Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Gen Intern Med ; 38(2): 285-293, 2023 02.
Article in English | MEDLINE | ID: mdl-35445352

ABSTRACT

BACKGROUND: Low-value care cascades, defined as the receipt of downstream health services potentially related to a low-value service, can result in harm to patients and wasteful healthcare spending, yet have not been characterized within the Veterans Health Administration (VHA). OBJECTIVE: To examine if the receipt of low-value preoperative testing is associated with greater utilization and costs of potentially related downstream health services in Veterans undergoing low or intermediate-risk surgery. DESIGN: Retrospective cohort study using VHA administrative data from fiscal years 2017-2018 comparing Veterans who underwent low-value preoperative electrocardiogram (EKG) or chest radiograph (CXR) with those who did not. PARTICIPANTS: National cohort of Veterans at low risk of cardiopulmonary disease undergoing low- or intermediate-risk surgery. MAIN MEASURES: Difference in rate of receipt and attributed cost of potential cascade services in Veterans who underwent low-value preoperative testing compared to those who did not KEY RESULTS: Among 635,824 Veterans undergoing low-risk procedures, 7.8% underwent preoperative EKG. Veterans who underwent a preoperative EKG experienced an additional 52.4 (95% CI 47.7-57.2) cascade services per 100 Veterans, resulting in $138.28 (95% CI 126.19-150.37) per Veteran in excess costs. Among 739,005 Veterans undergoing low- or intermediate-risk surgery, 3.9% underwent preoperative CXR. These Veterans experienced an additional 61.9 (95% CI 57.8-66.1) cascade services per 100 Veterans, resulting in $152.08 (95% CI $146.66-157.51) per Veteran in excess costs. For both cohorts, care cascades consisted largely of repeat tests, follow-up imaging, and follow-up visits, with low rates invasive services. CONCLUSIONS: Among a national cohort of Veterans undergoing low- or intermediate-risk surgeries, low-value care cascades following two routine low-value preoperative tests are common, resulting in greater unnecessary care and costs beyond the initial low-value service. These findings may guide de-implementation policies within VHA and other integrated healthcare systems that target those services whose downstream effects are most prevalent and costly.


Subject(s)
Veterans Health , Veterans , United States , Humans , Retrospective Studies , Prevalence , United States Department of Veterans Affairs , Electrocardiography
2.
Phytomedicine ; 110: 154624, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584608

ABSTRACT

BACKGROUND: Fueled by rapidly evolving comprehension of multifaceted nature of cancers, recently emerging preclinical and clinical data have supported researchers in the resolution of knowledge gaps to deepen the understanding of the molecular mechanisms. The extra-ordinary and bewildering chemical diversity encompassed by biologically active natural products continues to be of relevance to drug discovery. Accumulating evidence has spurred a remarkable evolution of concepts related to pharmacological target of oncogenic signaling pathways by polysaccharides in different cancers. PURPOSE: The objective of the current review is to provide new insights into study progress on anticancer effects of bioactive herbal polysaccharides. METHODS: PubMed, Scopus, Web of Science, Embase, and other databases were searched for articles related to anticancer effects of polysaccharides. Searches were conducted to locate relevant publications published up to October 2022. RESULTS: Polysaccharides have been reported to pleiotropically modulate TGF/SMAD, BMP/SMAD, TLR4, mTOR, CXCR4 and VEGF/VEGFR cascades. We have also summarized how different polysaccharides regulated apoptosis and non-coding RNAs. Additionally, this mini-review describes increasingly sophisticated understanding related to polysaccharides mediated tumor suppressive and anti-metastatic effects in tumor-bearing mice. We have also provided an overview of the clinical trials related to chemopreventive role of polysaccharides. CONCLUSION: Genomic and proteomic findings from these studies will facilitate 'next-generation' clinical initiatives in the prevention/inhibition of cancer.


Subject(s)
Neoplasms , Proteomics , Animals , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction , Polysaccharides/pharmacology , Apoptosis
3.
Phytomedicine ; 105: 154363, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35926378

ABSTRACT

BACKGROUND: Secondary brain injury (SBI) has been confirmed as a leading cause for the poor prognosis of patients suffering from intracerebral hemorrhage (ICH). SBI co-exists in ischemia and hemorrhagic stroke. Neuro-excitotoxicity is considered the initiating factor of ICH-induced SBI. Our previous research has revealed alpha-asarone (ASA)'s efficacy against cerebral ischemia-reperfusion stroke by mitigating neuro-excitotoxicity. It is not yet known if ASA exhibit neuroprotection against ICH. PURPOSE: This work aimed to investigate ASA's therapeutic effects and potential mechanisms of action against ICH in a classic rat model induced by collagenase Ⅶ injection. METHODS: An in vivo ICH model of Sprague-Dawley rats was established by collagenase Ⅶ injection. We administrated different ASA doses (10, 20, or 40 mg/kg, i.p.) at 2 h post-ICH. Then, rats' short- and long-term neurobehavioral function, bodyweight change, and learning and memory ability were blindly evaluated. Histological, Nissl, and flow cytometry were applied to assess the neuronal damage post-ICH. The wet/dry method and Evans blue extravasation estimated brain edema and blood-brain barrier function. Pathway-related proteins were investigated by immunofluorescence staining, enzyme-linked immunosorbent assay, and Western-blot analysis. RESULTS: The results demonstrated that ASA ameliorated neurological deterioration, bodyweight loss, and learning and memory ability of ICH rats. Histological, Nissl, and flow cytometry analyses showed that ASA reduced neuronal damage and apoptosis post-ICH. Besides, ASA probably mitigated brain edema and blood-brain barrier dysfunction via inhibiting astrocyte activation and consequent pro-inflammatory response. The mechanism investigation attributed ASA's efficacy to the following aspects: 1) promoting sodium ion excretion, thus blocking excitatory signal transduction along the axon; 2) preventing glutamate-involved pathways, i.e., decrease of N-methyl-d-aspartic acid receptor subunit 2B, increase of glutamate transporter-1, and alleviation of calcium-related cascades, mitochondrion-associated apoptosis, and neuronal autophagy; 3) enhancing the expression of GABAARs, thus abating neuronal excitotoxicity. CONCLUSION: Our study first confirmed the effect of ASA on ameliorating the neurobehavioral deterioration of ICH rats, possibly via alleviation of glutamate-involved neuro-excitotoxicity, i.e., calcium cascades, mitochondrion-involved apoptosis, neuronal autophagy, and astrocyte-related inflammation. These findings not only provided a promising drug candidate for clinical treatment of ICH but also shed light on the future drug discovery against ICH.


Subject(s)
Brain Edema , Brain Injuries , Allylbenzene Derivatives , Animals , Anisoles , Apoptosis , Calcium , Cerebral Hemorrhage , Disease Models, Animal , Glutamates , Rats , Rats, Sprague-Dawley
4.
Chemistry ; 28(61): e202201997, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35938698

ABSTRACT

Chiral sulfoxides are versatile synthons and have gained a particular interest in asymmetric synthesis of active pharmaceutical and agrochemical ingredients. Herein, a linear oxidation-reduction bienzymatic cascade to synthesize chiral sulfoxides is reported. The extraordinarily stable and active vanadium-dependent chloroperoxidase from Curvularia inaequalis (CiVCPO) was used to oxidize sulfides into racemic sulfoxides, which were then converted to chiral sulfoxides by highly enantioselective methionine sulfoxide reductase A (MsrA) and B (MsrB) by kinetic resolution, respectively. The combinatorial cascade gave a broad range of structurally diverse sulfoxides with excellent optical purity (>99 %  ee) with complementary chirality. The enzymatic cascade requires no NAD(P)H recycling, representing a facile method for chiral sulfoxide synthesis. Particularly, the envisioned enzymatic cascade not only allows CiVCPO to gain relevance in chiral sulfoxide synthesis, but also provides a powerful approach for (S)-sulfoxide synthesis; the latter case is significantly unexplored for heme-dependent peroxidases and peroxygenases.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Oxidation-Reduction , Safrole
5.
Molecules ; 27(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35807549

ABSTRACT

Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.


Subject(s)
Apigenin , Phosphatidylinositol 3-Kinases , Animals , Apigenin/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Mammals/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
6.
Adv Mater ; 34(24): e2200871, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35429080

ABSTRACT

Natural enzyme-based catalytic cascades hold great promise for cancer therapy, but their clinical utility is greatly hindered by the loss of their functions during in vivo delivery. Herein, a plasmonic trienzyme-integrated metal-organic framework (plasEnMOF) nanoplatform with high-efficiency enzyme cascades is reported for synergistic starvation, chemodynamic, and plasmonic hyperthermia trimodal therapy of hypoxic tumors. These plasEnMOFs are created with encapsulation of near-infrared-II (NIR-II) plasmonic Au nanorods and natural enzymes-catalase (CAT), glucose oxidase (GOx), and horseradish peroxidase (HRP) within zeolitic imidazolate framework-8 (ZIF-8) MOFs. As a trienzyme cascade system, the plasEnMOFs effectively deplete intratumoral glucose and generate toxic reactive oxygen species (ROS) for starvation therapy and chemodynamic therapy (CDT) combined with the plasmonic hyperthermia therapy (PHT). The enhanced glucose consumption and ROS generation by the NIR-II plasmonic photothermal effect are also demonstrated. The improved chemo- and thermotolerance of the encapsulated natural enzymes within the protective ZIF-8 MOFs are evidenced. With the integrated enzyme cascades and NIR-II photothermal effects, these plasEnMOFs are demonstrated with exceptional therapeutic effects on 4T1 xenograft tumors through the combined starvation/CDT/PHT therapy. This work highlights the superiority of natural enzyme cascade systems integrated in plasmonic MOFs for high-efficiency enzymatic cancer therapy.


Subject(s)
Hyperthermia, Induced , Metal-Organic Frameworks , Nanoparticles , Neoplasms , Zeolites , Cell Line, Tumor , Glucose , Humans , Metal-Organic Frameworks/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Reactive Oxygen Species/therapeutic use
7.
Phytochemistry ; 199: 113177, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35358599

ABSTRACT

Phenolic acids are the major bioactive metabolites produced in Salvia miltiorrhiza, a traditional Chinese medicine called Danshen. Many phytohormone elicitor treatments induce phenolic acid biosynthesis, even though the underlying mechanism remains obscure. Expression pattern analysis showed that SmMAPK3 was highly expressed in leaves, and SmMAPK3 was significantly induced by salicylic acid (SA) and methyl jasmonate (JA). Bioinformatics analysis revealed that SmMAPK3 belongs to group A and contains a TEY motif in the activation loop together with three conserved regions (P-loop, C-loop and CD-domain). A previous study speculated that SmMAPK3 is likely a positive regulator in the biosynthesis of phenolic acids in S. miltiorrhiza. In this study, overexpression of SmMAPK3 increased phenolic acid biosynthetic gene expression and enhanced the accumulation of phenolic acids in S. miltiorrhiza plantlets. Yeast two-hybrid (Y2H) analysis and firefly luciferase complementation imaging (LCI) assays revealed that SmMAPKK2/4/5/7-SmMAPK3-SmJAZs form a cascade that regulates the accumulation of phenolic acids. In summary, this work deepens our understanding of the posttranscriptional regulatory mechanisms of phenolic acid biosynthesis and sheds new light on metabolic engineering in S. miltiorrhiza.


Subject(s)
Salvia miltiorrhiza , Abietanes/metabolism , Gene Expression Regulation, Plant , Hydroxybenzoates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Salvia miltiorrhiza/metabolism
8.
Inflammopharmacology ; 30(2): 655-666, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35254584

ABSTRACT

Rheumatoid arthritis (RA), a chronic auto-immune disease, is often result of persistent and misdirectional inflammation and cannot be effectually resolved by single-target selective drugs. Present study attempted to uncover anti-arthritic efficacy and governing molecular mechanism of BLFE and its phytoconstituents berberine and rutin, with focus on dysregulated oxi-inflammation and structural integrity during articular damage using Collagen II-CFA-induced RA mice model. NMR-based phytometabolomic analysis revealed presence of phenolics and alkaloids such as berberine and rutin. BLFE, rutin and berberine remarkably mitigated Collagen II-CFA-induced disease severity index, articular damage, immune cells influx and pannus formation. An effective decrease in levels of TNF-α, IL-6, IL-1ß, IFN-γ, IL-13, IL-17, MMPs, RORγt, Ob-cadherin, Cox-2, iNOS and enhancement in IL-10, IL-4 and IL-5, BMP-6/7 was observed in BLFE, rutin and berberine treatments. Molecular mechanistic analysis demonstrated reduction in expression of p-STAT-1/3, p-PI3K, p-Akt, p-JNK, p-p38, p-IκB, p-NF-κB and ß-catenin via BLFE, rutin and berberine. Furthermore, reduced activation of p-ERK and p-GSK3ß and enhanced splenic Tregs was only noticed in BLFE and berberine. Thus, the signifying presence of these phytoconstituents could contribute to the above-mentioned findings. These findings imply that BLFE could be beneficial for assuaging deleterious aspects of RA mediated via perturbed inflammation.


Subject(s)
Arthritis, Experimental , Berberine , Berberis , Lycium , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Collagen , Disease Models, Animal , Fruit , Glycogen Synthase Kinase 3 beta , Inflammation/drug therapy , Lycium/metabolism , Mice , NF-kappa B/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt , Rutin/pharmacology
9.
Chembiochem ; 23(2): e202100578, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34726829

ABSTRACT

Fatty amines represent an important class of commodity chemicals which have broad applicability in different industries. The synthesis of fatty amines starts from renewable sources such as vegetable oils or animal fats, but the process has multiple drawbacks that compromise the overall effectiveness and efficiency of the synthesis. Herein, we report a proof-of-concept biocatalytic alternative towards the synthesis of primary fatty amines from renewable triglycerides and oils. By coupling a lipase with a carboxylic acid reductase (CAR) and a transaminase (TA), we have accomplished the direct synthesis of multiple medium and long chain primary fatty amines in one pot with analytical yields as high as 97 %. We have also performed a 75 mL preparative scale reaction for the synthesis of laurylamine from trilaurin, obtaining 73 % isolated yield.


Subject(s)
Amines/chemical synthesis , Fats/chemistry , Plant Oils/chemistry , Triglycerides/chemistry , Lipase/chemistry , Oxidoreductases/chemistry , Transaminases/chemistry
10.
Foods ; 10(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34829089

ABSTRACT

Glucosamine (GlcN) is a widely used food supplement. Hence, enormous attention has been concerned with enzymatic production of GlcN owing to its advantage over a chemical approach. In this study, a previously unstudied chitinase gene (MxChi) in the genome of Myxococcus xanthus was cloned, expressed in recombinant soluble form and purified to homogeneity. TLC-, UPLC-, and microplate-reader- based activity tests confirmed MxChi hydrolyzes colloidal chitin to chitobiose as sole product. The optimal catalytic pH and temperature of MxChi was identified as 7.0 and 55 °C, respectively. MxChi exhibited 80% activity after 72 h incubation at 37 °C. The site-directed mutagenesis revealed that the amino acids D323A, D325A, and E327A of MxChi were in the DXDXE catalytic motif of GH18. When coupled with ß-N-acetylhexosaminidase (SnHex) and deacetylase (CmCBDA), the enzyme allowed one-pot extraction of GlcN from colloidal chitin and shrimp shell. The optimal condition was 37 °C, pH 8.0, and 1/3/16.5 (MxChi/SnHex/CmCBDA), conducted by orthogonal design for the enzymatic cascades. Under this condition, the yield of GlcN was 26.33 mg from 400 mg shrimp shell. Facile recombinant in E. coli, robust thermostability and pure product herein makes newly discovered chitinase a valuable candidate for the green recycling of chitin rich waste.

11.
J Ethnopharmacol ; 265: 113324, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32890714

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Xueshuantong (FXST) is a traditional Chinese patent medicine composed of Panax notoginseng (Burkill) F.H.Chen (Araliaceae), Salvia miltiorrhiza Bunge (Lamiaceae), Astragalus propinquus Schischkin (Leguminosae), and Scrophularia ningpoensis Hemsl. (Scrophulariaceae). It has been widely used for the treatment of diabetic retinopathy (DR) and exerts a positive clinical therapeutic effect. AIM OF THE STUDY: The aim of this study was to observe the effect of FXST on diabetic rat retinas and investigate its pharmacological mechanism for improving DR. METHODS: The diabetic rat model was established by intraperitoneal injection of streptozotocin. The rats were divided into a normal group, diabetic group, and FXST group. The rats in the FXST group were treated with FXST by intragastric administration for 12 weeks while other rats were given the same volume of normal saline. The haemodynamic parameters of the central retinal artery in the rats were measured by ultrasound. Haematoxylin-eosin staining was utilised to observe the pathological structural changes in the retina. The apoptosis of retinal nerve cells was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling. RNA sequencing was used to screen the differentially expressed genes (DEGs), and enrichment analyses were performed. The DEGs were validated through real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: The peak systolic velocity, end diastolic velocity, and mean velocity decreased while the resistance index and pulsatility index increased in the diabetic rat retinas. FXST also improved haemodynamics. In contrast with the diabetic group, FXST allayed the disorder and oedema of the retinal structure in addition to reversing the reductions in retinal thickness and retinal ganglion cell number. It also decreased the apoptosis index of retinal cells. A total of 1134 DEGs were identified by RNA sequencing in the FXST group compared to the diabetic group, including 814 upregulated genes and 320 downregulated genes. These genes were enriched in the complement and coagulation cascades as well as the peroxisome proliferator-activated receptor (PPAR) signalling pathway. Several DEGs, including PPAR gamma, perilipin 4, acyl-CoA dehydrogenase long chain, CD55 molecule, and plasminogen activator urokinase, were identified by qRT-PCR, and the results were consistent with the RNA sequencing data. CONCLUSIONS: FXST alleviates DR by improving the haemodynamics and morphological alterations of diabetic rat retinas, which are mediated by complement and coagulation cascades and the PPAR signalling pathway.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/drug therapy , Drugs, Chinese Herbal/pharmacology , Peroxisome Proliferator-Activated Receptors/drug effects , Animals , Blood Coagulation/drug effects , Complement Activation/drug effects , Diabetes Mellitus, Experimental/complications , Diabetic Retinopathy/pathology , Male , Peroxisome Proliferator-Activated Receptors/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Streptozocin
12.
Biosens Bioelectron ; 174: 112827, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33257182

ABSTRACT

The regulation of biocatalytic cascades in microenvironments for high performance and extended applications is still challenging. Herein, we develop a rolling circle amplification (RCA)-based one-pot method to prepare the micron-sized DNA flowers (DFs), which achieve the co-encapsulation and spatial regulation of bi-enzyme molecules, glucose oxidase (GOx) and horseradish peroxidase (HRP). In this system, GOx and HRP are integrated into the DFs simultaneously during RCA with the bridging of magnesium between enzyme residues and phosphate backbones on DFs. The cascade of GOx/HRP is regulated with the formation of highly ordered and hydrogen-bonded water environment in the cavity of DFs, resulting in an enhanced cascade catalytic efficiency compared with that in homogeneous solution. Moreover, the high density of DNA scaffold ensures the encapsulation of GOx/HRP with high efficiency. Accordingly, a glucose electrochemical biosensor with amplified signal response is fabricated using the as-prepared GOx/HRP DFs as biosensing interface, realizing sensitive detection of glucose. Further, through designing the complementary sequence of aptamer into the programmable circular template of RCA, the bi-enzyme co-encapsulated DFs are versatilely applied to sensitive and selective detection of cancerous exosomes and thrombin in "signal-on" and "signal-off" modes, respectively, which are further applied to the analysis of complex biological samples successfully. Overall, the encapsulation of multi-enzyme with DFs proposes a promising strategy to regulate the microenvironment of biocatalytic cascades, which hold great potential in biotechnology, bioanalysis and disease diagnosis.


Subject(s)
Biosensing Techniques , Biocatalysis , DNA , Glucose Oxidase/metabolism , Horseradish Peroxidase/metabolism
13.
BMC Genomics ; 21(1): 630, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32928101

ABSTRACT

BACKGROUND: The contribution of mitogen-activated protein kinase (MAPK) cascades to plant growth and development has been widely studied, but this knowledge has not yet been extended to the medicinal plant Salvia miltiorrhiza, which produces a number of pharmacologically active secondary metabolites. RESULTS: In this study, we performed a genome-wide survey and identified six MAPKKK kinases (MAPKKKKs), 83 MAPKK kinases (MAPKKKs), nine MAPK kinases (MAPKKs) and 18 MAPKs in the S. miltiorrhiza genome. Within each class of genes, a small number of subfamilies were recognized. A transcriptional analysis revealed differences in the genes' behaviour with respect to both their site of transcription and their inducibility by elicitors and phytohormones. Two genes were identified as strong candidates for playing roles in phytohormone signalling. A gene-to-metabolite network was constructed based on correlation analysis, highlighting the likely involvement of two of the cascades in the synthesis of two key groups of pharmacologically active secondary metabolites: phenolic acids and tanshinones. CONCLUSION: The data provide insight into the functional diversification and conservation of MAPK cascades in S. miltiorrhiza.


Subject(s)
Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Plant Proteins/genetics , Salvia miltiorrhiza/genetics , Secondary Metabolism , Abietanes/biosynthesis , Abietanes/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Plant Proteins/metabolism , Salvia miltiorrhiza/metabolism , Transcriptome
14.
Acta Pharmacol Sin ; 41(11): 1433-1445, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32404983

ABSTRACT

In general, anti-inflammatory treatment is considered for multiple liver diseases despite the etiology. But current drugs for alleviating liver inflammation have defects, making it necessary to develop more potent and safer drugs for liver injury. In this study, we screened a series of (dihydro-)stilbene or (dihydro-)phenanthrene derivatives extracted from Pholidota chinensis for their potential biological activities. Among 31 compounds, the dihydro-stilbene gigantol exerted most potent protective effects on human hepatocytes against lithocholic acid toxicity, and exhibited solid antioxidative and anti-inflammatory effect in vitro. In mice with CCl4-induced acute liver injury, pre-administration of gigantol (10, 20, 40 mg· kg-1· d-1, po, for 7 days) dose-dependently decreased serum transaminase levels and improved pathological changes in liver tissues. The elevated lipid peroxidation and inflammatory responses in the livers were also significantly alleviated by gigantol. The pharmacokinetic studies showed that gigantol was highly concentrated in the mouse livers, which consisted with its efficacy in preventing liver injury. Using a label-free quantitative proteomic analysis we revealed that gigantol mainly regulated the immune system process in liver tissues of CCl4-treated mice, and the complement and coagulation cascades was the predominant pathway; gigantol markedly inhibited the expression of complement component C9, which was a key component for the formation of terminal complement complex (TCC) C5b-9. These results were validated by immunohistochemistry (IHC) or real time-PCR. Confocal microscopy analysis showed that gigantol significantly inhibited the vascular deposition of TCC in the liver. In conclusion, we demonstrate for the first time that oral administration of gigantol potently relieves liver oxidative stress and inflammation, possibly via a novel mechanism of inhibiting the C5b-9 formation in the liver.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Bibenzyls/therapeutic use , Guaiacol/analogs & derivatives , Inflammation/drug therapy , Oxidative Stress/drug effects , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Bibenzyls/administration & dosage , Bibenzyls/pharmacokinetics , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Complement Membrane Attack Complex/antagonists & inhibitors , Guaiacol/administration & dosage , Guaiacol/pharmacokinetics , Guaiacol/therapeutic use , Hepatocytes/drug effects , Humans , Inflammation/pathology , Lipid Peroxidation/drug effects , Lithocholic Acid , Liver/pathology , Male , Mice, Inbred ICR , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Proteome/metabolism , Rats, Sprague-Dawley , Stilbenes/pharmacology , Stilbenes/therapeutic use
15.
J Leukoc Biol ; 106(6): 1221-1232, 2019 12.
Article in English | MEDLINE | ID: mdl-31556465

ABSTRACT

The innate immune system is a collective network of cell types involved in cell recruitment and activation using a robust and refined communication system. Engagement of receptor-mediated intracellular signaling initiates communication cascades by conveying information about the host cell status to surrounding cells for surveillance and protection. Comprehensive profiling of innate immune cells is challenging due to low cell numbers, high dynamic range of the cellular proteome, low abundance of secreted proteins, and the release of degradative enzymes (e.g., proteases). However, recent advances in mass spectrometry-based proteomics provides the capability to overcome these limitations through profiling the dynamics of cellular processes, signaling cascades, post-translational modifications, and interaction networks. Moreover, integration of technologies and molecular datasets provide a holistic view of a complex and intricate network of communications underscoring host defense and tissue homeostasis mechanisms. In this Review, we explore the diverse applications of mass spectrometry-based proteomics in innate immunity to define communication patterns of the innate immune cells during health and disease. We also provide a technical overview of mass spectrometry-based proteomic workflows, with a focus on bottom-up approaches, and we present the emerging role of proteomics in immune-based drug discovery while providing a perspective on new applications in the future.


Subject(s)
Cell Communication/immunology , Immunity, Innate , Proteome , Proteomics , Signal Transduction , Animals , Computational Biology/methods , Disease Susceptibility/immunology , Drug Delivery Systems , Drug Discovery , Humans , Mass Spectrometry/methods , Proteomics/methods
16.
Biomed Khim ; 65(3): 165-179, 2019 Apr.
Article in Russian | MEDLINE | ID: mdl-31258141

ABSTRACT

Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.


Subject(s)
Apoptosis , Inflammation/metabolism , Oxidative Stress , Selenium Compounds/metabolism , Antioxidants/metabolism , Glutathione Reductase/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Selenium , Signal Transduction , Thioredoxin-Disulfide Reductase/metabolism
17.
Molecules ; 24(9)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058847

ABSTRACT

Due to changes in the dietary structure of individuals, the incidence of digestive tract tumors has increased significantly in recent years, causing a serious threat to the life and health of patients. This has in turn led to an increase in cancer prevention research. Many studies have shown that epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, is in direct contact with the digestive tract upon ingestion, which allows it to elicit a significant antagonizing effect on digestive tract tumors. The main results of EGCG treatment include the prevention of tumor development in the digestive tract and the induction of cell cycle arrest and apoptosis. EGCG can be orally administered, is safe, and combats other resistances. The synergistic use of cancer drugs can promote the efficacy and reduce the anti-allergic properties of drugs, and is thus, favored in medical research. EGCG, however, currently possesses several shortcomings such as poor stability and low bioavailability, and its clinical application prospects need further development. In this paper, we have systematically summarized the research progress on the ability of EGCG to antagonize the activity and mechanism of action of digestive tract tumors, to achieve prevention, alleviation, delay, and even treat human gastrointestinal tract tumors via exogenous dietary EGCG supplementation or the development of new drugs containing EGCG.


Subject(s)
Catechin/analogs & derivatives , Cell Cycle/drug effects , Gastrointestinal Neoplasms/drug therapy , Administration, Oral , Biological Availability , Catechin/administration & dosage , Catechin/pharmacokinetics , Catechin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Discovery , Humans , Tea/chemistry
18.
Cancers (Basel) ; 11(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987378

ABSTRACT

There has been a renewed interest in the identification of natural products having premium pharmacological properties and minimum off-target effects. In accordance with this approach, natural product research has experienced an exponential growth in the past two decades and has yielded a stream of preclinical and clinical insights which have deeply improved our knowledge related to the multifaceted nature of cancer and strategies to therapeutically target deregulated signaling pathways in different cancers. In this review, we have set the spotlight on the scientifically proven ability of berberine to effectively target a myriad of deregulated pathways.

19.
Phytomedicine ; 59: 152759, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31004883

ABSTRACT

BACKGROUND: Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi, exhibits a potent anti-cancer activity in a variety of tumor cells. PURPOSE: The present study was designed to evaluate the anti-cancer effects of PAB on hepatocellular carcinoma (HCC) cell lines in vitro, and to explore the underlying mechanism. METHODS: The anti-proliferative activity of PAB on HCC cells were assessed via sulforhodamine B staining, colony formation, cell cycle analysis, respectively. Apoptosis was detected using Annexin V/propidium iodide double staining and diamidino-phenyl-indole staining, respectively. Protein expression regulated by PAB treatment was tested by western blotting. RESULTS: The present results showed that PAB significantly inhibited the proliferation of HepG2, SK-Hep-1, and Huh-7 HCC cell lines in vitro with IC50 values of 1.58, 1.90, and 2.06 µM, respectively. Furthermore, PAB treatment repressed the colony formation in HepG2, SK-Hep-1, and Huh-7 HCC cell lines. Flow cytometry analysis revealed that PAB caused an obvious cell cycle arrest in G2/M phase and induced apoptosis with the induction of p21, Bax, cleaved-caspase-3, and cleaved-PARP in human HepG2 and SK-Hep-1 cells. Mechanistically, PAB treatment down-regulated the phosphorylation of STAT3, ERK1/2, and Akt. Moreover, abnormal GSK-3ß/ß-catenin signaling in HepG2 cells was remarkably suppressed by PAB treatment. Finally, proliferation markers including cyclin D1 and c-Myc, and anti-apoptosis proteins such as Bcl-2 and survivin were also down-regulated by PAB treatment in HepG2 cells. CONCLUSION: Taken together, our results suggest that PAB exerts anti-cancer activity in HCC cells through inhibition of STAT3, ERK1/2, Akt, and GSK-3ß/ß-catenin carcinogenic signaling pathways, and may be used as a phytomedicine in the treatment of HCC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinogenesis/drug effects , Carcinoma, Hepatocellular/metabolism , Diterpenes/pharmacology , Liver Neoplasms/metabolism , Liver/drug effects , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Hep G2 Cells , Humans , Mitogen-Activated Protein Kinase 3/metabolism , Pinaceae/chemistry , Signal Transduction/drug effects
20.
Phytomedicine ; 54: 231-239, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30668373

ABSTRACT

BACKGROUND: Dehydrocorydaline (DHC) and canadine (THB) are two active alkaloid compounds in Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae) (Rhizoma Corydalis). DHC and THC were previously shown to exert anti-platelet aggregation effect dose-dependently, but their exact mechanisms had not yet been addressed. Therefore, it is essential to study the mechanisms of DHC and THB affecting on platelet's function. PURPOSE: To investigate the anti-platelet effects and corresponding signal cascades of DHC and THB on platelet aggregation. METHODS: Firstly, in vitro anti-platelet aggregation of DHC and THB induced by different agonists including thrombin (THR), adenosine diphosphate (ADP) and arachidonic acid (AA) were determined through turbidimetry method. Then the possible target-related platelet proteins after treated with DHC/THB were separated and identified by two dimensional gel electrophoresis (2-DE) and MALDI-TOF-MS/MS analysis, respectively. Finally, the signal cascades network induced by DHC/THB were predicted through functional analysis of these proteins along with the determination of platelet DAG concentration. RESULTS: The platelet aggregation stimulated by THR, ADP and AA were inhibited by DHC and THB dose-dependently to a certain degree. Meanwhile, DHC and THB had the strongest effect on ADP- and THR-induced platelet aggregation respectively. In addition, treatment of these two compounds caused regulations of about sixty proteins in platelet, including cytoskeleton proteins, cell signaling proteins, proteins related to material energy metabolism, etc. CONCLUSIONS: Using proteomic analysis combined with platelet aggregation test and ELISA, this study was successful in exploring the possible mechanisms of DHC/THB on platelet aggregation. DHC might inhibit platelet aggregation by a mechanism involving the ADP receptors P2Y1 and P2Y12, and the effect of THB on platelet function may be related to its binding to THR receptor PAR1 for mediated Gi signaling pathway. These results provide fundamental information for the anti-thrombotic effect of RC.


Subject(s)
Alkaloids/pharmacology , Berberine/analogs & derivatives , Blood Platelets/drug effects , Blood Proteins/drug effects , Corydalis/chemistry , Adenosine Diphosphate/pharmacology , Animals , Berberine/pharmacology , Enzyme-Linked Immunosorbent Assay , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Proteomics , Rabbits , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL