Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Zhen Ci Yan Jiu ; 49(4): 391-397, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649207

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the rats' behavior and the transforming precursor of brain-derived neurotrophic factor (proBDNF) into mature brain-derived neurotrophic factor (mBDNF) in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia-reperfusion (IR), so as to explore its mechanisms underlying improvement of learning and memory ability. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 6 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (1 Hz/20 Hz) was applied to GV24 and GV20 for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria 24 h after modeling and after intervention. Morris water maze test was used to detect the learning and memory function of the rats. TTC staining was used to evaluate the cerebral infarction volume on the affected side. The protein expression levels of proBDNF, mBDNF, tissue plasminogen activator (tPA), tyrosine kinase receptor B (TrkB) and p75 neurotrophin receptor (p75NTR) in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score, the percentage of cerebral infarction volume and the expression levels of proBDNF and p75NTR protein in hippocampus were increased (P<0.01), while the times of crossing the original platform and the total distance in the target quadrant, the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the neurological function score, the percentage of cerebral infarction volume, and the expression levels of proBDNF and p75NTR protein in hippocampus were decreased (P<0.01, P<0.05), while the times of crossing the original platform, the total distance in the target quadrant, and the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were increased (P<0.05, P<0.01) in the EA group. CONCLUSIONS: EA can alleviate learning and memory impairment in IR rats, which may be related to its function in up-regulating the expression of tPA protein and promoting the transformation of proBDNF to mBDNF, thus improving the synaptic plasticity.


Subject(s)
Brain Ischemia , Brain-Derived Neurotrophic Factor , Electroacupuncture , Memory Disorders , Neuronal Plasticity , Protein Precursors , Reperfusion Injury , Animals , Humans , Male , Rats , Acupuncture Points , Brain Ischemia/metabolism , Brain Ischemia/therapy , Brain Ischemia/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/metabolism , Learning , Memory , Memory Disorders/therapy , Memory Disorders/metabolism , Memory Disorders/etiology , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Receptor, trkB/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Reperfusion Injury/genetics
2.
J Psychiatr Res ; 173: 1-5, 2024 May.
Article in English | MEDLINE | ID: mdl-38437783

ABSTRACT

Brain derived neurotrophic factor (BDNF) may play an important role in the success of treatment for posttraumatic stress disorder (PTSD). Pre- and post-treatment blood samples were analyzed for 40 veterans who completed a 3-week intensive outpatient treatment for PTSD. The treatment included Cognitive Processing Therapy, mindfulness, and yoga as core treatment components. PTSD symptoms were assessed at pre-treatment, post-treatment, and 3-month follow-up. Participants reported large decreases in PTSD symptoms from pre-to post-treatment (d = 1.46, p < 0.001) and pre-treatment to 3-month follow-up (d = 0.91, p < 0.001). Unexpectedly, participants demonstrated a decrease in BDNF from pre-to post-treatment (d = 0.64, p < 0.001). Changes in BDNF from pre-to post-treatment were not significantly associated with PTSD symptom improvement. However, higher levels of post-treatment BDNF were significantly associated with lower PTSD symptoms at 3-month follow-up (n = 27, r = -0.57, p = 0.002) and greater improvements in PTSD symptoms from pre-treatment to 3-month follow-up (n = 27, r = 0.50, p = 0.008). Higher levels of post-treatment BDNF may facilitate the long-term success of intensive PTSD treatment. Further research with larger samples is needed to evaluate the processes by which BDNF may affect consolidation of improvements after completion of PTSD treatment.


Subject(s)
Cognitive Behavioral Therapy , Stress Disorders, Post-Traumatic , Veterans , Humans , Veterans/psychology , Stress Disorders, Post-Traumatic/psychology , Brain-Derived Neurotrophic Factor , Treatment Outcome
3.
Nutr Neurosci ; : 1-15, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462971

ABSTRACT

OBJECTIVE: An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS: SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS: Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION: Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.

4.
Wei Sheng Yan Jiu ; 53(1): 71-87, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38443175

ABSTRACT

OBJECTIVE: To investigate the effect of tea polyphenols(TP) on improving depression-like behavior in aged type 2 diabetes(T2DM) model rats. METHODS: A total of 40 8-week-old SD male rats were randomly divided into the control group(n=10) and the modeling group(n=30) according to the body weight. The rats in the modeling group were fed with high-glucose and high-fat diet and treated with 50 mg/kg D-galactose by intraperitoneal injection daily until the end of the experiment, while the rats in the control group were fed with the standard diet and treated with an equal volume of saline by intraperitoneal injection. After 4 weeks, the rats in the modeling group were injected with 25 mg/kg STZ, meanwhile the rats in the control group were injected with an equal volume of citric acid buffer. The level of fasting blood glucose(FBG) was measured on the 14~(th) day. When FBG≥16.7 mmol/L, the rats were identified as successful model of the T2DM rats. Then, the model rats were randomly divided into the model group, 150, 300 mg/kg TP groups(n=10, respectively), and the rats were given intragastric intervention for 8 weeks. The levels of the FBG were detected, and the depression-like behavior of rats was assessed by the open field test(OFT) and forced swimming test(FST). The density of microglia in hippocampus CA1 region was assessed by immunofluorescence staining, and protein expressions of P53, Iba1, iNOS, Arg-1 and BDNF were determined by western blot. RESULTS: Compared with the control group, the levels of FBG in the rats of the model group were obviously increased(P<0.01). In the OFT, the frequencies of rearing and grooming in the rats of model group markedly was decreased, while in the FST, the immobility time extensively was increased(P<0.01). The density of microglia in hippocampus CA1 region was increased(P<0.01). The expressions of P53, Iba1 and iNOS were increased, and the expressions of Arg-1 and BDNF were decreased(P<0.01). Additionally, compared with the model group, in the OFT, the frequencies of rearing and grooming were increased in the rats in 150 and 300 mg/kg TP group(P<0.01). The density of microglia in hippocampus CA1 region was decreased(P<0.01). The expressions of P53, Iba1 and iNOS were down-regulated, and the expression of BDNF was up-regulated(P<0.01). Additionally, compared with the model group, the levels of FBG was decreased in the rats in the 300 mg/kg TP group(P<0.01). The immobility time was decreased in the FST(P<0.01). The expression of Arg-1 was down-regulated(P<0.01). CONCLUSION: TP can improve depression-like behavior in aged T2DM model rats, and its mechanism may be related to regulate microglia M1/M2 polarization and up-regulate expression of BDNF in hippocampus.


Subject(s)
Brain-Derived Neurotrophic Factor , Diabetes Mellitus, Type 2 , Male , Animals , Rats , Depression/drug therapy , Microglia , Tumor Suppressor Protein p53 , Polyphenols/pharmacology , Polyphenols/therapeutic use , Tea
5.
ACS Nano ; 18(8): 6298-6313, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345574

ABSTRACT

Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.


Subject(s)
Deafness , Glycolates , Hearing Loss, Noise-Induced , Animals , Mice , Brain-Derived Neurotrophic Factor/therapeutic use , Hearing Loss, Hidden , Hydrogels , Acoustic Stimulation/adverse effects , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Noise-Induced/etiology , Deafness/complications , Ear, Middle
6.
J Nat Med ; 78(1): 246-254, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010476

ABSTRACT

The Japanese herbal medicine kamikihito (KKT) is widely used for insomnia, anorexia, anemia, and depression. Recently, the efficacy of KKT against Alzheimer's disease (AD) has been demonstrated in clinical and non-clinical studies. To address the mechanism underlying the effect of KKT on AD, we examined the effects of KKT in ß-amyloid (Aß)25-35-exposed primary cultured neurons. The effects of KKT on Aß25-35-induced neurotoxicity were assessed by immunocytochemical assays and Sholl analysis of neurites, and the influence of KKT on neurotrophic factor (NF) gene expression was examined using RT-PCR analysis. As a result, Aß25-35 exposure attenuated the arborization of neurites of single cultured hippocampal neurons, and KKT treatment for 3 days ameliorated the Aß25-35-induced impairment of tau-positive axon outgrowth. This ameliorative effect of KKT was largely abolished by the Trk inhibitor K252a, and expression of NFs, nerve growth factor (Ngf), brain-derived neurotrophic factor (Bdnf), neurotrophin-3 (NT-3) was significantly increased by KKT. These results indicate that KKT ameliorates axonal atrophy via NFs signaling, providing a mechanistic basis for treatment of AD with KKT.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Humans , Axons/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Neurons , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Alzheimer Disease/drug therapy
7.
Front Pharmacol ; 14: 1098378, 2023.
Article in English | MEDLINE | ID: mdl-38094892

ABSTRACT

Introduction: Zuotai is an ancient mineral-herbal mixture containing ß-HgS in Tibetan medicine. It is used to treat nervous system diseases, similar to Chinese medicine cinnabar and Indian Ayurveda medicine Rasasindura. However, one of the key problems faced by Zuotai is that its indications are ambiguous. Our previous study found that Zuotai exhibited the activity of ameliorating depressive-like behaviors in a chronic mild stress model. However, due to the inherent limitations of animal models in simulating human disease, clear results often require more than one model for confirmation. Methods: Therefore, another depression model, chronic restraint stressed (CRS) mice, was used to validate the antidepression effect of Zuotai. Prophylactic treatment was conducted for 21 consecutive days while mice were subjected to chronic restraint stress. Results: It was observed that Zuotai and ß-HgS alleviated anhedonia, behavioral despair, stereotype behavior, and reduced exploratory and spontaneous movement in CRS mice. Zuotai and ß-HgS also reversed the increases of stress hormone corticosterone (Cort) in serum and pro-inflammatory cytokines in serum and brain, and increased the serotonin in cortex in CRS mice, with positive dose-effect relationship. The number of Ki67-positive cells in the dentate gyrus and the level of brain-derived neurotrophic factor (BDNF) in the hippocampus were slightly elevated in CRS mice treated with Zuotai; however, there was no statistically significant difference. Although Zuotai increased the total Hg concentration in main organs, the levels remained below those needed to result in observed adverse effect, at least for kidney and liver; and Zuotai showed no observed adverse effect on the brain histopathology, the cell proliferation in dentate gyrus, as well as the hippocampal and cortical organ coefficients. Conclusion: Zuotai exhibited the alleviation of depressive-like behaviors in CRS mice, accompanying with ameliorating stress hormone, peripherical and cerebral inflammation, and monoamine neurotransmitter.

8.
J Ovarian Res ; 16(1): 216, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37968684

ABSTRACT

BACKGROUND: Women with polycystic ovary syndrome (PCOS) have higher intestinal mucosal permeability, leading to the lipopolysaccharide (LPS) leakage and endotoxemia. This, in turn, leads to oxidative stress (OS) and neuro-inflammation caused by the gut-brain axis, affecting the neurotrophic factors levels such as brain-derived neurotrophic factor (BDNF) and S100 calcium-binding protein B (S100 B) levels. In this study, it was hypothesized that the thylakoid membranes of spinach supplementation along with a hypocaloric diet may have improved the LPS levels, neurotrophic factors, and OS in PCOS patients. METHODS: In this double-blind, randomized, placebo-controlled, and clinical trial, 48 women with obesity and diagnosed with PCOS based on Rotterdam criteria were randomly assigned to thylakoid (N = 21) and placebo groups (N = 23). A personalized hypocaloric diet with 500 calories less than the total energy expenditure was prescribed to all patients. The participants were daily supplemented with either a 5 g/day thylakoid-rich spinach extract or a placebo (5 g cornstarch) for 12 weeks along with a prescribed low-calorie diet. Anthropometric measurements and biochemical parameters were assessed at baseline and after the 12-week intervention. RESULTS: A statistically significant decrease in the LPS levels (P < 0.001) and an increase in the BDNF levels (P < 0.001) were recorded for the participants receiving the oral thylakoid supplements and a low-calorie diet. Furthermore, significant decreases were observed in fasting blood glucose, insulin, homeostatic model of assessment for insulin resistance, free testosterone index, and follicle-stimulating hormone / luteinizing hormone ratio in both groups (P < 0.05). No significant differences were detected between the two groups regarding the changes in malondialdehyde, catalase, total antioxidant capacity, and S100B levels (P > 0.05). CONCLUSIONS: In sum, the thylakoid membranes of spinach supplemented with a hypocaloric diet reduced the LPS levels, increased the BDNF levels, and improved the glycemic profile and sex-hormone levels; however, they had no effects on the OS markers levels after 12 weeks of intervention.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Obesity , Polycystic Ovary Syndrome/drug therapy , Thylakoids , Brain-Derived Neurotrophic Factor , Spinacia oleracea , Caloric Restriction , Diet, Reducing , Lipopolysaccharides , Brain-Gut Axis , Biomarkers , Oxidative Stress
9.
Elife ; 122023 11 13.
Article in English | MEDLINE | ID: mdl-37956053

ABSTRACT

Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.


Subject(s)
Brain-Derived Neurotrophic Factor , Smith-Magenis Syndrome , Trans-Activators , Transcription Factors , Animals , Mice , Brain-Derived Neurotrophic Factor/metabolism , Homeostasis , Hypothalamus/metabolism , Neurons/metabolism , Obesity/genetics , Smith-Magenis Syndrome/genetics , Smith-Magenis Syndrome/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Nerve Growth Factors/metabolism , Body Weight
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(9): 1591-1598, 2023 Sep 20.
Article in Chinese | MEDLINE | ID: mdl-37814874

ABSTRACT

OBJECTIVE: To investigate the effect of near-infrared (NIR) light therapy on depression-induced intestinal dysfunction in rats and explore the possible mechanism. METHODS: Thirty-two male SD rats were randomly divided into control group, model group, low-dose NIR light group and high-dose NIR light group. All the rats except for those in the control group were subjected to chronic restrained stress (CRS) for 4 weeks, and NIR light therapy of the head was administered in the two NIR light groups. The depression- like behaviors, intestinal functions, fecal water content and number of fecal pellets of the rats were evaluated. HE staining was used for detecting histopathological changes in the hippocampus and colon, and hippocampal expressions of BDNF, Nrf2 and PGC-1α were detected with Western blotting. RESULTS: The rats in the CRS model group showed significantly increased immobility time and visceral sensitivity in the behavioral tests, decreased fecal pellets and fecal water content, and lowered expressions of BDNF, Nrf2, and PGC-1α in the hippocampus (P<0.05). Histopathological examination of the CRS rats revealed loosely arranged hippocampal pyramidal cells, obvious neuronal damages, and obvious inflammatory cell infiltration in the colon with irregularly arranged mucosal glands and a high pathological score. High-dose NIR light therapy significantly lowered the immobility time and visceral sensitivity, increased the number of fecal pellets and fecal water content (P<0.05), and enhanced hippocampal expressions of BDNF, Nrf2, and PGC-1α (P<0.05) of the depressive rats. The rats receiving high-dose NIR light therapy also exhibited close arrangement of the hippocampal pyramidal cells with significantly reduced neuronal damage and colonic inflammatory cell infiltration, neatly arranged mucosal glands, and lowered pathological score. CONCLUSION: NIR light therapy can significantly improve depression-like behavior and intestinal function in rats possibly by ameliorating oxidative stress via the PGC-1α/Nrf2 signaling pathway and increasing BDNF level in the hippocampus.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Rats , Male , Animals , Rats, Sprague-Dawley , Depression/therapy , Depression/metabolism , Brain-Derived Neurotrophic Factor/metabolism , NF-E2-Related Factor 2/metabolism , Hippocampus/metabolism , Signal Transduction , Phototherapy , Water/metabolism
11.
Molecules ; 28(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836833

ABSTRACT

Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.


Subject(s)
Antidepressive Agents , Psychotic Disorders , Humans , Antidepressive Agents/therapeutic use , Psychotic Disorders/drug therapy , Diet , Food , Nutritional Status , Depression/therapy
12.
Arch Biochem Biophys ; 749: 109792, 2023 11.
Article in English | MEDLINE | ID: mdl-37863349

ABSTRACT

Phenylketonuria (PKU) is the most common inherited metabolic disorders caused by severe deficiency or absence of phenylalanine hydroxylase activity that converts phenylalanine (Phe) to tyrosine. PKU patients were treated with a Phe restricted diet supplemented with a special formula containing l-carnitine (L-car), well-known antioxidant compound. The lack of treatment can cause neurological and cognitive impairment, as severe mental retardation, neuronal cell loss and synaptic density reduction. Although Phe has been widely demonstrated to be involved in PKU neurotoxicity, the mechanisms responsible for the CNS injury are still not fully known. In this work, we evaluated markers of neurodegeneration, namely BDNF (brain-derived neurotrophic factor), PAI-1 total (Plasminogen activator inhibitor-1 total), Cathepsin D, PDGF AB/BB (platelet-derived growth factor), and NCAM (neuronal adhesion molecule) in plasma of PKU patients at early and late diagnosis and under treatment. We found decreased Phe levels and increased L-car concentrations in PKU patients treated with L-car compared to the other groups, indicating that the proposed treatment was effective. Furthermore, we found increased BDNF levels in the patients under treatment compared to patients at early diagnosis, and a positive correlation between BDNF and L-car and a negative correlation between BDNF and Phe. Our results may indicate that in PKU patients treated with L-car there is an attempt to adjust neuronal plasticity and recover the damage suffered, reflecting a compensatory response to brain injury.


Subject(s)
Carnitine , Phenylketonurias , Humans , Brain-Derived Neurotrophic Factor , Phenylketonurias/drug therapy , Dietary Supplements , Antioxidants , Phenylalanine , Becaplermin
13.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762647

ABSTRACT

Currently, the efficacy of drug therapy for post-traumatic stress disorder or PTSD leaves much to be desired, making nutraceutical support a promising avenue for treatment. Recent research has identified the protective effects of resveratrol in PTSD. Here, we tested the behavioral and neurobiological effects of combining cheese consumption with resveratrol supplements in an experimental PTSD model. Using the elevated plus maze test, we observed that cheese intake resulted in a shift from anxiety-like behavior to depressive behavior, evident in increased freezing acts. However, no significant changes in the anxiety index value were observed. Interestingly, supplementation with cheese and resveratrol only led to the elimination of freezing behavior in half of the PTSD rats. We further segregated the rats into two groups based on freezing behavior: Freezing+ and Freezing0 phenotypes. Resveratrol ameliorated the abnormalities in Monoamine Oxidize -A and Brain-Derived Neurotrophic Factor gene expression in the hippocampus, but only in the Freezing0 rats. Moreover, a negative correlation was found between the number of freezing acts and the levels of Monoamine Oxidize-A and Brain-Derived Neurotrophic Factor mRNAs in the hippocampus. The study results show promise for resveratrol supplementation in PTSD treatment. Further research is warranted to better understand the underlying mechanisms and optimize the potential benefits of resveratrol supplementation for PTSD.


Subject(s)
Cheese , Stress Disorders, Post-Traumatic , Animals , Rats , Stress Disorders, Post-Traumatic/drug therapy , Brain-Derived Neurotrophic Factor/genetics , Resveratrol/pharmacology , Resveratrol/therapeutic use , Amines , Dietary Supplements
14.
Biomolecules ; 13(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37759825

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is implicated in the etiology and treatment response in major depressive disorder (MDD). However, peripheral BDNF concentrations have not been compared across different MDD stages. Bright light therapy (BLT) offers some potential in treatment-resistant depression (TRD), but its effects on BDNF levels are unknown. This study included a cross-sectional analysis of plasma BDNF concentration in females with TRD, unmedicated MDD patients, and healthy controls (HC), and measurements of longitudinal BLT effects on plasma BDNF levels in TRD patients. The present study included 55 drug-naïve, first-episode patients, 25 drug-free recurrent-episode MDD patients, 71 HC participants, and 54 TRD patients. Patients were rated by Hamilton Depression Rating Scale (HAMD)-17 and the Montgomery-Åsberg Depression Rating Scale (MADRS). Patients with TRD received BLT during 4 weeks. The total HAMD-17 and MADRS scores decreased following BLT. All patient groups had lower plasma BDNF than HC, but BDNF levels did not differ between first- and recurrent-episode BDNF patients and TRD patients before or after BLT. However, responders and remitters to BLT had higher post-treatment plasma BDNF concentrations than patients who did not achieve response or remission. The changes in plasma BDNF levels may be candidates for biomarkers of treatment response to BLT in TRD patients.


Subject(s)
Brain-Derived Neurotrophic Factor , Depressive Disorder, Major , Female , Humans , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/chemistry , Cross-Sectional Studies , Depression , Depressive Disorder, Major/therapy , Phototherapy
15.
Nutrients ; 15(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37571326

ABSTRACT

This study investigated the potential therapeutic properties of fermented ginseng berry extract (GBE) for Alzheimer's disease (AD). Fermented GBE was examined for its ginsenoside content and physiological properties, which have been suggested to have neuroprotective effects and improve cognitive function. The results showed that fermented GBE contains high levels of major active ginsenosides and exhibits antioxidant and acetylcholinesterase inhibitory activities. Post-fermented GBE demonstrated therapeutic potential in AF64A-induced damaged neural stem cells and an animal model of AD. These findings suggest that fermented GBE may hold promise as a candidate for developing new therapeutic interventions for memory deficits and cognitive disorders associated with AD and other neurodegenerative conditions. However, further studies are needed to evaluate the safety, tolerability, and efficacy of fermented GBE in human subjects and to determine its clinical applications. In conclusion, our study provides evidence that fermented GBE has potential as a natural product for the prevention and treatment of AD. The high levels of active ginsenosides and antioxidant and acetylcholinesterase inhibitory activities of fermented GBE suggest that it may be a promising therapeutic agent for improving cognitive function and reducing neurodegeneration.


Subject(s)
Ginsenosides , Panax , Animals , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Plant Extracts/adverse effects , Antioxidants/adverse effects , Fruit , Acetylcholinesterase , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Memory Disorders/chemically induced , Cognition
16.
Nutr Neurosci ; : 1-11, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589276

ABSTRACT

BACKGROUND: Omega-3 fatty acids (omega-3 FAs) have attracted the attention of researchers because of their influence on circulatory levels of brain-derived neurotrophic factor (BDNF). Our objective was to review systematically and Meta-analyze randomized controlled trials (RCTs) to assess the effects of omega-3 FAs supplementation on serum BDNF concentration. METHODS: Scopus, PubMed, Web of Science, and Cochrane Library were systematically searched until April 2023. The Cochrane risk of bias assessment tool was utilized to evaluate the quality of the studies. A random-effects model was employed to estimate the overall effect size of BDNF levels, using the Standard Mean Difference (SMD) and a 95% confidence interval (CI). The heterogeneity among the studies was assessed using chi-squared and I2 statistics. RESULTS: A total of 12 studies involving 587 subjects were included. The supplementation of PUFA was found to be associated with a significant increase in serum levels of BNDF in the group receiving the supplements, as compared to the placebo group (SMD: 0.72 pg/mL, 95% CI: 0.28, 1.15; P < 0.001) (I2 = 84.39%, P < 0.001). Sub-group analyses revealed similar findings in trials with fewer than 10 weeks, which utilized both animal (fish oil) and herbal (flaxseed) forms of omega-3 supplements with a high daily dosage of 2000mg. CONCLUSION: The present systematic review and meta-analysis indicate the efficacy of omega-3 FAs in increasing the serum concentration of BDNF. Therefore, omega-3 FAs should be prioritized as agents for increasing BDNF in interventions.

17.
Int J Neuropsychopharmacol ; 26(10): 680-691, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37603290

ABSTRACT

BACKGROUND: Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS: The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS: It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS: Cucurbitacin B has the potential to be a novel antidepressant candidate.


Subject(s)
Antidepressive Agents , Brain-Derived Neurotrophic Factor , Depression , Animals , Humans , Mice , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Hippocampus , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
18.
Adv Neurobiol ; 32: 385-416, 2023.
Article in English | MEDLINE | ID: mdl-37480467

ABSTRACT

Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.


Subject(s)
Brain Edema , Curcumin , Methamphetamine , Neuroprotective Agents , Animals , Rats , Brain-Derived Neurotrophic Factor , Dopamine , Methamphetamine/toxicity , Neuroprotective Agents/pharmacology , Nanowires/chemistry , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacology
19.
J Tradit Chin Med ; 43(4): 686-694, 2023 08.
Article in English | MEDLINE | ID: mdl-37454253

ABSTRACT

OBJECTIVE: Chemotherapeutic agents such as docetaxel (DTX) can trigger chemotherapy-induced peripheral neuropathy (CIPN), which is characterized by unbearable pain. This study was designed to investigate the analgesic effect and related neuronal mechanism of low-frequency median nerve stimulation (LFMNS) on DTX-induced tactile hypersensitivity in mice. METHODS: To produce CIPN, DTX was administered intraperitoneally 4 times, once every 2 d, to male ICR mice. LFMNS was performed on the wrist area, and the pain response was measured using von Frey filaments on both hind paws. Western blot and immunofluorescence staining were performed using dorsal root ganglion and spinal cord samples to measure the expression of brain-derived neurotrophic factor (BDNF). RESULTS: Repeated LFMNS significantly attenuated the DTX-induced abnormal sensory response and suppressed the enhanced expression of BDNF in the DRG neurons and spinal dorsal area. CONCLUSIONS: LFMNS might be an effective non-pharmaceutical option for treating patients suffering from CIPN regulating the expression of peripheral and central BDNF.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Rats , Mice , Male , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Rats, Sprague-Dawley , Median Nerve/metabolism , Mice, Inbred ICR , Pain , Analgesics
20.
Phytomedicine ; 118: 154956, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37499345

ABSTRACT

BACKGROUND: Smilagenin (SMI) is a lipid-soluble steroidal sapogenin, extracted from traditional Chinses medicinal herbs Radix Asparagi, which is extracted from the dry root of Asparagus cochinchinensis (Lour.) Merr. We previously found that SMI significantly increased brain-derived neurotrophic factor (BDNF) expression in Aß-intoxicated SH-SY5Y cells. METHODS: In this study, we performed behavioral tests to analyze cognitive function of WT and APP/PS1 mice treated with or without SMI, and found that SMI could significantly improve the learning and memory ability of APP/PS1 mice. Moreover, immunofluorescence and ELISA results showed that SMI pretreatment could effectively reduce the deposition of ß-amyloid plaques in the cortex and hippocampus of APP/PS1 mice (26 mg/kg/day for 60 days) and inhibit the secretion of Aß1-42 in N2a/APPswe cells (10 µM concentration for 24 hours). RESULTS: Mechanistically, SMI enhanced BDNF mRNA expression, elevated the global level of H3AC and H4AC, and increased the expression of P300 in AD models. Furthermore, chromatin immunoprecipitation results showed that SMI could increase the levels of H3AC and H4AC at the promoter of BDNF promoter Ⅱ and Ⅳ, indicating that SMI epigenetically regulates BDNF expression through HAT enhancement. To further verify the critical role of P300 by which SMI upregulated histone acetylation in BDNF, AD mice were treated with SMI and C646 simultaneously. Behavioral experiments showed that the improvement effects of SMI on cognitive impairment were abolished after P300 inhibition in APP/PS1 mice. CONCLUSIONS: Our research for the first time demonstrated that SMI showed neuroprotective effects by increasing the expression of P300 protein, thus upregulating histone acetylation levels in the promoter region of BDNF and promoting its transcription. Our findings provide an important theoretical basis for the treatment of Alzheimer's disease with SMI extracted from Asparagus cochinchinensis (Lour.) Merr.


Subject(s)
Alzheimer Disease , Neuroblastoma , Mice , Humans , Animals , Alzheimer Disease/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Amyloid beta-Protein Precursor/genetics , Histones/metabolism , Neuroblastoma/metabolism , Amyloid beta-Peptides/metabolism , Hippocampus , Epigenesis, Genetic , Mice, Transgenic , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL