Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338474

ABSTRACT

Biological activities of six under-utilized medicinal leafy vegetable plants indigenous to Africa, i.e., Basella alba, Crassocephalum rubens, Gnetum africanum, Launaea taraxacifolia, Solanecio biafrae, and Solanum macrocarpon, were investigated via two independent techniques. The total phenolic content (TPC) was determined, and six microtiter plate assays were applied after extraction and fractionation. Three were antioxidant in vitro assays, i.e., ferric reducing antioxidant power (FRAP), cupric reduction antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and the others were enzyme (acetylcholinesterase, butyrylcholinesterase, and tyrosinase) inhibition assays. The highest TPC and antioxidant activity from all the methods were obtained from polar and medium polar fractions of C. rubens, S. biafrae, and S. macrocarpon. The highest acetyl- and butyrylcholinesterase inhibition was exhibited by polar fractions of S. biafrae, C. rubens, and L. taraxacifolia, the latter comparable to galantamine. The highest tyrosinase inhibition was observed in the n-butanol fraction of C. rubens and ethyl acetate fraction of S. biafrae. In vitro assay results of the different extracts and fractions were mostly in agreement with the bioactivity profiling via high-performance thin-layer chromatography-multi-imaging-effect-directed analysis, exploiting nine different planar assays. Several separated compounds of the plant extracts showed antioxidant, α-glucosidase, α-amylase, acetyl- and butyrylcholinesterase-inhibiting, Gram-positive/-negative antimicrobial, cytotoxic, and genotoxic activities. A prominent apolar bioactive compound zone was tentatively assigned to fatty acids, in particular linolenic acid, via electrospray ionization high-resolution mass spectrometry. The detected antioxidant, antimicrobial, antidiabetic, anticholinesterase, cytotoxic, and genotoxic potentials of these vegetable plants, in particular C. rubens, S. biafrae, and S. macrocarpon, may validate some of their ethnomedicinal uses.


Subject(s)
Anti-Infective Agents , Plants, Medicinal , Antioxidants/chemistry , Butyrylcholinesterase , Vegetables , Chromatography, Thin Layer , Acetylcholinesterase , Monophenol Monooxygenase , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Infective Agents/analysis
2.
Molecules ; 29(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398590

ABSTRACT

Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aß cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid ß-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aß-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.


Subject(s)
Alzheimer Disease , Centella , Quinic Acid/analogs & derivatives , Triterpenes , Humans , Amyloid beta-Peptides/toxicity , Alzheimer Disease/drug therapy , Plant Extracts/pharmacology , Cognition , Centella/chemistry , Triterpenes/analysis , Biological Assay , Computer Simulation
3.
Sci Total Environ ; 915: 170083, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38224881

ABSTRACT

Leachate is a highly complex waste with high toxicological potential that poses a significant threat to the terrestrial environment. Determining leachate physicochemical parameters and identifying xenobiotics alone is, however, not enough to determine the real environmental impacts. In this context, the use of terrestrial model organisms has been highlighted as a tool in ecotoxicological leachate assessments and as a guiding principle in risk assessments. In this context, this review aimed to present the most current state of knowledge concerning leachate toxicity and the bioassays employed in this evaluation concerning terrestrial plants and animals. To this end, a literature search on leachate effects on terrestrial organisms was carried out using ten search terms, in 32 different combinations, at the Web of Science and Scopus databases. A total of 74 eligible articles were selected. The retrieved studies analyzed 42 different plant and animal species and employed nine endpoints, namely phytotoxicity, genotoxicity, bioaccumulation, antioxidant system, cytotoxicity, reproduction, physiological changes, behavior and lethality. A frequent association of toxic leachate effects with metals was observed, mainly Pb, Cd, Cr, Mg, Zn and Cr, which can cause antioxidant system alterations and cyto- and genotoxicity. These elements have also been associated to reproductive effects in earthworms and mice. Specifically concerning plants, most of the retrieved studies employed Allium cepa in toxicity assays, reporting phytotoxic effects frequently associated to metals and soil parameter changes. Animal studies, on the other hand, mostly employed mice and evaluated genotoxicity and antioxidant system effects. Even with the description of toxic leachate effects in both plants and animals, a lack of knowledge is still noted concerning reproductive, physiological, cytotoxic, and behavioral effects in terrestrial species. We, thus, suggest that further studies be carried out on other animals, advancing our understanding on potential environmental leachate effects, also allowing for human health risk assessments.


Subject(s)
Solid Waste , Water Pollutants, Chemical , Humans , Animals , Mice , Solid Waste/analysis , Antioxidants/pharmacology , Plants , Onions , Metals , Water Pollutants, Chemical/analysis
4.
Environ Monit Assess ; 195(12): 1489, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975952

ABSTRACT

Environmental effects of active pharmaceutical compounds (APCs) in the environment are not well characterized, hence the need for comprehensive evaluation. This study employed three bioassays using three organisms, namely, Allium cepa, Daphnia magna, and Salmonella typhimurium, in the ecotoxicity study of lone and a mixture of selected APCs, namely, lamivudine (L), an antiretroviral, and ciprofloxacin (C) and sulfamethoxazole (S), antibiotics, at a concentration range between 10 and 100 ppb, in order to evaluate the potential of the lone and ternary mixture to exert synergistic toxicity. Study results from exposure to lone APCs showed that the L, C, and S trio individually had fatal impacts on daphnids, with mortality rates of 100, 75, and 95%, respectively, after 48 h. Sulfamethoxazole showed a mutagenic tendency, with a mutation ratio (background/sample ratio) of 2.0. Lamivudine showed a lethal impact on the root length of A. cepa (p > 0.05, p = 3.60E-3). Further microscopic examination of the A. cepa root tip revealed chromosomal aberrations on exposure to each compound. The LCS-mix ecotoxicology bioassays indicated a synergistic effect on the daphnids, probably due to potentiation. Although the LCS mix had a cytotoxic effect (evidenced by the absence of bacteria colonies) on exposed TA 98 P450 Salmonella typhimurium strain, this effect was not observed in other bacterial strains. Microscopic examination of A. cepa exposed to the LCS-mix revealed an aberration in the mitotic stage of the cell. The impact of combination of the pharmaceuticals in aqueous ecosystems was greater than when exposed to the tested individual pharmaceutical compounds. Study result showed that these compounds have tendencies to pose a higher risk to exposed living entities when in combined/potentiated forms, and this could lead to distortion of the regular functioning of the ecosystem, particularly bacterial and other microbial populations that are listed among primary producers of the aquatic food web.


Subject(s)
Anti-Bacterial Agents , HIV Infections , Anti-Bacterial Agents/toxicity , Ecosystem , Lamivudine/pharmacology , Environmental Monitoring , Sulfamethoxazole , Biomarkers , Pharmaceutical Preparations , Onions , Aquatic Organisms , Chromosome Aberrations
5.
J Chromatogr A ; 1706: 464241, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37541060

ABSTRACT

This study compares different solvent systems with the use of spontaneous fermentation on the phytochemical composition of leaf extracts from a locally grown white variety of common fig (Ficus carica Linn.). The aim was to detect and identify bioactive compounds that are responsible for acetylcholinesterase (AChE), α-amylase and cyclooxygenase-1 (COX-1) enzyme inhibition, and compounds that exhibit antimicrobial activity. Bioactive zones in chromatograms were detected by combining High-performance thin-layer chromatography (HPTLC) with enzymatic and biological assays. A new experimental protocol for measuring the relative half-maximum inhibitory concentration (IC50) was designed to evaluate the potency of the extracts compared to the potency of known inhibitors. Although the IC50 of the fig leaf extract for α-amylase and AChE inhibition were significantly higher when compared to IC50 for acarbose and donepezil, the COX-1 inhibition by the extract (IC50 = 627 µg) was comparable to that of salicylic acid (IC50 = 557 µg), and antimicrobial activity of the extract (IC50 = 375-511 µg) was similar to ampicillin (IC50 = 495 µg). Four chromatographic zones exhibited bioactivity. Compounds from detected bioactive bands were provisionally identified by comparing the band positions to coeluted standards, and by Fourier transform infrared (FTIR) spectra from eluted zones. Flash chromatography was used to separate selected extract into fractions and isolate fractions that are rich in bioactive compounds for further characterisation with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) analysis. The main constituents identified were umbelliferon (zone 1), furocoumarins psoralen and bergapten (zone 2), different fatty acids (zone 3 and 4), and pentacyclic triterpenoids (calotropenyl acetate or lupeol) and stigmasterol (zone 4).


Subject(s)
Anti-Infective Agents , Ficus , Chromatography, Thin Layer , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Acetylcholinesterase , alpha-Amylases , Pentacyclic Triterpenes , Anti-Infective Agents/pharmacology
6.
Chemosphere ; 331: 138789, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37116726

ABSTRACT

Assessing the impact of chemical contaminants on aquatic ecosystem health remains challenging due to complex exposure scenarios and the myriad of impact metrics to consider. To expand the breadth of compounds monitored and evaluate the potential hazard of environmental mixtures, cell-based bioassays (estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AhR)) and non-targeted chemical analyses with high resolution mass spectrometry (NTA-HRMS) were used to assess the quality of ∼70 marine sediment samples collected from 5 distinct coastal and offshore habitats of the Southern California Bight. AhR responses (<0.12-4.5 ng TCDD/g dry weight) were more frequently detectable and more variable than for ERα (<0.1-0.5 ng E2/g dry weight). The range of AhR and ERα responses increased by habitat as follows: Channel Islands < Mid-shelf < Marinas < Ports < Estuaries. The narrow range and magnitude of ERα screening response suggested limited potential for estrogenic impacts across sediments from all 5 habitats. The AhR response was positively correlated with total PAH and PCB concentrations and corresponded with a chemical score index representing the severity of metal and organic contamination. NTA-HRMS fingerprints generated in positive electrospray ionization mode were clearly distinguishable among coastal vs. offshore samples, with the greatest chemical complexity (n = 982 features detected) observed in estuarine sediment from a highly urbanized watershed (Los Angeles River). The concordance and complementary nature of bioscreening and NTA-HRMS results indicates their utility as holistic proxies for sediment quality, and when analyzed in conjunction with routine targeted chemical monitoring, show promise in identifying unexpected contaminants and novel toxicants.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , California , Ecosystem , Environmental Monitoring/methods , Estrogen Receptor alpha , Gas Chromatography-Mass Spectrometry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis
7.
Protoplasma ; 260(3): 949-954, 2023 May.
Article in English | MEDLINE | ID: mdl-36454318

ABSTRACT

Tanneries are considered some of the most polluting industries due to the heavy use of toxic compounds, most of which are released into water bodies, thus exerting adverse effects on aquatic biota. However, the effects on organisms of treated effluents when released into the natural environment are rarely evaluated. This study aims to assess the physicochemical parameters of a tannery effluent after treatment (TE) at a Common Effluent Treatment Plant as well as the water of the receiving stream and to evaluate cytogenotoxic effects in Allium cepa. Three sampling sites (A: TE discharge point; B: 100 m downstream from site A along the receiving stream; C: 100 m upstream from site A along the stream) were selected. Onion bulbs were exposed to TE (100%, 80%, 60% v/v), water samples from sites B and C, and tap water for 72 h. Chromosomal aberration and mitotic index were analyzed on the root cells of A. cepa. The TE was above the standard limits for ammoniacal nitrogen, COD, and total nitrogen. No cytogenotoxicity was observed in A. cepa exposed to samples from sites A and C. However, the stream water sampled downstream from the TE discharge site significantly reduced the mitotic index, indicating a cytotoxic effect. Therefore, this demonstrates the effects of interactions between the receiving water and the complex chemical mixtures in the TE. The findings thus showed that the toxicity assessment of treated effluents along with the receiving water body would provide valuable and more realistic information about the joint toxicity of chemical pollutants in aquatic environments.


Subject(s)
Onions , Water Pollutants, Chemical , Water , Mitotic Index
8.
Sci Total Environ ; 861: 160679, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36481156

ABSTRACT

Management of metal(loid) tailings at historic sites presents environmental hazards usually requiring rehabilitation to mitigate pollution risks. Strategies employed include capping or establishing vegetation directly, which requires tailings assessments to determine suitable rehabilitation approaches. Assessments are typically geochemical analyses, but plant based approaches may provide a more accurate measure of revegetation success although they are often limited to germination indices. This study uses the plant bioassay (Rhizotest™) with common geochemical assessment to predict plant uptake of metal(loid)s and the subsequent likely rehabilitation success. Pb/Zn tailings from five legacy sites within the UK and Ireland were characterized for pH, EC, water soluble and CaCl2-extractable content and aqua regia extractable content. Uptake of Sb, As, Cd, Cu, Ca, Mg, Mn, Zn, Pb was determined in shoots and roots of Lolium perenne. Total Zn, Pb, Sb, Cd and As in tailings ranged from 694 to 2683 mg kg-1, 1252 to 8072 mg kg-1, 14 to 148 mg kg-1, 1.3 to 44 mg kg-1 and 1.3 to 45 mg kg-1, respectively. The only correlation found between total and water soluble or CaCl2-extractable metal(loid) contents was for Cd, where r = 0.8 for total and CaCl2-extractable fractions. Limited uptake and translocation risk was identified for major contaminants Zn and Pb in most tailings samples but in some cases exceedance of phytotoxic threshold values occurred that was not reflected in geochemical analysis. Crucially, although total Cd and Sb content was relatively low (< 20 mg kg-1) in some tailings, elevated plant content for some samples highlights phytotoxic risk from minor elements. Results indicate that screening based on geochemical content is not sufficiently predictive of metal(loid) phytoavailability to reliably inform mine rehabilitation strategies. We therefore strongly recommend that geochemical analyses are supplemented with plant based bioassay to plan mine tailings revegetation and reduce risk of wider ecosystem metal(loid) transfer.


Subject(s)
Metals, Heavy , Soil Pollutants , Ecosystem , Cadmium/analysis , Calcium Chloride , Lead , Plants , Biological Assay , Soil Pollutants/analysis
9.
Trends Biotechnol ; 41(1): 120-133, 2023 01.
Article in English | MEDLINE | ID: mdl-35863950

ABSTRACT

Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidics/methods , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical , Biological Assay , Microfluidic Analytical Techniques/methods
10.
Biology (Basel) ; 11(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36358319

ABSTRACT

A chemical analysis of water quality cannot detect some toxicants due to time constraints, high costs, and limited interactions for detection. Bioassays would offer a complementary means to assess pollution levels in water. Euglena is a flagellate green alga and an excellent system for toxicity testing thanks to its ease of culture, rapid growth, and quick response to environmental stresses. Herein, we examined the sensitivity of E. agilis to seven heavy metals by analyzing six end-point parameters: motility, velocity, cell compactness, upward swimming, r-value, and alignment. Notably, the velocity of E. agilis was most sensitive to cadmium (96.28 mg·L-1), copper (6.51 mg·L-1), manganese (103.28 mg·L-1), lead (78.04 mg·L-1), and zinc (101.90 mg·L-1), while r-values were most sensitive to arsenic (12.84 mg·L-1) and mercury (4.26 mg·L-1). In this study, velocity and r-values are presented as useful biomarkers for the assessment of metal toxicity in Euglena. The metals As, Cd, Cu, and Pb were suitable for this test. The advantages of the ecotoxicity test are its rapidity: It takes 10 min to obtain results, as opposed to the typical 3-4 d of exposure time with intensive labor. Moreover, this test can be performed at room temperature under dark conditions.

11.
BMC Complement Med Ther ; 22(1): 242, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36115955

ABSTRACT

BACKGROUND: Ecklonia cava is an edible marine brown alga harvested from the ocean that is widely consumed in Asian countries as a health-promoting medicinal food The objective of the present study is to evaluate the anti-asthma mechanism of a new functional food produced by bioprocessing edible algae Ecklonia cava and shiitake Lentinula edodes mushroom mycelia and isolated fractions. METHODS: We used as series of methods, including high performance liquid chromatography, gas chromatography, cell assays, and an in vivo mouse assay to evaluate the asthma-inhibitory effect of Ecklonia cava bioprocessed (fermented) with Lentinula edodes shiitake mushroom mycelium and its isolated fractions in mast cells and in orally fed mice. RESULTS: The treatments inhibited the degranulation of RBL-2H3 cells and immunoglobulin E (IgE) production, suggesting anti-asthma effects in vitro. The in vitro anti-asthma effects in cells were confirmed in mice following the induction of asthma by alumina and chicken egg ovalbumin (OVA). Oral administration of the bioprocessed Ecklonia cava and purified fractions suppressed the induction of asthma and was accompanied by the inhibition of inflammation- and immune-related substances, including eotaxin; thymic stromal lymphopoietin (TSLP); OVA-specific IgE; leukotriene C4 (LTC4); prostaglandin D2 (PGD2); and vascular cell adhesion molecule-1 (VCAM-1) in bronchoalveolar lavage fluid (BALF) and other fluids and organs. Th2 cytokines were reduced and Th1 cytokines were restored in serum, suggesting the asthma-induced inhibitory effect is regulated by the balance of the Th1/Th2 immune response. Serum levels of IL-10, a regulatory T cell (Treg) cytokine, were increased, further favoring reduced inflammation. Histology of lung tissues revealed that the treatment also reversed the thickening of the airway wall and the contraction and infiltration of bronchial and blood vessels and perialveolar inflammatory cells. The bioprocessed Ecklonia cava/mushroom mycelia new functional food showed the highest inhibition as compared with commercial algae and the fractions isolated from the bioprocessed product. CONCLUSIONS: The in vitro cell and in vivo mouse assays demonstrate the potential value of the new bioprocessed formulation as an anti-inflammatory and anti-allergic combination of natural compounds against allergic asthma and might also ameliorate allergic manifestations of foods, drugs, and viral infections.


Subject(s)
Agaricales , Anti-Allergic Agents , Anti-Asthmatic Agents , Asthma , Phaeophyceae , Shiitake Mushrooms , Aluminum Oxide/adverse effects , Animals , Anti-Allergic Agents/adverse effects , Anti-Asthmatic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Asthma/drug therapy , Cytokines/metabolism , Immunoglobulin E , Inflammation/drug therapy , Interleukin-10 , Leukotriene C4/adverse effects , Mice , Mice, Inbred BALB C , Mycelium , Ovalbumin/adverse effects , Phaeophyceae/metabolism , Prostaglandin D2/adverse effects , Shiitake Mushrooms/metabolism , Vascular Cell Adhesion Molecule-1/adverse effects
12.
Sci Total Environ ; 851(Pt 1): 158071, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988629

ABSTRACT

The literature is currently lacking effect-based monitoring studies targeted at evaluating the performance of full-scale membrane bioreactor plants. In this research, a monitoring campaign was performed at a full-scale wastewater treatment facility with two parallel lines (traditional activated sludge and membrane bioreactor). Beside the standard parameters (COD, nitrogen, phosphorus, and metals), 6 polynuclear aromatic hydrocarbons, 29 insecticides, 2 herbicides, and 3 endocrine disrupting compounds were measured. A multi-tiered battery of bioassays complemented the investigation, targeting different toxic modes of action and employing various biological systems (uni/multicellular, prokaryotes/eukaryotes, trophic level occupation). A traffic light scoring approach was proposed to quickly visualize the impact of treatment on overall toxicity that occurred after the exposure to raw and concentrated wastewater. Analysis of the effluents of the CAS and MBR lines show very good performance of the two systems for removal of organic micropollutants and metals. The most noticeable differences between CAS and MBR occurred in the concentration of suspended solids; chemical analyses did not show major differences. On the other hand, bioassays demonstrated better performance for the MBR. Both treatment lines complied with the Italian law's "ecotoxicity standard for effluent discharge in surface water". Yet, residual biological activity was still detected, demonstrating the adequacy and sensitivity of the toxicological tools, which, by their inherent nature, allow the overall effects of complex mixtures to be taken into account.


Subject(s)
Herbicides , Insecticides , Polycyclic Aromatic Hydrocarbons , Bioreactors , Membranes, Artificial , Nitrogen , Phosphorus , Sewage/chemistry , Waste Disposal, Fluid , Wastewater/toxicity , Water
13.
BMC Plant Biol ; 22(1): 377, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35906537

ABSTRACT

The aim of this work is to develop an efficient method for detection and evaluation of the plant growth regulators produced from cyanobacteria species (Anabaena oryzae and Nostoc muscorum) cultivated on BG110, and Chlorophyta alga (Chlorella vulgaris) cultivated on BG11 in addition to the cultivation of these strains on treated sewage wastewater (TSW) combined with control media (BG11 and BG110) at different concentrations (100, 75 and 50%). Bioassays were performed on Wheat coleoptile length and Cucumber cotyledons fresh weight for indole acetic acid (IAA) and Benzyl adenine (BA) detection. In addition, application experiments of IAA and BA presence in algal extract were applied on tomato plantlets and soybean callus. The obtained results of A. oryzae and N. muscorum extracts (grown on BG110 and 100% sewage media) with optimum conc. of IAA and BA showed moderate shoot length and leaves number as well as high root initiation of tomato explant compared to control. While dimethyl sulfoxide (DMSO), IAA conc. as well as IAA + BA conc. showed no effect on branching and leaf expansion. The results of C. vulgaris (grown on BG11) also revealed that the shoot had high leaves number and greatest root initiation, without branching and leaf expansion. On the other hand, 100% TSW had a moderate shoot, leaves number and high root initiation. Extracts of A. oryzae and N. muscorum (grown on BG110) induced 1.5-fold increase in soybean callus fresh weight, while the growth on 100% TSW was shown to be less effective. Moreover, extract of C. vulgaris (grown on BG11) induced a moderate effect, while its growth on 100% TSW was shown to be less effective in soybean callus fresh weight increment.


Subject(s)
Chlorella vulgaris , Microalgae , Solanum lycopersicum , Plant Extracts , Plant Growth Regulators/pharmacology , Sewage , Wastewater
14.
Saudi J Biol Sci ; 29(6): 103302, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35602870

ABSTRACT

In tropical and sub-tropical areas of the world the most damaging pest of the livestock sector are cattle tick, Rhipicephalus microplus. The current study was aimed to generate phytochemical derived acaricides to control Rhipicephalus microplus populations, to maintain livestock herd production, minimize economic losses and to reduce uses of man-made chemicals acaricides. To achieve this goal, Adult immersion and larval package test were used to determine the feasibility of Berberium lyceum and Tamarixa aphylla against Rhipicephalus microplus ticks. Further, an In silico technique was employed to discover biologically active substances from both plants using docking method. Berberium lyceum and Tamarixa aphylla exhibited a reasonably high fatal effect at 40.0 mg/L on egg laying (index of egg laying = 0.19 and 0.19) respectively, thus inhibiting the oviposition (49.5 and 45.1, respectively) and the larval mortality (97% and 93%, respectively). Further, we also used Chem-Draw ultra-software (v. 12.0.2.1076. 2010) to illustrate different structures of38 known bioactive phytochemicals which are discovered in the PubChem database and verify the hypothesis that tick inhibition was linked to acetylcholinesterase (AChE). Barbamunine and rutin from Berberium lyceum showed remarkable interaction with RmAChE1 active site residues with docking scores of -9.11 to -8.71 while phytol and dehydrodigallic acid from Tamarix aphylla showed comparable docking scores of -7.17 and -7.14 respectively against Rhipicephalus microplus acetylcholinesterase protein. Based on obtained result, we believe that Berberium lyceum and Tamarixa aphylla bioactive components could be potential candidates in the control and management of Rhipicephalus microplus and should be studied further as a supplement or replacement for synthetic acaricides.

15.
Sci Total Environ ; 835: 155388, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35489490

ABSTRACT

Wastewater treatment plants (WWTPs) collect wastewater from various sources and use different treatment processes to reduce the load of pollutants in the environment. Since the removal of many chemical pollutants and bacteria by WWTPs is incomplete, they constitute a potential source of contaminants. The continuous release of contaminants through WWTP effluents can compromise the health of the aquatic ecosystems, even if they occur at very low concentrations. The main objective of this work was to characterize, over a period of four months, the treatment steps starting from income to the effluent and 5 km downstream to the receiving river. In this context, the efficiency removal of chemical pollutants (e.g. hormones and pharmaceuticals, including antibiotics) and bacteria was assessed in a WWTP case study by using a holistic approach. It embraces different chemical and biological-based methods, such as pharmaceutical analysis by HPLC-MSMS, growth rate inhibition in algae, ligand binding estrogen receptor assay, microbial community study by 16S and shotgun sequencing along with relative quantification of resistance genes by quantitative polymerase chain reaction. Although both, chemical and biological-based methods showed a significant reduction of the pollutant burden in effluent and surface waters compared to the influent of the WWTP, no complete removal of pollutants, pathogens and antibiotic resistance genes was observed.


Subject(s)
Microbiota , Water Pollutants, Chemical , Water Purification , Bacteria , Environmental Monitoring/methods , Rivers/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis
16.
J Toxicol Environ Health A ; 85(14): 561-572, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35331078

ABSTRACT

Sugarcane straw burning generates particulate matter with complex composition resulting in atmosphere pollution. Sugarcane straw sugarcane burning particles (PSSB) contain several chemical compounds that were previously identified to be associated with carcinogenic and mutagenic processes. The aim of the present study was to extract PSSB under lab conditions and subsequently determine phyto- and cytogenotoxicity of these particles using Lactuca sativa L. and Allium cepa L. bioassays. Seeds of lettuce var. Cinderela and onion cv. Vale-Ouro IPA-11 were germinated in Petri dishes containing different concentrations of PSSB at 25, 50, 100, 200 or 300 mg/ml as well as control for 72 hr. Seed germination of lettuce was inhibited by PSSB, in a concentration-dependent manner, accompanied by decreased root growth, suggesting phytotoxic effects. Further, reduction of mitotic index and high number of chromosomal alterations in onion of meristematics cells indicated a cytogenotoxic action attributed to PSSB. Although the chemical composition of PSSB in question has not been determined, the phyto- and cytogenotoxic effects may be linked to the possible presence of polycyclic aromatic hydrocarbons (PAHs), which are were identified as the main constituents of particulate matter resulting from burning of sugarcane straw, in addition to exerting adverse biological effects that might result in mutations and cancer. Data demonstrated that the use of plants bioassays might be an important tool for biomonitoring air quality.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Saccharum , Lactuca , Onions , Particulate Matter/toxicity
17.
Sci Total Environ ; 817: 153023, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35031380

ABSTRACT

Sewage sludges are a rich underused source of phosphorus (P) which contributes to environmental degradation, yet if recaptured, could return significant amounts of P to agricultural systems. Hydrothermal carbonisation (HTC) can efficiently recover P, with the added ability to transform P species into potentially more desirable forms for direct application to crops. P dynamics in hydrochars have primarily examined P speciation and chemical extractability as indicators of P bioavailability, but few studies directly evaluate the agronomic effectiveness of hydrochars as P fertilisers. As such, there is a clear need to assess the suitability of hydrochar as a source of bioavailable P in plant systems and the influence of HTC synthesis conditions. Response Surface Modelling of HTC synthesis conditions (pH, temperature and time), revealed initial pH significantly influence P distribution. Mild conditions of 180 °C for 30 min at pH 8.0 maximised P recovery (99%) along with carbon (62%) and nitrogen (43%) in hydrochars. Systematic characterisation of hydrochar P by chemical extraction and P L2,3-edge X-ray absorption near edge spectroscopy revealed H2O, NaHCO3 and NaOH- P fractions were significantly (p < 0.05) reduced in all hydrochars, while HCl-P fraction increased with HTC temperatures at pH 7. In contrast, P L2,3-edge XANES spectra were remarkably similar in raw sludges and corresponding hydrochars, regardless of HTC temperature or pH, revealing P was predominantly present as ferric phosphate with some hydroxyapatite. Multiple linear regression modelling suggested a significant relationship between chemical extractability and P bioavailability to wheat present in the raw sludges and hydrochars. This research provides further insight into the potential to use hydrothermal treatment for recovery and agricultural reuse of P, the importance of operational conditions on P transformation and the relationship between P speciation and bioavailability. The value of sewage sludge in a more sustainable global P cycle is also highlighted.


Subject(s)
Phosphorus , Sewage , Carbon , Fertilization , Nitrogen , Temperature
18.
Article in English | MEDLINE | ID: mdl-34444108

ABSTRACT

Antiretroviral drugs for the treatment of human immunodeficiency virus (HIV) and other viral infections are among the emerging contaminants considered for ecological risk assessment. These compounds have been reported to be widely distributed in water bodies and other aquatic environments, while data concerning the risk they may pose to unintended non-target species in a different ecosystem (environment) is scanty. In South Africa and other developing countries, lamivudine is one of the common antiretrovirals applied. Despite this, little is known about its environmental impacts as an emerging contaminant. The present study employed a battery of ecotoxicity bioassays to assess the environmental threat lamivudine poses to aquatic fauna and flora. Daphnia magna (filter feeders), the Ames bacterial mutagenicity test, Lactuca sativa (lettuce) germination test, and the Allium cepa root tip assay were conducted, testing lamivudine at two concentrations (10 and 100 µg/L), with environmental relevance. The Daphnia magna toxicity test revealed a statistically significant response (p << 0.05) with a mortality rate of 85% on exposure to 100 µg/L lamivudine in freshwater, which increased to 100% at 48-h exposure. At lower concentrations of 10 µg/L lamivudine, 90% and 55% survival rates were observed at 24 h and 48 h, respectively. No potential mutagenic effects were observed from the Ames test at both concentrations of lamivudine. Allium cepa bioassays revealed a noticeable adverse impact on the root lengths on exposure to 100 µg/L lamivudine. This impact was further investigated through microscopic examination, revealing some chromosomal aberration in the exposed Allium cepa root tips. The Lactuca sativa bioassay showed a slight adverse impact on both the germination rate of the seeds and their respective hypocotyl lengths compared to the control. Overall, this indicates that lamivudine poses an ecological health risk at different trophic levels, to both flora and fauna, at concentrations previously found in the environment.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Animals , Daphnia , Humans , Lamivudine/toxicity , Onions , Toxicity Tests , Water Pollutants, Chemical/toxicity
19.
J Chromatogr A ; 1647: 462153, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33957349

ABSTRACT

Pittosporum angustifolium, known as gumbi gumbi, is a native Australian plant, which has traditionally been used as an Aboriginal medicine. This study investigates the effect of different solvents and extractive fermentation on the content and natural products composition of Pittosporum angustifolium extracts, and compares their antioxidant activity, in vitro α-amylase inhibition, and anti-inflammatory properties. Anti-inflammatory activity of the extracts was determined by measuring the inhibition of nitric oxide (NO) production. Extracts were characterised with FTIR-ATR spectroscopy, and screened for antioxidant activities and α-amylase inhibitory activity via High-performance thin-layer chromatography (HPTLC)-Effect-directed analysis (EDA) with direct bioautography. HPTLC combined with chemical derivatization and bioassays was used for EDA screening. The results show that lactic acid fermentation of gumbi gumbi leaves boosts the antioxidant activity in extracts by increasing the total phenolic content, but does not affect (increase or decrease) α-amylase inhibitory activity or nitrogen scavenging/anti-inflammatory activity. Analysis of the ATR-FTIR spectra from the band at RF = 0.85 that inhibits α-amylase, suggests that fatty acid esters are responsible for the enzyme inhibition; both saturated fatty acid esters in unfermented extracts and unsaturated fatty acid esters in fermented extracts. The ATR-FTIR spectra of the polyphenolics in fermented extracts (RF = 0.15-0.20) suggests the presence of soluble lignin fragments (i.e. lignins depolymerized into monomers and oligomers during the fermentation process).


Subject(s)
Antioxidants/analysis , Plant Extracts/analysis , Rosales/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Assay , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Fermentation , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors
20.
Environ Monit Assess ; 193(5): 243, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33821353

ABSTRACT

The aim of this study was to assess the genotoxic effects of sediment elutriates of an aquatic ecosystem. Sediment samples were taken from Limache stream, located in central Chile. The tests were carried out on sediment elutriates. Genotoxicity was determined by bioassay with Allium cepa. The percentage of germination, root growth, mitotic index, and frequency of chromosome aberrations were determined. The results show a significant increase in chromosome aberrations and decrease of the mitotic index in Allium cepa in all the sediment elutriates compared to the control. No significant differences were observed in the percentages of germination or root growth among the sediment elutriates. A negative correlation was found between the mitotic index and chromosomal aberrations. In conclusion, genotoxic variables are more sensitive than growth variables. The sediments contain chemical agents in bioavailable concentrations that produce genotoxic effects. Allium cepa test proved to be a sensitive indicator of genotoxic contaminants in sediment elutriates of the Limache stream in central Chile.


Subject(s)
Allium , Onions , Chile , Chromosome Aberrations , DNA Damage , Ecosystem , Environmental Monitoring , Humans , Mitotic Index , Plant Roots , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL