, many diseases can only be tackled by simultaneous inhibition of several proteins. An example where achieving selectivity is especially challenging are ligands targeting human kinases. This difficulty arises from the high structural conservation of the kinase ATP binding sites, the area targeted by most inhibitors. We investigated the possibility to identify novel small molecule ligands with pre-defined binding profiles for a series of kinase targets and anti-targets by in silico docking. The candidate ligands originating from these calculations were assayed to determine their experimental binding profiles. Compared to previous studies, the acquired hit rates were low in this specific setup, which aimed at not only selecting multi-target kinase ligands, but also designing out binding to anti-targets. Specifically, only a single profiled substance could be verified as a sub-micromolar, dual-specific EGFR/ErbB2 ligand that indeed avoided its selected anti-target BRAF. We subsequently re-analyzed our target choice and in silico strategy based on these findings, with a particular emphasis on the hit rates that can be expected from a given target combination. To that end, we supplemented the structure-based docking calculations with bioinformatic considerations of binding pocket sequence and structure similarity as well as ligand-centric comparisons of kinases. Taken together, our results provide a multi-faceted picture of how pocket space can determine the success of docking in multi-target drug discovery efforts.


Subject(s)
Molecular Docking Simulation/methods , Protein Kinases/chemistry , Protein Kinases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Adenosine Triphosphate/metabolism , Binding Sites , Computer Simulation , Drug Discovery , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Humans , Ligands , Models, Molecular , Molecular Conformation , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship
11.
J Hazard Mater ; 411: 125129, 2021 06 05.
Article in English | MEDLINE | ID: mdl-33486229

ABSTRACT

Thermal treatment can not only efficiently remove volatile pollutants but also distinctly alter the speciation of organic carbon (C) and the behaviors of residual pollutants in contaminated soils. Here we examined the distribution and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in industrially contaminated site soils affected by thermal treatment (temperature ranging of 105-650 â„ƒ) using synchrotron-based infrared microspectroscopy and n-butanol extraction (a mild solvent extractant). In the pristine soils, the sequestration and distribution of PAHs were simultaneously controlled by aromatic C, aliphatic C and clay minerals. Desorption efficiency of PAHs was substantially increased with increasing temperature, whereas the residual PAHs were strongly immobilized within their binding sites evidenced by their dramatically decreased bioaccessibility. Aliphatic and carboxylic C were gradually decomposed and/or carbonized with increasing temperature. In contrast, aromatic C remained relatively recalcitrant during the thermal treatment and was the key controlling factor for the desorption of residual PAHs in the soils with either thermal treatment or n-butanol extraction. This study is the first to visualize the changes in the binding sites and bioaccessibility of PAHs induced by thermal treatment, which have important implications for understanding the sequestration mechanisms of organic pollutants in soil and optimizing the remediation technique.

12.
Curr Issues Mol Biol ; 44(1): 152-175, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35723391

ABSTRACT

The number of patients with neurodegenerative diseases, particularly Alzheimer's disease (AD), continues to grow yearly. Cholinesterase inhibitors (ChEIs) represent the first-line symptomatic drug treatment for mild-to-moderate AD; however, there is an unmet need to produce ChEIs with improved efficacy and reduced side effects. Herein, phytochemicals with reported anti-acetylcholinesterase (AChE) activity were ranked in silico for their anti-AChE potential. Ligands with a similar or higher binding affinity to AChE than galantamine were then selected for the design of novel dual-binding site heterodimeric drugs. In silico molecular docking of heterodimers with the target enzymes, AChE and butyrylcholinesterase (BuChE), were performed, and anti-cholinesterase binding affinities were compared with donepezil. Drug-likeliness properties and toxicity of the heterodimers were assessed using the SwissADME and ProTox-II webservers. Nine phytochemicals displayed similar or higher binding affinities to AChE than galantamine: sanguinarine > huperzine A > chelerythrine > yohimbine > berberine > berberastine > naringenin > akuammicine > carvone. Eleven heterodimeric ligands were designed with phytochemicals separated by four- or five-carbon alkyl-linkers. All heterodimers were theoretically potent AChE and BuChE dual-binding site inhibitors, with the highest affinity achieved with huperzine-4C-naringenin, which displayed 34% and 26% improved affinity to AChE and BuChE, respectively, then the potent ChEI drug, donepezil. Computational pharmacokinetic and pharmacodynamic screening suggested that phytochemical heterodimers would display useful gastrointestinal absorption and with relatively low predicted toxicity. Collectively, the present study suggests that phytochemicals could be garnered for the provision of novel ChEIs with enhanced drug efficacy and low toxicity.

13.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008465

ABSTRACT

Benzodiazepines (BZDs) produce versatile pharmacological actions through positive modulation of GABAA receptors (GABAARs). A previous study has demonstrated that high concentrations of diazepam potentiate GABA currents on the α1ß2γ2 and α1ß2 GABAARs in a flumazenil-insensitive manner. In this study, the high-concentration effects of BZDs and their sensitivity to flumazenil were determined on synaptic (α1ß2γ2, α2ß2γ2, α5ß2γ2) and extra-synaptic (α4ß2δ) GABAARs using the voltage-clamp electrophysiology technique. The in vivo evaluation of flumazenil-insensitive BZD effects was conducted in mice via the loss of righting reflex (LORR) test. Diazepam induced biphasic potentiation on the α1ß2γ2, α2ß2γ2 and α5ß2γ2 GABAARs, but did not affect the α4ß2δ receptor. In contrast to the nanomolar component of potentiation, the second potentiation elicited by micromolar diazepam was insensitive to flumazenil. Midazolam, clonazepam, and lorazepam at 200 µM exhibited similar flumazenil-insensitive effects on the α1ß2γ2, α2ß2γ2 and α5ß2γ2 receptors, whereas the potentiation induced by 200 µM zolpidem or triazolam was abolished by flumazenil. Both the GABAAR antagonist pentylenetetrazol and Fa173, a proposed transmembrane site antagonist, abolished the potentiation induced by 200 µM diazepam. Consistent with the in vitro results, flumazenil antagonized the zolpidem-induced LORR, but not that induced by diazepam or midazolam. Pentylenetetrazol and Fa173 antagonized the diazepam-induced LORR. These findings support the existence of non-classical BZD binding sites on certain GABAAR subtypes and indicate that the flumazenil-insensitive effects depend on the chemical structures of BZD ligands.


Subject(s)
Benzodiazepines/pharmacology , Flumazenil/pharmacology , Receptors, GABA-A/metabolism , Animals , Animals, Outbred Strains , Clonazepam/pharmacology , Diazepam/pharmacology , Female , GABA Antagonists/pharmacology , Male , Mice , Midazolam/pharmacology , Xenopus laevis/metabolism , gamma-Aminobutyric Acid/metabolism
14.
Toxicology ; 446: 152613, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33086094

ABSTRACT

Toluene intoxication produces deleterious effects on cognitive function, which has been associated with the inhibition of N-methyl-d-aspartate receptor (NMDAR). The present study determined whether N,N-dimethylglycine (DMG), a nutrient supplement and a partial agonist for NMDAR glycine binding site, could counteract recognition memory deficits and hippocampal synaptic dysfunction after acute toluene exposure. Male ICR mice were treated with toluene (250-750 mg/kg) for monitoring the sociability and social novelty in three-chamber test and long-term potentiation (LTP) of hippocampal synaptic transmission. Moreover, the combined effects of DMG (30-100 mg/kg) pretreatment with toluene (750 mg/kg) on three-chamber test, novel location and object recognition test and synaptic function were determined. Toluene decreased the sociability, preference for social novelty, hippocampal synaptic transmission and LTP in a dose-dependent manner. DMG pretreatment significantly reduced the toluene-induced memory impairment in social recognition, object location and object recognition and synaptic dysfunction. Furthermore, NMDAR glycine binding site antagonist, 7-chlorokynurenic acid, abolished the protective effects of DMG. These results indicate that DMG could prevent toluene-induced recognition memory deficits and synaptic dysfunction and its beneficial effects might be associated with modulation of NMDAR. These findings suggest that DMG supplementation might be an effective approach to prevent memory problems for the workers at risk of high-level toluene exposure or toluene abusers.


Subject(s)
Memory Disorders/chemically induced , Memory Disorders/prevention & control , Neuronal Plasticity/drug effects , Recognition, Psychology/drug effects , Sarcosine/analogs & derivatives , Toluene/toxicity , Animals , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Male , Memory Disorders/psychology , Mice , Mice, Inbred ICR , Neuronal Plasticity/physiology , Recognition, Psychology/physiology , Sarcosine/pharmacology , Sarcosine/therapeutic use , Solvents/toxicity
15.
J Muscle Res Cell Motil ; 41(1): 153-162, 2020 03.
Article in English | MEDLINE | ID: mdl-31863323

ABSTRACT

Gelsolin superfamily proteins, consisting of multiple domains (usually six), sever actin filaments and cap the barbed ends in a Ca2+-dependent manner. Two types of evolutionally conserved Ca2+-binding sites have been identified in this family; type-1 (between gelsolin and actin) and type-2 (within the gelsolin domain). Fragmin, a member in the slime mold Physarum polycephalum, consists of three domains (F1-F3) that are highly similar to the N-terminal half of mammalian gelsolin (G1-G3). Despite their similarities, the two proteins exhibit a significant difference in the Ca2+ dependency; F1-F3 absolutely requires Ca2+ for the filament severing whereas G1-G3 does not. In this study, we examined the strong dependency of fragmin on Ca2+ using biochemical and structural approaches. Our co-sedimentation assay demonstrated that Ca2+ significantly enhanced the binding of F2-F3 to actin. We determined the crystal structure of F2-F3 in the presence of Ca2+. F2-F3 binds a total of three calcium ions; while two are located in type-2 sites within F2 or F3, the remaining one resides between the F2 long helix and the F3 short helix. The inter-domain Ca2+-coordination appears to stabilize F2-F3 in a closely packed configuration. Notably, the F3 long helix exhibits a bent conformation which is different from the straight G3 long helix in the presence of Ca2+. Our results provide the first structural evidence for the existence of an unconventional Ca2+-binding site in the gelsolin superfamily proteins.


Subject(s)
Binding Sites/physiology , Calcium/metabolism , Gelsolin/metabolism , Humans
16.
Food Chem ; 305: 125435, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31494497

ABSTRACT

Soluble dietary fibre (SDF) of micronized and non-micronized powders of lotus root nodes were investigated based on its adsorption and activity inhibition of pancreatic lipase (PL) by using circular dichroism, fluorescence spectroscopy and modification. Results showed that SDF2 (SDF from micronized powders of lotus root nodes) had stronger PL adsorption and enzyme activity inhibition than SDF1 (SDF from non-micronized powders of lotus root nodes). Specifically, SDF2 showed more binding sites than SDF1 in PL. There were hydrogen bonds and van der Waals interactions between SDF and PL, with Trp on PL probably serving as the main binding site. Carboxyl groups exhibited a stronger inhibition on PL by carboxymethyl and hydroxypropyl modification. The common mechanisms between SDF1 and SDF2 can be attributed to the combination between Trp and carboxyl groups, while the differences may be generated by the variations in structures or chemical groups induced by micronization.


Subject(s)
Dietary Fiber , Lipase/metabolism , Lipid Metabolism , Lotus/chemistry , Adsorption , Hydrolysis , Plant Preparations/chemistry , Plant Roots/chemistry , Powders/chemistry , Solubility
17.
Cell Rep ; 29(7): 1909-1922.e5, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722206

ABSTRACT

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by dramatic changes in epigenetic programs, including silencing of endogenous and exogenous retroviruses. Here, we utilized replication-defective and persistent Sendai virus (SeVdp)-based vectors to monitor retroviral silencing during reprogramming. We observed that retroviral silencing occurred at an early reprogramming stage without a requirement for KLF4 or the YY1-binding site in the retroviral genome. Insertional chromatin immunoprecipitation (iChIP) enabled us to isolate factors assembled on the silenced provirus, including components of inhibitor of histone acetyltransferase (INHAT), which includes the SET/TAF-I oncoprotein. Knockdown of SET/TAF-I in mouse embryonic fibroblasts (MEFs) diminished retroviral silencing during reprogramming, and overexpression of template activating factor-I α (TAF-Iα), a SET/TAF-I isoform predominant in embryonic stem cells (ESCs), reinforced retroviral silencing by an SeVdp-based vector that is otherwise defective in retroviral silencing. Our results indicate an important role for TAF-Iα in retroviral silencing during reprogramming.


Subject(s)
Cellular Reprogramming Techniques , Cellular Reprogramming , Endogenous Retroviruses , Gene Silencing , Mouse Embryonic Stem Cells , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/virology , Sendai virus/genetics , Sendai virus/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
18.
J Agric Food Chem ; 67(46): 12741-12751, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31659899

ABSTRACT

Tyrosinase inhibitors are important in cosmetic, medical, and food industries due to their regulation of melanin production. A tyrosinase inhibitor was purified from Camellia pollen using high-speed countercurrent chromatography and preparative high-performance liquid chromatography and was identified as caffeine by NMR and mass spectrometry. It showed strong mushroom tyrosinase inhibitory activity with an IC50 of 18.5 ± 2.31 µg/mL in a noncompetitive model. The caffeine did not interact with copper ions in the active center of the enzyme but could quench fluorescence intensity and change the secondary conformation of this tyrosinase. A molecular dynamics simulation showed that caffeine bound this tyrosinase via Lys379, Lys 376, Asp357, Glu356, Thr308, Gln307, Asp312, and Trp358, thus changing the binding sites of l-tyrosine and the loop conformation adjacent to the active center. In vitro cell model analysis revealed that caffeine exhibited significant inhibitory effects on both intracellular tyrosinase activity and melanin production of B16-F10 melanoma cells in a concentration-dependent manner. These comprehensive results suggest that caffeine is a strong tyrosinase inhibitor that has the potential to be developed as skin-whitening agents in the cosmetics and pharmaceutical industries or as antibrowning agents in the food industry.


Subject(s)
Caffeine/chemistry , Camellia/chemistry , Enzyme Inhibitors/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Plant Extracts/chemistry , Pollen/chemistry , Animals , Caffeine/isolation & purification , Cell Line , Copper , Melanins/biosynthesis , Mice , Molecular Dynamics Simulation , Skin Lightening Preparations/chemistry
19.
Food Chem ; 295: 449-455, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31174781

ABSTRACT

The aroma stability of fresh coffee brew was investigated during storage over 60 min, there was a substantial reduction in available 2-furfurylthiol (2-FFT) (84%), methanethiol (72%), 3-methyl-1H-pyrole (68%) and an increase of 2-pentylfuran (65%). It is proposed that 2-FFT was reduced through reversible chemical binding and irreversible losses. Bound 2-FFT was released after cysteine addition, thereby demonstrating that a reversible binding reaction was the dominant mechanism of 2-FFT loss in natural coffee brew. The reduction in available 2-FFT was investigated at different pH and temperatures. At high pH, the reversible binding of 2-FFT was shown to protect 2-FFT from irreversible losses, while irreversible losses led to the reduction of total 2-FFT at low pH. A model reaction system was developed and a potential conjugate, hydroxyhydroquinone, was reacted with 2-FFT. Hydroxyhydroquinone also showed 2-FFT was released after cysteine addition at high pH.


Subject(s)
Coffee/chemistry , Food Storage/methods , Furans/chemistry , Odorants/analysis , Sulfhydryl Compounds/chemistry , Furans/analysis , Hydrogen-Ion Concentration , Sulfhydryl Compounds/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
20.
Genes (Basel) ; 10(5)2019 05 27.
Article in English | MEDLINE | ID: mdl-31137880

ABSTRACT

Salinity is one of the major environment factors that limits the growth of plants and the productivity of crops worldwide. It has been shown that Na+ transporters play a central role in salt tolerance and development of plants. The objective of this study was to identify Na+/H+ antiporter (NHX) genes and investigate their expression patterns in sugar beet (Beta vulgaris L.) subjected to various concentrations of NaCl. A total of five putative NHX genes were identified and distributed on four chromosomes in sugar beet. Phylogenetic analysis revealed that these BvNHX genes are grouped into three major classes, viz Vac- (BvNHX1, -2 and -3), Endo- (BvNHX4), and PM-class NHX (BvNHX5/BvSOS1), and within each class the exon/intron structures are conserved. The amiloride-binding site is found in TM3 at N-terminus of Vac-class NHX proteins. Protein-protein interaction (PPI) prediction suggested that only BvNHX5 putatively interacts with calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CIPK), implying it might be the primary NHX involved in CBL-CIPK pathway under saline condition. It was also found that BvNHX5 contains one abscisic acid (ABA)-responsive element (ABRE), suggesting that BvNHX5 might be involved in ABA signal responsiveness. Additionally, the qRT-PCR analysis showed that all the BvNHX genes in both roots and leaves are significantly up-regulated by salt, and the transcription levels under high salinity are significantly higher than those under either low or moderate salinity. Taken together, this work gives a detailed overview of the BvNHX genes and their expression patterns under salt stress. Our findings also provide useful information for elucidating the molecular mechanisms of Na+ homeostasis and further functional identification of the BvNHX genes in sugar beet.


Subject(s)
Beta vulgaris/genetics , Phylogeny , Salt Stress/genetics , Sodium-Hydrogen Exchangers/genetics , Beta vulgaris/growth & development , Calcineurin/genetics , Gene Expression Regulation, Plant/genetics , Plant Leaves/genetics , Plant Roots/genetics , Plant Roots/growth & development , Protein Interaction Maps/genetics , Salinity , Salt Tolerance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL