Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
Add more filters

Publication year range
1.
Bioresour Technol ; 398: 130513, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432540

ABSTRACT

Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolism , Prospective Studies , Chlamydomonas reinhardtii/metabolism , Photosynthesis , Carotenoids/metabolism
2.
Biomass Convers Biorefin ; 14(7): 8127-8152, 2024.
Article in English | MEDLINE | ID: mdl-38510795

ABSTRACT

Biorefinery approaches offer the potential to improve the economics of the microalgae industry by producing multiple products from a single source of biomass. Chromochloris zofingiensis shows great promise for biorefinery due to high biomass productivity and a diverse range of products including secondary carotenoids, predominantly astaxanthin; lipids such as TAGs; carbohydrates including starch; and proteins and essential amino acids. Whilst this species has been demonstrated to accumulate multiple products, the development of an integrated downstream process to obtain these is lacking. The objective of this review paper is to assess the research that has taken place and to identify the steps that must be taken to establish a biorefinery approach for C. zofingiensis. In particular, the reasons why C. zofingiensis is a promising species to target for biorefinery are discussed in terms of cellular structure, potential products, and means to accumulate desirable components via the alteration of culture conditions. Future advances and the challenges that lie ahead for successful biorefinery of this species are also reviewed along with potential solutions to address them. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-022-02955-7.

3.
Chemosphere ; 351: 141251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253084

ABSTRACT

This study presents the catalytic pyrolysis of microalgae, Chlorella vulgaris (C. vulgaris), using pure CH4 and H2-rich gas evolved from CH4 decomposition on three different HZSM-5 catalysts loaded with Zn, Ga, and Pt, aimed specifically at producing high-value mono-aromatics such as benzene, toluene, ethylbenzene, and xylene (BTEX). In comparison with that for the typical inert N2 environment, a pure CH4 environment increased the bio-oil yield from 32.4 wt% to 37.4 wt% probably due to hydrogen and methyl radical insertion in the bio-oil components. Furthermore, the addition of bimetals further increased bio-oil yield. For example, ZnPtHZ led to a bio-oil yield of 47.7 wt% in pure CH4. ZnGaHZ resulted in the maximum BTEX yield (6.68 wt%), which could be explained by CH4 activation, co-aromatization, and hydrodeoxygenation. The BTEX yield could be further increased to 7.62 wt% when pyrolysis was conducted in H2-rich gas evolved from CH4 decomposition over ZnGaHZ, as rates of aromatization and hydrodeoxygenation were relatively high under this condition. This study experimentally validated that the combination of ZnGaHZ and CH4 decomposition synergistically increases BTEX production using C. vulgaris.


Subject(s)
Chlorella vulgaris , Microalgae , Plant Oils , Polyphenols , Hot Temperature , Pyrolysis , Toluene , Benzene , Xylenes , Catalysis , Zinc , Biofuels
4.
Bioresour Technol ; 393: 130078, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37993072

ABSTRACT

The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.


Subject(s)
Petroleum , Polyhydroxyalkanoates , Plastics , Biomass
5.
Bioresour Technol ; 394: 130173, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096998

ABSTRACT

Two thermochemical valorization schemes were investigated for co-upgrading dry and wet agricultural wastes through integrated hydrothermal carbonization (HTC) and pyrolysis. In the first pathway, dry and wet wastes were co-carbonized. The resulting hydrochar was pyrolyzed to yield an energy dense biochar (26-32 MJ/kg) high in fixed carbon (41-86 wt%) and low in volatile matter (6-12 wt%). The resulting bio-oil was lower in carboxylic acids and higher in phenols than predicted based on an additive scheme. In pathway two, wet waste (only) underwent HTC and the resulting hydrochar was mixed with dry waste and the mixture pyrolyzed. This pathway showed a lower biochar yield (32-67 wt%) and lower HHV values (24-31 MJ/kg) but higher fixed carbon content (65-84 wt%). The bio-oil contained more carboxylic acids than pathway 1 bio-oil. Pathway 1 biochars were more thermally reactive than pathway 2 biochars, reflecting a synergistic deoxygenation that occurs when incorporating dry waste in HTC prior to pyrolysis.


Subject(s)
Carbon , Charcoal , Industrial Waste , Plant Oils , Polyphenols , Carboxylic Acids , Temperature
6.
Sci Total Environ ; 912: 169369, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104821

ABSTRACT

Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.


Subject(s)
Microalgae , Wastewater , Animals , Cattle , Agriculture , Biomass , Nitrogen , Phosphorus
7.
Food Res Int ; 175: 113690, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129032

ABSTRACT

This study proposed an integrated and automated procedure to extract, separate, and quantify bioactive compounds from a coffee co-product by pressurized liquid extraction (PLE) coupled inline with solid phase extraction (SPE) and online with HPLC-PDA (PLE-SPE × HPLC-PDA). The efficiency of the two-dimensional system in performing real-time analysis was verified by comparing HPLC-PDA results acquired by the system (online) and carried out after the extract fraction collection (offline). Different flow rates (1.5 mL/min for 336 min, 2 mL/min for 246.4 min, and 2.5 mL/min for 201.6 min) were evaluated to optimize the extraction, separation, and analysis method by PLE-SPE × HPLC-PDA. Subcritical water at 125 °C and 15 min of static time allowed the highest extraction yields of caffeine and 5-caffeoylquinic acid (5-CQA). Caffeine was retained during the aqueous extraction in the SPE adsorbent and eluted from the column by exchanging the solvent for a hydroethanolic mixture. Thus, caffeine was separated from 5-CQA and other phenolic compounds, producing extracts with different compositions. The solvent flow rate did not have a significant effect (p-value ≥ 0.05) on the extraction, separation, and analysis (by online and offline methods) of 5-CQA. However, the online quantification of retained compounds in the SPE (i.e., caffeine) can underestimate concentration compared to offline analysis. Nevertheless, the results suggest that coupling of advanced techniques can be used to efficiently extract, separate, and analyze fractions of phenolic compounds, supplying an integrated method to produce high-added value ingredients for several applications.


Subject(s)
Caffeine , Coffee , Chromatography, High Pressure Liquid/methods , Caffeine/analysis , Phenols/analysis , Solid Phase Extraction/methods , Solvents/analysis
8.
J Agric Food Chem ; 71(46): 17494-17509, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37938980

ABSTRACT

A major challenge facing sustainable seafood production is the voluminous amounts of nutrient-rich seafood side streams consisting of by-catch, processing discards, and process effluents. There is a lack of a comprehensive model for optimal valorization of the side streams. Upcoming green chemistry-based processing has the potential to recover diverse valuable compounds from seafood side streams in an ecofriendly manner. Microbial and enzymatic bioconversions form major green processes capable of releasing biomolecules from seafood matrices under mild conditions. Novel green solvents, because of their low toxicity and recyclable nature, can extract bioactive compounds. Nonthermal technologies such as ultrasound, supercritical fluid, and membrane filtration can complement green extractions. The extracted proteins, peptides, polyunsaturated fatty acids, chitin, chitosan, and others function as nutraceuticals, food supplements, additives, etc. Green processing can address environmental, economic, and technological challenges of valorization of seafood side streams, thereby supporting sustainable seafood production. Green processing can also encourage bioenergy production. Multiple green processes, integrated in a marine biorefinery, can optimize valorization on a zero-waste trade-off, for a circular blue economy. A green chemistry-based valorization framework has the potential to meet the Sustainable Development Goals (SDGs) of the United Nations.


Subject(s)
Dietary Supplements , Rivers , Seafood
9.
Bioresour Technol ; 389: 129808, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806362

ABSTRACT

Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.


Subject(s)
Lutein , Microalgae , Microalgae/metabolism , Biomass , Dietary Supplements , Phosphates/metabolism
10.
Biotechnol Biofuels Bioprod ; 16(1): 140, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730644

ABSTRACT

BACKGROUND: Aquaculture is a major user of plant-derived feed ingredients, such as vegetable oil. Production of vegetable oil and protein is generally more energy-intensive than production of the marine ingredients they replace, so increasing inclusion of vegetable ingredients increases the energy demand of the feed. Microbial oils, such as yeast oil made by fermentation of lignocellulosic hydrolysate, have been proposed as a complement to plant oils, but energy assessments of microbial oil production are needed. This study presents a mass and energy balance for a biorefinery producing yeast oil through conversion of wheat straw hydrolysate, with co-production of biomethane and power. RESULTS: The results showed that 1 tonne of yeast oil (37 GJ) would require 9.2 tonnes of straw, 14.7 GJ in fossil primary energy demand, 14.6 GJ of process electricity and 13.3 GJ of process heat, while 21.5 GJ of biomethane (430 kg) and 6 GJ of excess power would be generated simultaneously. By applying economic allocation, the fossil primary energy demand was estimated to 11.9 GJ per tonne oil. CONCLUSIONS: Fossil primary energy demand for yeast oil in the four scenarios studied was estimated to be 10-38% lower than for the commonly used rapeseed oil and process energy demand could be met by parallel combustion of lignin residues. Therefore, feed oil can be produced from existing non-food biomass without causing agricultural expansion.

11.
Mar Drugs ; 21(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623731

ABSTRACT

The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.


Subject(s)
Chlamydomonas reinhardtii , Chlorella vulgaris , Microalgae , Biomass , Fatty Acids , Nitrogen , Phosphorus , Esters
12.
Mar Drugs ; 21(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37504911

ABSTRACT

Bioactive extracts are often the target fractions in bioprospecting, and halophyte plants could provide a potential source of feedstock for high-value applications as a part of integrated biorefineries. Tripolium pannonicum (Jacq.) Dobrocz. (sea aster) and Crithmum maritimum L. (sea fennel) are edible plants suggested for biosaline halophyte-based agriculture. After food production and harvesting of fresh leaves for food, the inedible plant fractions could be utilized to produce extracts rich in bioactive phytochemicals to maximize feedstock application and increase the economic feasibility of biomass processing to bioenergy. This study analyzed fresh juice and extracts from screw-pressed sea aster and sea fennel for their different phenolic compounds and pigment concentrations. Antioxidant and enzyme inhibition activities were also tested in vitro. Extracts from sea aster and sea fennel had phenolic contents up to 45.2 mgGAE/gDM and 64.7 mgGAE/gDM, respectively, and exhibited >70% antioxidant activity in several assays. Ethanol extracts also showed >70% inhibition activity against acetylcholinesterase and >50% inhibition of tyrosinase and α-glucosidase. Therefore, these species can be seen as potential feedstocks for further investigations.


Subject(s)
Apiaceae , Salt-Tolerant Plants , Biomass , Plant Extracts/pharmacology , Plant Extracts/chemistry , Acetylcholinesterase , Antioxidants/pharmacology , Antioxidants/chemistry , Apiaceae/chemistry , Phenols/pharmacology , Phenols/analysis
13.
World J Microbiol Biotechnol ; 39(10): 258, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493825

ABSTRACT

Onion skins, actually recycled as organic fertilizers, could be used as a substrate in environmental-friendly bioprocesses to recover high-value bioactive compounds and food ingredients.In this work, a bioprospecting method was carried out including 94 bacterial and 45 yeast strains from several agri-food and environmental niches to verify their ability to grow on onion skins as unique nutrients source.Red and yellow onion skins were assessed by newly selected starter-driven liquid submerged fermentation assays mainly aimed at the release and modification of polyphenols through microbial activities. Fermented onion skins were also investigated as a inexpensive favourable source of microbial enzymes (amylases, proteases, lipases, esterases, cellulases, xylanases).In red onion skins, the treatment with Lactiplantibacillus plantarum TB 11-32 produced a slight increase of bioactive compounds in terms of total phenolics, whereas with the yeast strain Zygosaccharomyces mrakii CL 30 - 29 the quercetin aglycone content increased of about 25% of the initial raw material.In yellow onion skins inoculated, the highest content of phenolic compounds was detected with the yeast strain Saccharomyces cerevisiae En SC, while quercetin aglycone increased of about 60% of the initial raw material in presence of the bacterial strain L. plantarum C 180 - 34.In conclusion, the proposed microbial pre-treatment method can be a potential strategy to re-use onion skins as a fermentation substrate, and as a first step in the development of a biorefinery process to produce value-added products from onion by-products.


Subject(s)
Polyphenols , Saccharomyces cerevisiae , Fermentation , Quercetin , Onions/chemistry , Phenols
14.
Mar Drugs ; 21(6)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37367683

ABSTRACT

Shell wastes pose environmental and financial burdens to the shellfish industry. Utilizing these undervalued shells for commercial chitin production could minimize their adverse impacts while maximizing economic value. Shell chitin conventionally produced through harsh chemical processes is environmentally unfriendly and infeasible for recovering compatible proteins and minerals for value-added products. However, we recently developed a microwave-intensified biorefinery that efficiently produced chitin, proteins/peptides, and minerals from lobster shells. Lobster minerals have a calcium-rich composition and biologically originated calcium is more biofunctional for use as a functional, dietary, or nutraceutical ingredient in many commercial products. This has suggested a further investigation of lobster minerals for commercial applications. In this study, the nutritional attributes, functional properties, nutraceutical effects, and cytotoxicity of lobster minerals were analyzed using in vitro simulated gastrointestinal digestion combined with growing bone (MG-63), skin (HaCaT), and macrophage (THP-1) cells. The calcium from the lobster minerals was found to be comparable to that of a commercial calcium supplement (CCS, 139 vs. 148 mg/g). In addition, beef incorporated with lobster minerals (2%, w/w) retained water better than that of casein and commercial calcium lactate (CCL, 21.1 vs. 15.1 and 13.3%), and the lobster mineral had a considerably higher oil binding capacity than its rivals (casein and CCL, 2.5 vs. 1.5 and 1.0 mL/g). Notably, the lobster mineral and its calcium were far more soluble than the CCS (98.4 vs. 18.6% for the products and 64.0 vs. 8.5% for their calcium) while the in vitro bioavailability of lobster calcium was 5.9-fold higher compared to that of the commercial product (11.95 vs. 1.99%). Furthermore, supplementing lobster minerals in media at ratios of 15%, 25%, and 35% (v/v) when growing cells did not induce any detectable changes in cell morphology and apoptosis. However, it had significant effects on cell growth and proliferation. The responses of cells after three days of culture supplemented with the lobster minerals, compared to the CCS supplementation, were significantly better with the bone cells (MG-63) and competitively quick with the skin cells (HaCaT). The cell growth reached 49.9-61.6% for the MG-63 and 42.9-53.4% for the HaCaT. Furthermore, the MG-63 and HaCaT cells proliferated considerably after seven days of incubation, reaching 100.3% for MG-63 and 115.9% for HaCaT with a lobster mineral supplementation of 15%. Macrophages (THP-1 cells) treated for 24 h with lobster minerals at concentrations of 1.24-2.89 mg/mL had no detectable changes in cell morphology while their viability was over 82.2%, far above the cytotoxicity threshold (<70%). All these results indicate that lobster minerals could be used as a source of functional or nutraceutical calcium for commercial products.


Subject(s)
Calcium , Nephropidae , Animals , Cattle , Calcium/metabolism , Nephropidae/metabolism , Caseins/metabolism , Biological Availability , Solubility , Minerals , Chitin/metabolism
15.
Sci Total Environ ; 888: 163801, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37127164

ABSTRACT

Globally, food waste (FW) is found to be one of the major constituents creating several hurdles in waste management. On the other hand, the energy crisis is increasing and the limited fossil fuel resources available are not sufficient for energy needed for emerging population. In this context, biohydrogen production approach through valorization of FW is emerging as one of the sustainable and eco-friendly options. The present review explores FW sources, characteristics, and dark fermentative production of hydrogen along with its efficiency. FW are highly biodegradable and rich in carbohydrates which can be efficiently utilized by anaerobic bacteria. Based on the composition of FW, several pretreatment methods can be adapted to improve the bioavailability of the organics. By-products of dark fermentation are organic acids that can be integrated with several secondary bioprocesses. The versatility of secondary products is ranging from energy generation to biochemicals production. Integrated approaches facilitate in enhanced energy harvesting along with extended wastewater treatment. The review also discusses various parameters like pH, temperature, hydraulic retention time and nutrient supplementation to enhance the process efficiency of biohydrogen production. The application of solid-state fermentation (SSF) in dark fermentation improves the process efficiency. Dark fermentation as the key process for valorization and additional energy generating process can make FW the most suitable substrate for circular economy and waste based biorefinery.


Subject(s)
Food , Refuse Disposal , Fermentation , Bacteria, Anaerobic , Dietary Supplements , Hydrogen/analysis , Biofuels
16.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047195

ABSTRACT

E. globulus leaves have been mainly exploited for essential oil recovery or for energy generation in industrial pulp mills, neglecting the abundance of valuable families of extractives, namely, triterpenic acids, that might open new ways for the integrated valorization of this biomass. Therefore, this study highlights the lipophilic characterization of E. globulus leaves before and after hydrodistillation, aiming at the integrated valorization of both essential oils and triterpenic acids. The lipophilic composition of E. globulus leaves after hydrodistillation is reported for the first time. Extracts were obtained by dichloromethane Soxhlet extraction and analyzed by gas chromatography-mass spectrometry. In addition, their cytotoxicity on different cell lines representative of the innate immune system, skin, liver, and intestine were evaluated. Triterpenic acids, such as betulonic, oleanolic, betulinic and ursolic acids, were found to be the main components of these lipophilic extracts, ranging from 30.63-37.14 g kg-1 of dry weight (dw), and representing 87.7-89.0% w/w of the total content of the identified compounds. In particular, ursolic acid was the major constituent of all extracts, representing 46.8-50.7% w/w of the total content of the identified compounds. Other constituents, such as fatty acids, long-chain aliphatic alcohols and ß-sitosterol were also found in smaller amounts in the studied extracts. This study also demonstrates that the hydrodistillation process does not affect the recovery of compounds of greatest interest, namely, triterpenic acids. Therefore, the results establish that this biomass residue can be considered as a promising source of value-added bioactive compounds, opening new strategies for upgrading pulp industry residues within an integrated biorefinery context.


Subject(s)
Eucalyptus , Oils, Volatile , Triterpenes , Eucalyptus/chemistry , Fatty Acids , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Alcohols , Triterpenes/pharmacology , Triterpenes/chemistry
17.
J Agric Food Chem ; 71(44): 16554-16567, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37104679

ABSTRACT

Tree stems contain wood in addition to 10-20% bark, which remains one of the largest underutilized biomasses on earth. Unique macromolecules (like lignin, suberin, pectin, and tannin), extractives, and sclerenchyma fibers form the main part of the bark. Here, we perform detailed investigation of antibacterial and antibiofilm properties of bark-derived fiber bundles and discuss their potential application as wound dressing for treatment of infected chronic wounds. We show that the yarns containing at least 50% of willow bark fiber bundles significantly inhibit biofilm formation by wound-isolated Staphylococcus aureus strains. We then correlate antibacterial effects of the material to its chemical composition. Lignin plays the major role in antibacterial activity against planktonic bacteria [i.e., minimum inhibitory concentration (MIC) 1.25 mg/mL]. Acetone extract (unsaturated fatty acid-enriched) and tannin-like (dicarboxylic acid-enriched) substances inhibit both bacterial planktonic growth [MIC 1 and 3 mg/mL, respectively] and biofilm formation. The yarn lost its antibacterial activity once its surface lignin reached 20.1%, based on X-ray photoelectron spectroscopy. The proportion of fiber bundles at the fabricated yarn correlates positively with its surface lignin. Overall, this study paves the way to the use of bark-derived fiber bundles as a natural-based material for active (antibacterial and antibiofilm) wound dressings, upgrading this underappreciated bark residue from an energy source into high-value pharmaceutical use.


Subject(s)
Anti-Bacterial Agents , Lignin , Lignin/pharmacology , Anti-Bacterial Agents/chemistry , Pectins/pharmacology , Tannins/pharmacology , Bandages , Biofilms , Microbial Sensitivity Tests
18.
Angew Chem Int Ed Engl ; 62(24): e202219222, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36997342

ABSTRACT

Catalytic transformation of renewable plant oils including microalgae and waste oil into industrially relevant α-olefins in the C3 to C10 regime is demonstrated. The biorefinery concept is comprised of a catalytic sequence of ethenolysis, double bond isomerization, and a subsequent ethenolysis, thereby cutting and rearranging the fatty acid chains into valuable chemical building blocks. A benign extraction and reaction solvent, supercritical carbon dioxide (scCO2 ), is utilized.

19.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36829882

ABSTRACT

A biorefinery process was developed for a freeze-dried pomace of calafate berries (Berberis microphylla). The process consisted of extraction of lipophilic components with supercritical CO2 (scCO2) and subsequent extraction of the residue with a pressurized mixture of ethanol/water (1:1 v/v). scCO2 extracted oil from the pomace, while pressurized liquid extraction generated a crude extract rich in phenols and a residue rich in fiber, proteins and minerals. Response surface analysis of scCO2 extraction suggested optimal conditions of 60 °C, 358.5 bar and 144.6 min to obtain a lipid extract yield of 11.15% (d.w.). The dark yellow oil extract contained a good ratio of ω6/ω3 fatty acids (1:1.2), provitamin E tocopherols (406.6 mg/kg), and a peroxide index of 8.6 meq O2/kg. Pressurized liquid extraction generated a polar extract with good phenolic content (33 mg gallic acid equivalents /g d.w.), anthocyanins (8 mg/g) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl test = 25 µg/mL and antioxidant activity = 63 µM Te/g). The extraction kinetics of oil by scCO2 and phenolic compounds were optimally adjusted to the spline model (R2 = 0.989 and R2 = 0.999, respectively). The solid extracted residue presented a fiber content close to cereals (56.4% d.w.) and acceptable values of proteins (29.6% d.w.) and minerals (14.1% d.w.). These eco-friendly processes valorize calafate pomace as a source of ingredients for formulation of healthy foods, nutraceuticals and nutritional supplements.

20.
Life (Basel) ; 13(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36836684

ABSTRACT

Among the waste materials of wine production, grape seeds constitute an important fraction of the pomace, from which the precious edible oil is extracted. The residual mass from oil extraction, the defatted grape seeds (DGS), can be destined for composting or valorized according to the circular economy rules to produce pyrolytic biochar by gasification or pellets for integral energy recovery. Only a small quantity is used for subsequent extraction of polyphenols and tannins. In this study, we performed a chemical characterization of the DGS, by applying spectroscopic techniques (ICP-OES) to determine the metal content, separation techniques (HS-SPME-GC-MS) to evaluate the volatile fraction, and thermal methods of analysis (TGA-MS-EGA) to identify different matrix constituents. Our main goal is to obtain information about the composition of DGS and identify some bioactive compounds constituting the matrix in view of possible future applications. The results suggest that DGS can be further exploited as a dietary supplement, or as an enriching ingredient in foods, for example, in baked goods. Defatted grape seed flour can be used for both human and animal consumption, as it is a source of functional macro- and micronutrients that help in maintaining optimal health and well-being conditions.

SELECTION OF CITATIONS
SEARCH DETAIL