Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.606
Filter
Add more filters

Publication year range
1.
Subst Abuse Treat Prev Policy ; 19(1): 22, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610049

ABSTRACT

INTRODUCTION: Research has established natural recovery (NR) as an important pathway to substance use recovery. Studies investigating correlates of NR have mainly focused on demographic and substance use variables rather than life circumstances. This study seeks to better understand the phenomenon of natural recovery by (i) validating the international scientific literature concerning demographic and substance use indicators of NR in Flanders and (ii) assessing the additional explanatory power of recovery strengths and barriers during active addiction, controlling for demographic and substance use covariates. METHODS: A total of 343 persons in recovery from alcohol or drug use problems (≥ 3 months) completed an online cross-sectional survey in Flanders. Participants in NR and in recovery after following treatment were compared using multivariate linear regression models. Reasons for not following treatment were analyzed using inductive thematic analysis. RESULTS: Higher education level, lower severity of dependence, and cannabis use as the main problem substance (vs. alcohol) were statistically significant (p < 0.05) correlates of NR. When scores for the number of barriers and strengths associated with active addiction were added, barriers (but not strengths) were significantly associated with NR. When barrier items were individually tested, having untreated emotional or mental health problems, having a driver's license revoked and damaging property were statistically significant correlates. The most reported reason for not entering treatment was not experiencing any need to do so. CONCLUSION: The results highlight the importance of a holistic approach to recovery support across multiple life domains. Limitations and opportunities for further research are discussed.


Subject(s)
Behavior, Addictive , Cannabis , Substance-Related Disorders , Humans , Cross-Sectional Studies , Ethanol , Substance-Related Disorders/epidemiology
2.
Plants (Basel) ; 13(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611553

ABSTRACT

The Australian Wet Tropics World Heritage Area (WTWHA) in northeast Queensland is home to approximately 18 percent of the nation's total vascular plant species. Over the past century, human activity and industrial development have caused global climate changes, posing a severe and irreversible danger to the entire land-based ecosystem, and the WTWHA is no exception. The current average annual temperature of WTWHA in northeast Queensland is 24 °C. However, in the coming years (by 2030), the average annual temperature increase is estimated to be between 0.5 and 1.4 °C compared to the climate observed between 1986 and 2005. Looking further ahead to 2070, the anticipated temperature rise is projected to be between 1.0 and 3.2 °C, with the exact range depending on future emissions. We identified 84 plant species, endemic to tropical montane cloud forests (TMCF) within the WTWHA, which are already experiencing climate change threats. Some of these plants are used in herbal medicines. This study comprehensively reviewed the metabolomics studies conducted on these 84 plant species until now toward understanding their physiological and metabolomics responses to global climate change. This review also discusses the following: (i) recent developments in plant metabolomics studies that can be applied to study and better understand the interactions of wet tropics plants with climatic stress, (ii) medicinal plants and isolated phytochemicals with structural diversity, and (iii) reported biological activities of crude extracts and isolated compounds.

3.
J Environ Sci (China) ; 143: 148-163, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644013

ABSTRACT

Rivers worldwide are under stress from eutrophication and nitrate pollution, but the ecological consequences overlap with climate change, and the resulting interactions may be unexpected and still unexplored. The Po River basin (northern Italy) is one of the most agriculturally productive and densely populated areas in Europe. It remains unclear whether the climate change impacts on the thermal and hydrological regimes are already affecting nutrient dynamics and transport to coastal areas. The present work addresses the long-term trends (1992-2020) of nitrogen and phosphorus export by investigating both the annual magnitude and the seasonal patterns and their relationship with water temperature and discharge trajectories. Despite the constant diffuse and point sources in the basin, a marked decrease (-20%) in nitrogen export, mostly as nitrate, was recorded in the last decade compared to the 1990s, while no significant downward trend was observed for phosphorus. The water temperature of the Po River has warmed, with the most pronounced signals in summer (+0.13°C/year) and autumn (+0.16°C/year), together with the strongest increase in the number of warm days (+70%-80%). An extended seasonal window of warm temperatures and the persistence of low flow periods are likely to create favorable conditions for permanent nitrate removal via denitrification, resulting in a lower delivery of reactive nitrogen to the sea. The present results show that climate change-driven warming may enhance nitrogen processing by increasing respiratory river metabolism, thereby reducing export from spring to early autumn, when the risk of eutrophication in coastal zones is higher.


Subject(s)
Climate Change , Environmental Monitoring , Eutrophication , Nitrogen , Phosphorus , Rivers , Temperature , Water Pollutants, Chemical , Phosphorus/analysis , Nitrogen/analysis , Rivers/chemistry , Italy , Water Pollutants, Chemical/analysis , Seasons
4.
Sci Rep ; 14(1): 8028, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580811

ABSTRACT

Agroforestry is a management strategy for mitigating the negative impacts of climate and adapting to sustainable farming systems. The successful implementation of agroforestry strategies requires that climate risks are appropriately assessed. The spatial scale, a critical determinant influencing climate impact assessments and, subsequently, agroforestry strategies, has been an overlooked dimension in the literature. In this study, climate risk impacts on robusta coffee production were investigated at different spatial scales in coffee-based agroforestry systems across India. Data from 314 coffee farms distributed across the districts of Chikmagalur and Coorg (Karnataka state) and Wayanad (Kerala state) were collected during the 2015/2016 to 2017/2018 coffee seasons and were used to quantify the key climate drivers of coffee yield. Projected climate data for two scenarios of change in global climate corresponding to (1) current baseline conditions (1985-2015) and (2) global mean temperatures 2 °C above preindustrial levels were then used to assess impacts on robusta coffee yield. Results indicated that at the district scale rainfall variability predominantly constrained coffee productivity, while at a broader regional scale, maximum temperature was the most important factor. Under a 2 °C global warming scenario relative to the baseline (1985-2015) climatic conditions, the changes in coffee yield exhibited spatial-scale dependent disparities. Whilst modest increases in yield (up to 5%) were projected from district-scale models, at the regional scale, reductions in coffee yield by 10-20% on average were found. These divergent impacts of climate risks underscore the imperative for coffee-based agroforestry systems to develop strategies that operate effectively at various scales to ensure better resilience to the changing climate.


Subject(s)
Coffea , Coffee , India , Agriculture , Farms , Climate Change
5.
Front Pain Res (Lausanne) ; 5: 1299027, 2024.
Article in English | MEDLINE | ID: mdl-38571563

ABSTRACT

In this perspective article we advocate community-based system change for people living with persistent pain. Our view is that greater use of the voluntary and community sector, in partnership with the clinical sector, creates the conditions for a "whole person" approach to pain management, leading to greater personalised care for adults living with long-term pain whilst having the potential to ease some of the pressures on General Practitioners and other clinical services. We advocate pain care that is socially connected, meaningful within socio-cultural contexts and aligned with the principles of salutogenesis. We provide an example of a UK National Health Service (NHS) commissioned pain service called "Rethinking Pain" that operationalises this perspective. Led by the voluntary and community sector, Rethinking Pain works in partnership with the clinical sector to provide a central holistic pathway of care for people experiencing persistent pain. This is the first time that this model of care has been commissioned for persistent pain in this area of England. The Rethinking Pain service is underpinned by core values to work with people to manage their pain holistically. The Rethinking Pain team proactively engage with people in the community, actively approaching and engaging those who experience the biggest health inequalities. In this article we provide an overview of the context of pain services in the UK, the rationale and supporting evidence for community-based system change, and the context, pathway, values, goals, and aspirations of the Rethinking Pain service.

6.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631280

ABSTRACT

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Subject(s)
Copper , Hyaluronic Acid , Magnetic Resonance Imaging , Manganese Compounds , Oxides , Photochemotherapy , Tumor Microenvironment , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Tumor Microenvironment/drug effects , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Oxides/chemistry , Oxides/pharmacology , Humans , Copper/chemistry , Copper/pharmacology , Particle Size , Nanostructures/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phototherapy , Nanoparticles/chemistry , Cell Survival/drug effects , Surface Properties , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Drug Screening Assays, Antitumor , Animals
7.
BMC Plant Biol ; 24(1): 269, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605338

ABSTRACT

Within a few decades, the species habitat was reshaped at an alarming rate followed by climate change, leading to mass extinction, especially for sensitive species. Species distribution models (SDMs), which estimate both present and future species distribution, have been extensively developed to investigate the impacts of climate change on species distribution and assess habitat suitability. In the West Asia essential oils of T. daenensis and T. kotschyanus include high amounts of thymol and carvacrol and are commonly used as herbal tea, spice, flavoring agents and medicinal plants. Therefore, this study aimed to model these Thymus species in Iran using the MaxEnt model under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The findings revealed that the mean temperature of the warmest quarter (bio10) was the most significant variable affecting the distribution of T. daenensis. In the case of T. kotschyanus, slope percentage was the primary influencing factor. The MaxEnt modeling also demonstrated excellent performance, as indicated by all the Area Under the Curve (AUC) values exceeding 0.9. Moreover, based on the projections, the two mentioned species are expected to undergo negative area changes in the coming years. These results can serve as a valuable achievement for developing adaptive management strategies aimed at enhancing protection and sustainable utilization in the context of global climate change.


Subject(s)
Climate Change , Ecosystem , Iran , Extinction, Biological , Temperature
8.
Contemp Clin Trials ; 141: 107523, 2024 06.
Article in English | MEDLINE | ID: mdl-38608752

ABSTRACT

INTRODUCTION: Intensive weight management programs are effective but often have low enrollment and high attrition. Lack of motivation is a key psychological barrier to enrollment, engagement, and weight loss. Mental Contrasting with Implementation Intentions (MCII) is a unique imagery technique that increases motivation for behavior change. We describe our study protocol to assess the efficacy and implementation of MCII to enhance the effectiveness of VA's MOVE! or TeleMOVE! weight management programs using a procedure called "WOOP" (Wish, Outcome, Obstacle, Plan) for Veterans. We hypothesize that WOOP+MOVE! or TeleMOVE! (intervention) will lead to greater MOVE!/TeleMOVE! program engagment and consequently weight loss than MOVE!/TeleMOVE! alone (control). METHOD: Veterans are randomized to either the intervention or control. Both arms receive the either MOVE! or TeleMOVE! weight management programs. The intervention group receives an hour long WOOP training while the control group receives patient education. Both groups receive telephone follow up calls at 3 days, 4 weeks, and 2 months post-baseline. Eligible participants are Veterans (ages 18-70 years) with either obesity (BMI ≥ 30 kg/m2) or overweight (BMI ≥ 25 kg/m2) and an obesity-associated co-morbidity. At baseline, 6 and 12 months, we assess weight, diet, physical activity in both groups. The primary outcome is mean percent weight change at 6 months. Secondary outcomes include changes in waist circumference, diet, physical activity, and dieting self-efficacy and engagement in regular physical activity. We assess implementation using the RE-AIM framework. CONCLUSION: If WOOP VA is found to be efficacious, it will be an important tool to facilitate weight management and improve weight outcomes. CLINICAL TRIAL REGISTRATION: NCT05014984.


Subject(s)
Intention , Motivation , Veterans , Weight Reduction Programs , Adult , Aged , Female , Humans , Male , Middle Aged , Body Mass Index , Exercise , Obesity/therapy , Patient Education as Topic/methods , Patient Education as Topic/organization & administration , Prospective Studies , United States , United States Department of Veterans Affairs , Veterans/psychology , Weight Loss , Weight Reduction Programs/methods , Weight Reduction Programs/organization & administration , Randomized Controlled Trials as Topic
9.
Environ Res ; 252(Pt 3): 118971, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38642636

ABSTRACT

Microplastics (MPs) pollution is an emerging environmental health concern, impacting soil, plants, animals, and humans through their entry into the food chain via bioaccumulation. Human activities such as improper solid waste dumping are significant sources that ultimately transport MPs into the water bodies of the coastal areas. Moreover, there is a complex interplay between the coastal climate dynamics, environmental factors, the burgeoning issue of MPs pollution and the complex web of coastal pollution. We embark on a comprehensive journey, synthesizing the latest research across multiple disciplines to provide a holistic understanding of how these inter-connected factors shape and reshape the coastal ecosystems. The comprehensive review also explores the impact of the current climatic patterns on coastal regions, the intricate pathways through which MPs can infiltrate marine environments, and the cascading effects of coastal pollution on ecosystems and human societies in terms of health and socio-economic impacts in coastal regions. The novelty of this review concludes the changes in climate patterns have crucial effects on coastal regions, proceeding MPs as more prevalent, deteriorating coastal ecosystems, and hastening the transfer of MPs. The continuous rising sea levels, ocean acidification, and strong storms result in habitat loss, decline in biodiversity, and economic repercussion. Feedback mechanisms intensify pollution effects, underlying the urgent demand for environmental conservation contribution. In addition, the complex interaction between human, industry, and biodiversity demanding cutting edge strategies, innovative approaches such as remote sensing with artificial intelligence for monitoring, biobased remediation techniques, global cooperation in governance, policies to lessen the negative socioeconomic and environmental effects of coastal pollution.


Subject(s)
Climate Change , Ecosystem , Microplastics , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Humans , Environmental Pollution/analysis , Climate
10.
Clin Oral Investig ; 28(5): 271, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658431

ABSTRACT

OBJECTIVES: This in vitro study evaluated the effect of different colouring solutions and primer systems used in the bonding of brackets on enamel colour change and bond strength. MATERIALS AND METHODS: 120 premolar teeth were divided into four main groups; brackets were bonded with 37% orthophosphoric acid + Transbond XT Primer in Group 1, 3 M Single Bond Universal in Group 2, Transbond Plus SEP in Group 3, and G-Premio Bond in Group 4. Each group was divided into three subgroups, and the teeth were placed in a cup containing coffee and tea mixture, in a cup containing cola and in distilled water. A bond strength test was applied to all teeth. Colour measurements of all teeth were performed at 2 different times: before bonding and after the bond strength test. RESULTS: The average bond strength of the 37% orthophosphoric acid group was higher than that of the other groups. The effect of primer and solution groups on colour change was statistically significant (p = 0.001 and p = 0.023, respectively). CONCLUSIONS: In this study, the bond strength was clinically sufficient in all primer groups. The highest colour change was observed when the tea-coffee solution and Transbond Plus SEP primer were used. CLINICAL RELEVANCE: This study has identified enamel discoloration and bond strength from different colouring solutions and primer systems used for bonding braces, which can be used to inform clinicians and patients to achieve better treatment results.


Subject(s)
Bicuspid , Bisphenol A-Glycidyl Methacrylate , Dental Bonding , Orthodontic Brackets , Resin Cements , Shear Strength , Humans , Dental Bonding/methods , In Vitro Techniques , Resin Cements/chemistry , Color , Coloring Agents , Materials Testing , Dental Enamel/chemistry , Dental Stress Analysis , Phosphoric Acids/chemistry , Surface Properties , Tea/chemistry , Acid Etching, Dental
11.
Glob Chang Biol ; 30(3): e17200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433308

ABSTRACT

Treelines advance due to climate warming. The impacts of this vegetation shift on plant-soil nutrient cycling are still uncertain, yet highly relevant as nutrient availability stimulates tree growth. Here, we investigated nitrogen (N) and phosphorus (P) in plant and soil pools along two tundra-forest transects on Kola Peninsula, Russia, with a documented elevation shift of birch-dominated treeline by 70 m during the last 50 years. Results show that although total N and P stocks in the soil-plant system did not change with elevation, their distribution was significantly altered. With the transition from high-elevation tundra to low-elevation forest, P stocks in stones decreased, possibly reflecting enhanced weathering. In contrast, N and P stocks in plant biomass approximately tripled and available P and N in the soil increased fivefold toward the forest. This was paralleled by decreasing carbon (C)-to-nutrient ratios in foliage and litter, smaller C:N:P ratios in microbial biomass, and lower enzymatic activities related to N and P acquisition in forest soils. An incubation experiment further demonstrated manifold higher N and P net mineralization rates in litter and soil in forest compared to tundra, likely due to smaller C:N:P ratios in decomposing organic matter. Overall, our results show that forest expansion increases the mobilization of available nutrients through enhanced weathering and positive plant-soil feedback, with nutrient-rich forest litter releasing greater amounts of N and P upon decomposition. While the low N and P availability in tundra may retard treeline advances, its improvement toward the forest likely promotes tree growth and forest development.


Subject(s)
Nitrogen , Trees , Forests , Phosphorus , Soil
12.
Environ Int ; 186: 108593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531235

ABSTRACT

Climate change is a pressing global challenge with profound implications for human health. Forest-based climate change mitigation strategies, such as afforestation, reforestation, and sustainable forest management, offer promising solutions to mitigate climate change and simultaneously yield substantial co-benefits for human health. The objective of this scoping review was to examine research trends related to the interdisciplinary nexus between forests as carbon sinks and human health co-benefits. We developed a conceptual framework model, supporting the inclusion of exposure pathways, such as recreational opportunities or aesthetic experiences, in the co-benefit context. We used a scoping review methodology to identify the proportion of European research on forest-based mitigation strategies that acknowledge the interconnection between mitigation strategies and human impacts. We also aimed to assess whether synergies and trade-offs between forest-based carbon sink capacity and human co-benefits has been analysed and quantified. From the initial 4,062 records retrieved, 349 reports analysed European forest management principles and factors related to climate change mitigation capacity. Of those, 97 studies acknowledged human co-benefits and 13 studies quantified the impacts on exposure pathways or health co-benefits and were included for full review. Our analysis demonstrates that there is potential for synergies related to optimising carbon sink capacity together with human co-benefits, but there is currently a lack of holistic research approaches assessing these interrelationships. We suggest enhanced interdisciplinary efforts, using for example multideterminant modelling approaches, to advance evidence and understanding of the forest and health nexus in the context of climate change mitigation.


Subject(s)
Climate Change , Conservation of Natural Resources , Forests , Humans , Europe , Conservation of Natural Resources/methods , Carbon Sequestration , Forestry/methods
13.
Int J Biol Macromol ; 264(Pt 2): 130559, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431016

ABSTRACT

The effects of structural changes on surface oil absorption characteristics of wheat starch, pea starch and potato starch during frying under different water content (20%, 30%, 40%, 50%) were studied. Fried potato starch with a 40% water content exhibited the highest surface oil content. When the initial moisture content reached 30%, the scattering intensity of the crystal layer structure decreased for wheat and pea starches, while the scattering peak for potato starch completely disappeared. At 40% moisture content, the amorphous phase ratio values for fried potato, wheat and pea starches were 13.50%, 11.78% and 11.24%, respectively, and the nitrogen adsorption capacity of fried starch decreased in turn. These findings that the structure of potato starch was more susceptible to degradation compared to pea starch and wheat starch, resulting in higher surface oil absorbed by potato starch during frying process.


Subject(s)
Pisum sativum , Solanum tuberosum , Solanum tuberosum/chemistry , Triticum/metabolism , Starch/chemistry , Water/chemistry
14.
Proc Natl Acad Sci U S A ; 121(14): e2311597121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527199

ABSTRACT

Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.


Subject(s)
Ecosystem , Mollusca , Humans , Animals , French Guiana , Plants , Pollen , Fossils
15.
Environ Monit Assess ; 196(4): 371, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489120

ABSTRACT

Crop cultivation suitability plays a vital role in determining the distribution, quality, and production of crop and can be greatly affected by climate change. Therefore, evaluating crop cultivation suitability under climate change and identifying the factors influencing it can optimize crop cultivation layout and improve production and quality. Based on comprehensive datasets including geographical distribution points, climate data, soil characteristics, and topography, our study employed the MaxEnt model to simulate the potential distribution of Pu'er tea (Camellia sinensis var. assamica) cultivation suitability in Yunnan Province from 1961 to 2020. Furthermore, we assessed the consistency between the simulated suitable areas and the actual production of Pu'er tea. The results showed that precipitation of the warmest quarter, precipitation of the driest month, and average temperature in January were the three dominant environmental variables affecting the cultivation distribution of Pu'er tea. The high suitable areas for Pu'er tea cultivation in Yunnan Province were mainly distributed in the western and southern regions, accounting for 13.89% of the total area of Yunnan Province. The medium suitable areas are mainly distributed in the central and western regions of Yunnan Province, accounting for 20.07% of the total area of Yunnan Province. Over the past 60 years, the unsuitable area for Pu'er tea has increased, while the suitable area has shown a trend of migration to the southwest. Changes in precipitation and temperature were found to be the main drivers of the changes in the distribution of suitable areas for Pu'er tea. We also found a mismatch between the cultivation suitability and the actual production of Pu'er tea. Our study provides an accurate assessment and zoning analysis of the suitability of Pu'er tea cultivation in Yunnan Province, which can help optimize the layout of Pu'er tea cultivation and reduce potential climate risks.


Subject(s)
Camellia sinensis , Tea , China , Environmental Monitoring , Temperature
16.
Chemosphere ; 354: 141700, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490615

ABSTRACT

Wastewater treatment plants play a crucial role in water security and sanitation, ensuring ecosystems balance and avoiding significant negative effects on humans and environment. However, they determine also negative pressures, including greenhouse gas and odourous emissions, which should be minimized to mitigate climate changes besides avoiding complaints. The research has been focused on the validation of an innovative integrated biological system for the sustainable treatment of complex gaseous emissions from wastewater treatment plants. The proposed system consists of a moving bed biofilm reactor coupled with an algal photobioreactor, with the dual objective of: i) reducing the inlet concentration of the odourous contaminants (in this case, hydrogen sulphide, toluene and p-xylene); ii) capturing and converting the carbon dioxide emissions produced by the degradation process into exploitable algal biomass. The first reactor promoted the degradation of chemical compounds up to 99.57% for an inlet load (IL) of 22.97 g m-3 d-1 while the second allowed the capture of the CO2 resulting from the degradation of gaseous compounds, with biofixation rate up to 81.55%. The absorbed CO2 was converted in valuable feedstocks, with a maximum algal biomass productivity in aPBR of 0.22 g L-1 d-1. Dairy wastewater has been used as alternative nutrient source for both reactors, with a view of reusing wastewater while cultivating biomass, framing the proposed technology in a context of a biorefinery within a circular economy perspective. The biomass produced in the algal photobioreactor was indeed characterized by a high lipid content, with a maximum percentage of lipids per dry weight biomass of 35%. The biomass can therefore be exploited for the production of alternative and clean energy carrier. The proposed biotechnology represents an effective tool for shifiting the conventional plants in carbon neutral platform for implementing principles of ecological transition while achieving high levels of environmental protection.


Subject(s)
Microalgae , Water Purification , Humans , Wastewater , Carbon Dioxide/metabolism , Ecosystem , Odorants , Microalgae/metabolism , Biotechnology , Water Purification/methods , Biomass , Nutrients
17.
BMC Public Health ; 24(1): 907, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539113

ABSTRACT

BACKGROUND: Job boredom has been generally associated with poorer self-rated health but the evidence is mainly cross-sectional and there is a lack of a holistic mental health approach. We examined the temporal relationships between job boredom and mental health indicators of life satisfaction, positive functioning, anxiety, and depression symptoms. METHODS: We analyzed a two-wave postal survey data of adults aged 23 to 34 that was collected from the Finnish working population between 2021 and 2022 (n = 513). Latent change score modelling was used to estimate the effects of prior levels of job boredom on subsequent changes in mental health indicators, and of prior levels of mental health indicators on subsequent changes in job boredom. RESULTS: Job boredom was associated with subsequent decreases in life satisfaction and positive functioning and increases in anxiety and depression symptoms. Of these associations, job boredom was more strongly associated with changes in positive functioning and anxiety symptoms than with changes in life satisfaction. CONCLUSIONS: Our two-wave study suggests that job boredom, a motivational state of ill-being in the work domain, spills over into general mental health by decreasing life satisfaction and positive functioning and increasing anxiety and depression symptoms. Our findings contribute to the understanding of the potential detrimental effects of job boredom and its nomological network. From a practical perspective, workplaces are adviced to improve working conditions that mitigate job boredom and thus promote employees' mental health.


Subject(s)
Depression , Mental Health , Adult , Humans , Depression/epidemiology , Boredom , Cross-Sectional Studies , Job Satisfaction , Anxiety/epidemiology , Personal Satisfaction
18.
Ecol Appl ; 34(3): e2967, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38469663

ABSTRACT

The future ecosystem carbon cycle has important implications for biosphere-climate feedback. The magnitude of future plant growth and carbon accumulation depends on plant strategies for nutrient uptake under the stresses of nitrogen (N) versus phosphorus (P) limitations. Two archetypal theories have been widely acknowledged in the literature to represent N and P limitations on ecosystem processes: Liebig's Law of the Minimum (LLM) and the Multiple Element Limitation (MEL) approach. LLM states that the more limiting nutrient controls plant growth, and commonly leads to predictions of dramatically dampened ecosystem carbon accumulation over the 21st century. Conversely, the MEL approach recognizes that plants possess multiple pathways to coordinate N and P availability and invest resources to alleviate N or P limitation. We implemented these two contrasting approaches in the E3SM model, and compiled 98 in situ forest N or P fertilization experiments to evaluate how terrestrial ecosystems will respond to N and P limitations. We find that MEL better captured the observed plant responses to nutrient perturbations globally, compared with LLM. Furthermore, LLM and MEL diverged dramatically in responses to elevated CO2 concentrations, leading to a two-fold difference in CO2 fertilization effects on Net Primary Productivity by the end of the 21st century. The larger CO2 fertilization effects indicated by MEL mainly resulted from plant mediation on N and P resource supplies through N2 fixation and phosphatase activities. This analysis provides quantitative evidence of how different N and P limitation strategies can diversely affect future carbon and nutrient dynamics.


Subject(s)
Carbon Dioxide , Ecosystem , Carbon Dioxide/metabolism , Nitrogen/metabolism , Phosphorus/analysis , Plants , Carbon/metabolism , Soil
19.
Sci Total Environ ; 926: 171850, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521255

ABSTRACT

Agriculture is expanding rapidly across the tropics. While cultivation can boost socioeconomic conditions and food security, it also threatens native ecosystems. Oil palm (Elaeis guineensis), which is grown pantropically, is the most productive vegetable oil crop worldwide. The impacts of oil palm cultivation have been studied extensively in Southeast Asia and - to a lesser extent - in Latin America but, in comparison, very little is known about its impacts in Africa: oil palm's native range, and where cultivation is expanding rapidly. In this paper, we introduce a large-scale research programme - the Sustainable Oil Palm in West Africa (SOPWA) Project - that is evaluating the relative ecological impacts of oil palm cultivation under traditional (i.e., by local people) and industrial (i.e., by a large-scale corporation) management in Liberia. Our paper is twofold in focus. First, we use systematic mapping to appraise the literature on oil palm research in an African context, assessing the geographic and disciplinary focus of existing research. We found 757 publications occurring in 36 African countries. Studies tended to focus on the impacts of palm oil consumption on human health and wellbeing. We found no research that has evaluated the whole-ecosystem (i.e., multiple taxa and ecosystem functions) impacts of oil palm cultivation in Africa, a knowledge gap which the SOPWA Project directly addresses. Second, we describe the SOPWA Project's study design and-using canopy cover, ground vegetation cover, and soil temperature data as a case study-demonstrate its utility for assessing differences between areas of rainforest and oil palm agriculture. We outline the socioecological data collected by the SOPWA Project to date and describe the potential for future research, to encourage new collaborations and additional similar projects of its kind in West Africa. Increased research in Africa is needed urgently to understand the combined ecological and sociocultural impacts of oil palm and other agriculture in this unique region. This will help to ensure long-term sustainability of the oil palm industry-and, indeed, all tropical agricultural activity-in Africa.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Plant Oils , Agriculture , Africa, Western
20.
Sci Total Environ ; 926: 171934, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527536

ABSTRACT

Climate change can significantly alter phytoplankton growth and proliferation, which would counteract restoration efforts to control algal blooms. However, the knowledge is limited about the quantitative evaluation of the causal effect of algal biomass resurgence in large shallow lakes where there is no significant improvement after long term lake restoration. Here, a bucket process-based phytoplankton dynamic model is developed to quantify the contributions of climate change and nutrients concentration changes to phytoplankton biomass resurgence after 2014 in hypereutrophic Lake Taihu, China. Compared to 2008-2014, the mean water temperature (WT) and the mean phosphate are higher, the mean photosynthetically active radiation (PAR), the mean total suspended solids (TSS), and the mean dissolved inorganic nitrogen (DIN) are lower, during 2015-2020. Their contribution to algal biomass resurgence during 2015-2020 is WT (+58.7 %), PAR (-2.6 %), TSS (+23.2 %), DIN (-22.1 %) and phosphate (+42.7 %), respectively. Climate change (WT, PAR, and TSS), which contributed +64.9 % to the phytoplankton biomass resurgence, underscores the urgent need to continuously take more effective measures to reduce nutrient emissions to offset the effects of climate change in Lake Taihu and in other eutrophic lakes.


Subject(s)
Climate Change , Lakes , Biomass , Environmental Monitoring , Phytoplankton , Eutrophication , China , Phosphates , Nitrogen , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL