Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Toxics ; 11(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37112532

ABSTRACT

In recent years, intensive studies have been carried out on the management of agricultural insect pests using botanical insecticides in order to decrease the associated environmental hazards. Many studies have tested and characterized the toxic action of plant extracts. Four plant extracts (Justicia adhatoda, Ipomea carnea, Pongamia glabra, and Annona squamosa) containing silver nanoparticles (AgNPs) were studied for their effects on Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) using the leaf dip method. The effects were estimated based on assays of hydrolytic enzyme (amylase, protease, lipase, acid phosphatase, glycosidase, trehalase, phospholipase A2, and invertase) and detoxification enzyme (esterase and lactate dehydrogenase) levels; macromolecular content (total body protein, carbohydrate, and lipid); and protein profile. The results show that the total body of P. solenopsis contains trypsin, pepsin, invertase, lipase, and amylase, whereas J. adathoda and I. carnea aqueous extracts considerably decreased the protease and phospholipase A2 levels, and A. squamosa aqueous extract dramatically increased the trehalase level in a dose-dependent manner. The enzyme levels were dramatically decreased by P. glabura-AgNPs (invertase, protease, trehalase, lipase, and phospholipase A2); I. carnea-AgNPs (invertase, lipase, and phospholipase A2); A. squamosa-AgNPs (protease, phospholipase A2); and J. adathoda-AgNPs (protease, lipase, and acid phosphatase). Plant extracts and their AgNPs significantly reduced P. solenopsis esterase and lactate dehydrogenase levels in a dose-dependent manner. At higher concentrations (10%), all of the investigated plants and their AgNPs consistently decreased the total body carbohydrate, protein, and fat levels. It is clear that the plant extracts, either crude or together with AgNPs, may result in the insects having inadequate nutritional capacity, which will impact on all critical actions of the affected hydrolytic and detoxication enzymes.

2.
Plants (Basel) ; 11(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36432774

ABSTRACT

The environmental and health risks associated with synthetic pesticides have increased the demand for botanical insecticides as safer and biodegradable alternatives to control insect pests in agriculture. Hence in this study, five Meliaceae species were evaluated for their insecticidal activities against the Spodoptera frugiperda and the Plutella xylostella larvae, as well as their chemical constituents. Repellence, feeding deterrence, and topical application bioassays were employed to evaluate their insecticidal activities. GC-MS analysis was performed to identify chemical compounds present in each plant. The repellence bioassay indicated that Melia azedarach extracts exhibited the highest repellence percentage against S. frugiperda (95%) and P. xylostella (90%). The feeding deterrence bioassay showed that M. azedarach and Trichilia dregeana extracts displayed excellent antifeeding activity against the S. frugiperda (deterrent coefficient, 83.95) and P. xylostella (deterrent coefficient, 112.25), respectively. The topical application bioassay demonstrated that Ekebergia capensis extracts had the highest larval mortality against S. frugiperda (LD50 0.14 mg/kg). Conversely, M. azedarach extracts showed the highest larval mortality against P. xylostella (LD50 0.14 mg/kg). GC-MS analysis revealed that all plant extracts had compounds belonging to the two noteworthy groups (phenols and terpenes), which possess insecticidal properties. Overall, this study lends scientific credence to the folkloric use of Meliaceae species as potential biocontrol agents against insect pests.

3.
Pestic Biochem Physiol ; 184: 105115, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715054

ABSTRACT

Essential oils (EOs) can provide important alternatives to chemical insecticides in the control of pests. In this study, 12 EOs of native plant species from Iran were evaluated for their adulticidal activity against the house fly. In addition, we examined the insecticidal activity of Zataria multiflora and Rosmarinus officinalis EOs on adult female house flies from pyrethroid and organophosphate resistant and susceptible populations, using both fumigant and topical bioassays. The involvement of detoxification enzymes in susceptibility was investigated with synergism experiments in vivo, while the inhibitory effects of R. officinalis and Zataria multiflora EOs on the activities of cytochrome P450-dependent monooxygenases (P450s), carboxylesterases (CarEs) and glutathione S-transferases (GSTs) were determined by enzymatic inhibition assays in vitro. The EOs of Z. multiflora, Mentha pulegium, R. officinalis and Thymus vulgaris were the most effective against adults in contact topical assays, while oils extracted from Eucalyptus cinerea, Z. multiflora, Citrus sinensis, R. officinalis, Pinus eldarica and Lavandula angustifolia where the most effective in fumigant assays. Rosmarinus officinalis and Z. multiflora EOs were selected for further investigation and showed higher toxicity against a susceptible population, compared to two insecticide-resistant populations. Correlation analysis suggested cross-resistance between these EOs and pyrethroids in the resistant populations. The toxicity of both EOs on the resistant populations was synergized by three detoxification enzyme inhibitors. Further, in vitro inhibition studies showed that R. officinalis and Z. multiflora EOs more effectively inhibited the activities of the detoxification enzymes from flies of the susceptible population compared to those of the pyrethroid resistant populations. Synergistic and enzymatic assays further revealed that increased activities of P450s, GSTs, and CarEs are possibly involved in the cross-resistance between EOs and pyrethroids. Investigating the molecular mechanisms of P450s, GSTs, and CarEs in the resistance to EOs should be subject to further studies.


Subject(s)
Houseflies , Insecticides , Oils, Volatile , Pyrethrins , Animals , Insecticide Resistance , Insecticides/toxicity , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Pyrethrins/toxicity
4.
Environ Sci Pollut Res Int ; 29(23): 34749-34758, 2022 May.
Article in English | MEDLINE | ID: mdl-35043299

ABSTRACT

Populations of Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) have shown resistance to insecticides of the carbamate and organophosphate classes. The objective of this study was to assess the susceptibility of C. quinquefasciatus larvae to essential oils from leaves of Eugenia uniflora L., Melaleuca armillaris (Sol. ex Gaertn.) Sm., and Schinus molle L and C. quinquefasciatus larvae's biochemical responses after their exposure to these leaves. The essential oils were chemically analyzed by GC and GC/MS. First, the lethal concentration for 50% (LC50) values was estimated using different concentrations of essential oils and probit analysis. The larvae were exposed for 1 h at the LC50 estimated for each essential oil. The susceptibility of the larvae to essential oils was evaluated using the following biochemical parameters: concentrations of total protein and reduced glutathione; levels of production of hydrogen peroxide and lipid peroxidation; and the activity of the enzyme acetylcholinesterase (AChE). The main chemical constituents in E. uniflora were E-ß-ocimene, curzerene, germacrene B, and germacrone; in M. armillaris were 1,8-cineole and terpinolene; and in S. molle were sabinene, myrcene, and sylvestrene. The essential oils had LC50 values between 31.52 and 60.08 mg/L, all of which were considered effective. All of them also promoted changes in biochemical parameters when compared to the control treatment. The essential oils of S. molle and E. uniflora inhibited the activity of the AChE enzyme, and the essential oil of M. armillaris increased it. All essential oils had larvicidal activity against C. quinquefasciatus, but the essential oil of E. uniflora was the most efficient. Thus, the findings of the present study suggest that the essential oil of E. uniflora can be considered promising for the development of botanical larvicides.


Subject(s)
Anacardiaceae , Culex , Culicidae , Eugenia , Insecticides , Melaleuca , Oils, Volatile , Acetylcholinesterase , Animals , Insecticides/pharmacology , Larva , Mosquito Vectors , Oils, Volatile/pharmacology , Plant Leaves
5.
Toxins (Basel) ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34564621

ABSTRACT

Glycoalkaloids, secondary metabolites abundant in plants belonging to the Solanaceae family, may affect the physiology of insect pests. This paper presents original results dealing with the influence of a crude extract obtained from Solanum nigrum unripe berries and its main constituent, solasonine, on the physiology of Galleria mellonella (Lepidoptera) that can be used as an alternative bioinsecticide. G. mellonella IV instar larvae were treated with S. nigrum extract and solasonine at different concentrations. The effects of extract and solasonine were evaluated analyzing changes in carbohydrate and amino acid composition in hemolymph by RP-HPLC and in the ultrastructure of the fat body cells by TEM. Both extract and solasonine changed the level of hemolymph metabolites and the ultrastructure of the fat body and the midgut cells. In particular, the extract increased the erythritol level in the hemolymph compared to control, enlarged the intracellular space in fat body cells, and decreased cytoplasm and lipid droplets electron density. The solasonine, tested with three concentrations, caused the decrease of cytoplasm electron density in both fat body and midgut cells. Obtained results highlighted the disturbance of the midgut and the fat body due to glycoalkaloids and the potential role of hemolymph ingredients in its detoxification. These findings suggest a possible application of glycoalkaloids as a natural insecticide in the pest control of G. mellonella larvae.


Subject(s)
Fat Body/drug effects , Hemolymph/drug effects , Insecticides , Moths , Plant Extracts , Solanaceous Alkaloids , Solanum nigrum/chemistry , Animals , Digestive System/drug effects , Digestive System/ultrastructure , Fat Body/ultrastructure , Hemolymph/metabolism , Insect Control , Larva/growth & development , Larva/metabolism , Larva/ultrastructure , Microscopy, Electron, Transmission , Moths/growth & development , Moths/metabolism , Moths/ultrastructure
6.
Insects ; 12(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205331

ABSTRACT

The use of bioinsecticides, rather than synthetic compounds, appears a goal to be pursued in pest control, especially for species such as Sitophilus granarius (L.) which attack stored products. Since Humulus lupulus (L.) is a remarkable source of bioactive compounds, this study investigated the bioactivity of hop flower extracts against S. granarius adults by evaluating toxic (contact, inhalation, and ingestion), repellent, antifeedant, and nutritional effects as well as their anticholinesterase activity and olfactory sensitivity. Hop extracts were obtained by soaking dried and ground hop cones in solvents of decreasing polarity: methanol, acetone, and n-hexane. Dried crude extracts were resuspended in each solvent, and used in topical application, ingestion, and fumigation toxicity assays, as well as in contact and short-range repellency tests, in vitro anticholinesterase activity evaluation, and electroantennographic tests. No inhalation toxicity for the extracts was found. On the contrary, all extracts showed adult contact toxicity 24 h after treatment (LD50/LD90 16.17/33.20, 25.77/42.64, and 31.07/49.48 µg/adult for acetone, n-hexane, and methanol extracts, respectively); negligible variations for these values at 48 h were found. The anticholinesterase activity shown by all extracts suggested that the inhibition of this enzyme was one of the mechanisms of action. Interestingly, flour disk bioassays revealed a significant ingestion toxicity for the acetone extract and a lower toxicity for the other two extracts. Moreover, all extracts affected insect nutritional parameters, at the highest dose checked. Filter paper and two-choice pitfall bioassays showed repellent activity and a strong reduction of insect orientation to a highly attractive food odor source, with minor differences among extracts, respectively. Finally, the presence of volatile compounds in the different extracts that are perceived by insect antennae was confirmed by electroantennography. All these findings strongly suggest a possible use of hop cone extracts against S. granarius, thus further confirming this plant as an interesting species for pest control.

7.
Acta Trop ; 221: 106014, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146537

ABSTRACT

The growth of resistance in vector mosquitoes to insecticides, especially the organophosphate Temephos can facilitate the transmission of various disease agents worldwide. Consequently, it arises a challenge to public health agencies, which is the urgency use of other possibilities as botanical insecticides. Such insecticides have specific properties against insects due to the plant's ability to synthesize products derived from its secondary metabolism. The diversity and complexity of active compounds of botanical insecticides can help reduce the selection of resistant individuals and consequently not change susceptibility. To corroborate this hypothesis, the aim of this study was to compare two populations of Aedes aegypti treated with Temephos and Copaifera oleoresin. Thus, Ae. aegypti larvae were exposed from (F1) up to tenth generation (F10) with sublethal doses (±LC25) of these products (Copaifera oleoresin: 40 mg/L and Temephos: 0.0030 mg/L). The triplicates and control groups were monitored every 48 hours and the surviving larvae were separated until the emergence of the adults. Each new population were then subjected to a series of concentrations (LC50 and LC95) of Temephos and Copaifera oleoresin to calculate the Resistance Ratio (RR) of each exposed generation. The population of Ae. aegypti exposed to Temephos had an increase in RR from 05 (considered low) to 13 (considered high). Those population exposed to Copaifera oleoresin, had no increasing in RR and continued susceptible to the oil in all generations. There was a significant difference in mortality between the generations exposed to the two products. The results presented here show that the change in the susceptibility status of Ae. aegypti population to Temephos was already expected. So, we believe that this work will be of great contribution to research related to mosquito control with plant products, and resistance to chemical insecticides.


Subject(s)
Aedes , Fabaceae , Insecticide Resistance , Insecticides , Plant Extracts/pharmacology , Aedes/drug effects , Animals , Fabaceae/chemistry , Insecticides/pharmacology , Larva/drug effects , Mosquito Vectors , Organophosphates/pharmacology , Temefos/pharmacology
8.
Molecules ; 26(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572107

ABSTRACT

In developing countries, crop deterioration is mainly caused by inappropriate storage conditions that promote insect infestation. Synthetic pesticides are associated with serious adverse effects on humans and the environment. Thus, finding alternative "green" insecticides is a very pressing need. Calotropis procera (Aiton) Dryand (Apocynaceae) growing in Saudi Arabia was selected for this purpose. LC-MS/MS analysis was applied to investigate the metabolic composition of different C. procera extracts. Particularly, C. procera latex and leaves showed a high presence of cardenolides including calactin, uscharidin, 15ß-hydroxy-calactin, 16ß-hydroxy-calactin, and 12ß-hydroxy-calactin. The ovicidal activity of the extracts from different plant organs (flowers, leaves, branches, roots), and of the latex, against Cadra cautella (Walker) (Lepidoptera, Pyralidae) was assessed. Extracts of C. procera roots displayed the most potent activity with 50% of C. cautella eggs not hatching at 10.000 ppm (1%).


Subject(s)
Calotropis/chemistry , Ovum/drug effects , Ovum/physiology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Flowers/chemistry , Latex/chemistry , Moths , Plant Leaves/chemistry , Plant Roots/chemistry
9.
J Insect Sci ; 20(6)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33211857

ABSTRACT

The tea green leafhopper Empoasca onukii Matsuda (Hemiptera: Cicadellidae), the orange spiny whitefly, Aleurocanthus spiniferus (Quaintanca) (Hemiptera: Aleyrodidae), and the green plant bugs Apolygus lucorum Meyer-Dür (Hemiptera: Miridae) are the important piercing-sucking herbivores in tea trees Camellia sinensis (L.) O. Kuntze (Theaceae). The goal of this study was to evaluate the laboratory toxicities and field control efficacies of botanical insecticides including matrine, azadirachtin, veratrine, and pyrethrin to three tea pests. Via leaf-dip bioassay, toxicity tests with botanical insecticides indicated that there were significant differences between the LC50 values for botanical insecticides within the same insect species. Matrine had the highest toxicity to E. onukii, A. spiniferus, and A. lucorum with the LC50 values of 2.35, 13.10, and 44.88 mg/liter, respectively. Field tests showed that, among four botanical insecticides, matrine at dose of 9 g a.i. ha-1 can significantly reduce the numbers of E. onukii and A. spiniferus and the infestation of A. lucorum on the tea plants. Furthermore, botanical insecticides matrine and azadirachtin had no obvious influence on the coccinellids, spiders, and parasitoids densities in tea plantations. The results of this study indicated that use of botanical insecticides, such as matrine, has the potential to manipulate the population of E. onukii, A. spiniferus, and A. lucorum and will be an effective and environmentally compatible strategy for the control of tea pests.


Subject(s)
Camellia sinensis , Hemiptera , Insect Control , Insecticides/pharmacology , Pest Control, Biological , Alkaloids/pharmacology , Animals , Limonins/pharmacology , Pyrethrins/pharmacology , Quinolizines/pharmacology , Species Specificity , Veratrine/pharmacology , Matrines
10.
Trop Anim Health Prod ; 52(6): 3331-3335, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32766994

ABSTRACT

This research aimed to evaluate the effect of 5% aqueous extracts of marjoram (Origanum majorana L.) and pomegranate (Punica granatum L.) on Cobb chicken (Gallus gallus domesticus L.), as a model to birds as non-target organisms for pest control. The extracts were prepared using dried ground leaves. The powder obtained was then added to distilled water to obtain 5% extract (w/v). After 48 h, the plant extracts were filtered and added to the feed of 36 female birds. For that, the chicken (12 days old) were acclimated for 3 days before starting the experiment. The plant extracts were administered for 6 days, always preceded by at least 14-h starvation. The birds were evaluated for 11 days, assessing behaviour, feed consumption and animal performance. After sacrificing the birds, histopathological examination was performed, and intestinal villi were measured. No death nor any alteration occurred during the experiment. There was no statistical difference among the treatments regarding feed consumption and performance even though there was intestinal villi reduction.


Subject(s)
Origanum/chemistry , Pest Control , Plant Extracts/toxicity , Pomegranate/chemistry , Animals , Chickens , Female
11.
Insects ; 11(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604849

ABSTRACT

Botanical insecticides that degrade rapidly are safer than persistent synthetic chemical insecticides, less harmful to the environment, decrease production costs and are not likely to cause insecticide resistance among pests. This study aimed to evaluate the effect of five different botanical extracts on the bean aphid, Aphis craccivora and the 2nd larval instar of the green lacewing, Chrysoperla carnea under laboratory conditions. Also, the flavonoids in the methanolic extracts of these tested plants were detected using HPLC analysis. The data from the HPLC analysis indicated that the tested plants differed in their flavonoid components. The total flavonoids were 869.4, 1125.6, 721.4, 1667.8 and 2025.9 mg/kg in Psiadia penninervia, Salvia officinalis, Ochradenus baccatus, Pulicaria crispa and Euryops arabicus, respectively. Moreover, there were many variations among these plants in the amount of each compound. The lethal concentration (LC50) value of P. penninervia extract on aphids was the lowest among all of the plants (128.546 µg/mL) followed by O. baccatus (626.461 µg/mL). Also, the LC50 value of P. penninervia extract on the 2nd larval instar of C. carnea (232.095 µg/mL) was significantly lower than those of all other four plant species extracts, while the other four plants did not show significant differences among them according to relative median potency analyses. Accordingly, O. baccatus extract had a strong effect on aphids and was safest for the predator. This finding suggests that O. baccatus could be exploited and further developed as an effective plant extract-based insecticide to be utilized in integrated pest management (IPM) programs against A. craccivora.

12.
Environ Sci Pollut Res Int ; 27(11): 11958-11967, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31983003

ABSTRACT

The development of "green" alternatives to chemical pesticides could play a crucial role in integrated pest management (IPM). Their use is considered either as a substitution for or in addition to hazardous synthetic products. We analysed the influence of three concentrations of tansy (Tanacetum vulgare L.) essential oil (EO), previously characterised by GC-MS, on the survival and moulting of the 2nd instar and the nutritional indices of the 4th instar gypsy moth (Lymantria dispar L.) larvae. In a residual contact toxicity assessment, the exposure to tansy EO caused low mortality (< 10%) while larval development was significantly slowed down, i.e., the percentage of larvae that moulted into the 3rd instar was reduced. On the other hand, when tansy EO was incorporated into the diet (digestive toxicity assay), high mortality and a lack of moulting after 120 h of eating were recorded for the highest applied concentration of EO. During 48 h of feeding on EO-supplemented food at concentrations of 0.5 and 1% (v/v), the relative growth rate (RGR) of the 4th instar larvae significantly decreased, which can be explained by a significant reduction of the relative consumption rate (RCR) and significantly or marginally significantly lower efficiency of conversion of ingested food into insect biomass (ECI). Although the RCR was also reduced with the lowest applied EO concentration (0.1%), the ECI was not affected which meant the RGR was as high as it was for the control larvae. ECI changes, when two higher EO concentrations were applied, were due to a reduction in the efficiency of conversion of digested food into biomass (ECD), while approximate digestibility was unaffected by the presence of EO in the food. Our results on the significant negative effects of tansy EO on gypsy moth larval survival, development time, and nutritional physiology suggest that it could be considered in future designs for botanical insecticides for gypsy moth control.


Subject(s)
Moths , Oils, Volatile , Tanacetum , Animals , Larva , Plant Oils
13.
Environ Pollut ; 253: 1009-1020, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31434178

ABSTRACT

The environment receives about 2.7 kg.ha-1 annually of pesticides, used in crop production. Pesticides may have a negative impact on environmental biodiversity and potentially induce physiological effects on non-target species. Advances in technology and nanocarrier systems for agrochemicals led to new alternatives to minimize these impacts, such as nanopesticides, considered more efficient, safe and sustainable. However, it is important to evaluate the risk potential, action and toxicity of nanopesticides in aquatic and terrestrial organisms. This study aims to evaluate genotoxic and hematological biomarkers in bullfrog tadpoles (Lithobates catesbeianus) submitted to acute exposure (48 h) to pyrethrum extract (PYR) and solid lipid nanoparticles loaded with PYR. Results showed increased number of leukocytes during acute exposure, specifically eosinophils in nanoparticle-exposed groups, and basophil in PYR-exposed group. Hematological analysis showed that PYR encapsulated in nanoparticles significantly increased the erythrocyte number compared to the other exposed groups. Data from the comet assay indicated an increase in frequency of the classes that correspond to more severe DNA damages in exposed groups, being that the PYR-exposed group showed a high frequency of class-4 DNA damage. Moreover, erythrocyte nuclear abnormalities were triggered by short-time exposure in all treatments, which showed effects significantly higher than the control group. These results showed genotoxic responses in tadpoles, which could trigger cell death pathways. Concluding, these analyses are important for applications in assessment of contaminated aquatic environments and their biomonitoring, which will evaluate the potential toxicity of xenobiotics, for example, the nanoparticles and pyrethrum extract in frog species. However, further studies are needed to better understand the effects of nanopesticides and botanical insecticides on non-target organisms, in order to contribute to regulatory aspects of future uses for these systems.


Subject(s)
Chrysanthemum cinerariifolium , Larva/physiology , Nanoparticles/toxicity , Plant Extracts/toxicity , Rana catesbeiana/physiology , Xenobiotics/toxicity , Animals , DNA Damage , Larva/drug effects
14.
Acta Trop ; 193: 236-271, 2019 May.
Article in English | MEDLINE | ID: mdl-30711422

ABSTRACT

In the last decades, major research efforts have been done to investigate the insecticidal activity of plant-based products against mosquitoes. This is a modern and timely challenge in parasitology, aimed to reduce the frequent overuse of synthetic pesticides boosting resistance development in mosquitoes and causing serious threats to human health and environment. This review covers the huge amount of literature available on plant extracts tested as mosquito larvicides, particularly aqueous and alcoholic ones, due to their easy formulation in water without using surfactants. We analysed results obtained on more than 400 plant species, outlining that 29 of them have outstanding larvicidal activity (i.e., LC50 values below 10 ppm) against major vectors belonging to the genera Anopheles, Aedes and Culex, among others. Furthermore, synergistic and antagonistic effects between plant extracts and conventional pesticides, as well as among selected plant extracts are discussed. The efficacy of pure compounds isolated from the most effective plant extracts and - when available - their mechanism of action, as well as the impact on non-target species, is also covered. These belong to the following class of secondary metabolites: alkaloids, alkamides, sesquiterpenes, triterpenes, sterols, flavonoids, coumarins, anthraquinones, xanthones, acetogenonins and aliphatics. Their mode of action on mosquito larvae ranges from neurotoxic effects to inhibition of detoxificant enzymes and larval development and/or midugut damages. In the final section, current drawbacks as well as key challenges for future research, including technologies to synergize efficacy and improve stability - thus field performances - of the selected plant extracts, are outlined. Unfortunately, despite the huge amount of laboratory evidences about their efficacy, only a limited number of studies was aimed to validate their efficacy in the field, nor the epidemiological impact potentially arising from these vector control operations has been assessed. This strongly limits the development of commercial mosquito larvicides of botanical origin, at variance with plant-borne products developed in the latest decades to kill or repel other key arthropod species of medical and veterinary importance (e.g., ticks and lice), as well as mosquito adults. Further research on these issues is urgently needed.


Subject(s)
Culicidae/drug effects , Insecticides/pharmacology , Larva/drug effects , Plant Extracts/pharmacology , Animals , Lethal Dose 50 , Mosquito Vectors/drug effects
15.
Neotrop Entomol ; 48(3): 515-521, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30637578

ABSTRACT

Nasutitermes corniger (Motschulsky, 1855) (Termitidae: Nasutitermitinae) is an important pest in urban environments and bioinsecticides can be an alternative to its control. Here, we determined the toxicity and repellence of the essential oil (EO) prepared from stems of Aristolochia trilobata L. (Aristolochiaceae) and its major constituents on N. corniger. We also investigated behavioral changes of individuals exposed to limonene. The lethal dose required to kill 50% of N. corniger population (LD50) of EO of A. trilobata was 2.44 µg mg-1. Limonene was the most toxic compound to N. corniger followed by linalool (LD50 = 1.02 and 1.29 µg mg-1, respectively). In addition, all treatments presented median lethal time (LT50) less than 11 h. A. trilobata EO and its constituents showed irritability activity, but only limonene repelled soldiers more than workers. The negative behaviors of N. corniger groups were higher in individuals treated with limonene. A. trilobata EO and its constituents, especially the limonene, are promising for the control of N. corniger due the high toxicity, repellence, and possible disturbance in the colonies.


Subject(s)
Aristolochia/chemistry , Insecticides , Isoptera , Oils, Volatile , Acyclic Monoterpenes , Animals , Insect Repellents , Limonene , Monoterpenes , Plant Oils , Toxicity Tests, Acute
16.
Ecotoxicol Environ Saf ; 162: 454-463, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30015192

ABSTRACT

Plant-derived substances, because of high biological activity, arouse interest of many scientists. Thus, plant extracts and pure substances are intensively studied on various insects as potential insecticides. In such studies, D. melanogaster is one of the most important model organisms. In our studies, we analysed the contents of two plant extracts and tested the activity of their main components against fruit flies and compared observed effects to effects caused by crude extracts. Then, we assessed the development of the next, unexposed generation. The chemical analysis of extracts revealed the presence of numerous glycoalkaloids and glucosinolates in Solanum nigrum and Armoracia rusticana extracts. These extracts, as well as their main components, revealed lethal and sublethal effects, such as the altered developmental time of various life stages and malformations of imagoes. Interestingly, the results for the extracts and pure main compounds often varied. Some of the results were also observed in the unexposed generation. These results confirm that the tested plants produce a range of substances with potential insecticidal effects. The different effects of extracts and pure main components suggest the presence of minor compounds, which should be tested as insecticides.


Subject(s)
Armoracia/chemistry , Drosophila melanogaster/drug effects , Insecticides/pharmacology , Life Cycle Stages/drug effects , Plant Extracts/pharmacology , Solanum nigrum/chemistry , Alkaloids/analysis , Alkaloids/pharmacology , Animals , Drosophila melanogaster/physiology , Glucosinolates/analysis , Glucosinolates/pharmacology , Insecta/drug effects , Reproduction
17.
Ecotoxicol Environ Saf ; 145: 436-441, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28778042

ABSTRACT

The drywood termite Cryptotermes brevis (Walker, 1853) (Kalotermitidae) is one of the most important wood structural pest in the world. Substances from the secondary metabolism of plants (e.g., essential oils) have been considered an environmentally safer form of control for urban pests, such as termites. In the present study, we analyzed the lethal and sub-lethal effects of essential oil of Lippia sidoides and its major components on C. brevis pseudergates in two routes of exposure (contact and fumigation). The essential oil of L. sidoides and thymol were more toxic to C. brevis pseudergates when applied by contact (LD50 = 9.33 and 8.20µgmg-1, respectively) and by fumigation (LC50 = 9.10 and 23.6µLL-1, respectively). In general, treatments changed the individual and collective behaviors of C. brevis pseudergates, as well as the displacement and walking speed. The essential oil of L. sidoides and its major components showed a high potential to control C. brevis pseudergates, due to the bioactivity in the two routes of exposure and the sub-lethal effects on the behavior and walking, important activities for the cohesion of C. brevis colonies.


Subject(s)
Cockroaches/drug effects , Isoptera/drug effects , Lippia/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Wood/drug effects , Animals , Lethal Dose 50 , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Toxicity Tests, Acute
18.
Pestic Biochem Physiol ; 140: 9-16, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28755700

ABSTRACT

Although there have been many reports on the synergistic interactions among the major constituents of plant essential oils regarding insecticidal activity, their underlying mechanism of synergy is poorly understood. In our previous studies, we found each of the two most abundant constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.) and lemongrass (Cymbopogon citratus Stapf.) essential oils can be synergistic against the larvae of the cabbage looper, Trichoplusia ni at their natural proportion or equivalent blending ratios. In the present study, we investigated whether the enhanced toxicity between the major constituents could be the result of inhibited enzyme activity of cytochrome P450s, general esterases or glutathione S-transferases which are highly related to the development of insecticide resistance. Overall, although some combinations showed mild inhibitory activity, at least for these essential oils and their major constituents, inhibition of detoxication enzyme activity is unlikely to be a direct cause of increased toxicity in the cabbage looper. The results point to other factors, such as multiple modes-of-action or enhanced penetration through the cuticular layer, playing important roles in the elevated insecticidal activity. Moreover, application of enzyme inhibitors sometimes resulted in decreased activity when mixed with the target compounds, but these antagonistic interactions disappeared when they were applied separately, suggesting that the enzyme inhibitors can sometimes influence the penetrations of toxicants.


Subject(s)
Insecticides/pharmacology , Moths/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Terpenes/pharmacology , Thymus Plant/chemistry , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Insecticides/chemistry , Larva/drug effects , Larva/enzymology , Moths/enzymology , Oils, Volatile/chemistry , Plant Oils/chemistry , Terpenes/chemistry
19.
Parasit Vectors ; 10(1): 80, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28193253

ABSTRACT

BACKGROUND: Synanthropic flies play a considerable role in the transmission of pathogenic and non-pathogenic microorganisms. In this work, the essential oil (EO) of two aromatic plants, Artemisia annua and Artemisia dracunculus, were evaluated for their abilities to control the blowfly Calliphora vomitoria. Artemisia annua and A. dracunculus EOs were extracted, analysed and tested in laboratory bioassays. Besides, the physiology of EOs toxicity and the EOs antibacterial and antifungal properties were evaluated. RESULTS: Both Artemisia EOs deterred C. vomitoria oviposition on fresh beef meat. At 0.05 µl cm-2 A. dracunculus EO completely inhibited C. vomitoria oviposition. Toxicity tests, by contact, showed LD50 of 0.49 and 0.79 µl EO per fly for A. dracunculus and A. annua, respectively. By fumigation, LC50 values were 49.55 and 88.09 µl l-1 air for A. dracunculus and A. annua, respectively. EOs AChE inhibition in C. vomitoria (IC50 = 202.6 and 472.4 mg l-1, respectively, for A. dracunculus and A. annua) indicated that insect neural sites are targeted by the EOs toxicity. Finally, the antibacterial and antifungal activities of the two Artemisia EOs may assist in the reduction of transmission of microbial infections/contaminations. CONCLUSIONS: Results suggest that Artemisia EOs could be of use in the control of C. vomitoria, a common vector of pathogenic microorganisms and agent of human and animal cutaneous myiasis. The prevention of pathogenic and parasitic infections is a priority for human and animal health. The Artemisia EOs could represent an eco-friendly, low-cost alternative to synthetic repellents and insecticides to fight synanthropic disease-carrying blowflies.


Subject(s)
Artemisia/chemistry , Diptera/drug effects , Diptera/physiology , Insecticides/pharmacology , Oils, Volatile/pharmacology , Animals , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Biological Assay , Fungi/drug effects , Insecticides/isolation & purification , Lethal Dose 50 , Oils, Volatile/isolation & purification
20.
Pestic Biochem Physiol ; 133: 20-25, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27742357

ABSTRACT

Although screening for new and reliable sources of botanical insecticides remains important, finding ways to improve the efficacy of those already in use through better understanding of their modes-of-action or metabolic pathways, or by improving formulations, deserves greater attention as the latter may present lesser regulation hurdles. Metabolic processing of citral (a combination of the stereoisomers geranial and neral), a main constituent of lemongrass (Cymbopogon citratus) essential oil has not been previously examined in insects. To address this, we investigated insecticidal activities of lemongrass oil and citral, as well as the metabolism of citral in larvae of the cabbage looper, Trichoplusia ni, in associations with well-known enzyme inhibitors. Among the inhibitors tested, piperonyl butoxide showed the highest increase in toxicity followed by triphenyl phosphate, but no synergistic interaction between the inhibitors was observed. Topical application of citral to fifth instar larvae produced mild reductions in food consumption, and frass analysis after 24h revealed geranic acid (99.7%) and neric acid (98.8%) as major metabolites of citral. Neither citral nor any other metabolites were found following in vivo analysis of larvae after 24h, and no significant effect of enzyme inhibitors was observed on diet consumption or citral metabolism.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Insecticides/toxicity , Monoterpenes , Moths/drug effects , Organophosphates/pharmacology , Piperonyl Butoxide/pharmacology , Acyclic Monoterpenes , Animals , Cytochrome P-450 Enzyme System/metabolism , Esterases/antagonists & inhibitors , Esterases/metabolism , Feces/chemistry , Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Insecticides/pharmacokinetics , Larva/drug effects , Larva/growth & development , Larva/metabolism , Monoterpenes/pharmacokinetics , Monoterpenes/toxicity , Moths/growth & development , Moths/metabolism , Pesticide Synergists/pharmacology , Plant Oils/toxicity , Terpenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL