Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38612446

ABSTRACT

Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.


Subject(s)
Camellia sinensis , Catechin , Humans , Secondary Metabolism , Exons , Chromosomes, Human, Pair 15 , Camellia sinensis/genetics , Tea
2.
Trends Pharmacol Sci ; 43(7): 542-545, 2022 07.
Article in English | MEDLINE | ID: mdl-35151502

ABSTRACT

Recent chromosome-scale genomes from prominent medicinal plants have provided unprecedented insight into the architecture and evolution of some prominent metabolic pathways. These new technologies also facilitate the identification of plant drug biosynthetic genes and would likely accelerate the development of new bioengineering procedures to secure the supply of important plant-derived pharmaceuticals.


Subject(s)
Metabolic Networks and Pathways , Plants, Medicinal , Chromosomes , Humans
3.
Plant J ; 107(5): 1466-1477, 2021 09.
Article in English | MEDLINE | ID: mdl-34174125

ABSTRACT

Rubus chingii Hu (Fu-Pen-Zi), a perennial woody plant in the Rosaceae family, is a characteristic traditional Chinese medicinal plant because of its unique pharmacological effects. There are abundant hydrolyzable tannin (HT) components in R. chingii that provide health benefits. Here, an R. chingii chromosome-scale genome and related functional analysis provide insights into the biosynthetic pathway of HTs. In total, sequence data of 231.21 Mb (155 scaffolds with an N50 of 8.2 Mb) were assembled into seven chromosomes with an average length of 31.4 Mb, and 33 130 protein-coding genes were predicted, 89.28% of which were functionally annotated. Evolutionary analysis showed that R. chingii was most closely related to Rubus occidentalis, from which it was predicted to have diverged 22.46 million years ago (Table S8). Comparative genomic analysis showed that there was a tandem gene cluster of UGT, carboxylesterase (CXE) and SCPL genes on chromosome 02 of R. chingii, including 11 CXE, eight UGT, and six SCPL genes, which may be critical for the synthesis of HTs. In vitro enzyme assays indicated that the proteins encoded by the CXE (LG02.4273) and UGT (LG02.4102) genes have tannin hydrolase and gallic acid glycosyltransferase functions, respectively. The genomic sequence of R. chingii will be a valuable resource for comparative genomic analysis within the Rosaceae family and will be useful for understanding the biosynthesis of HTs.


Subject(s)
Biosynthetic Pathways , Chromosomes, Plant/genetics , Genome, Plant/genetics , Hydrolyzable Tannins/metabolism , Rubus/genetics , Evolution, Molecular , Genomics , Multigene Family , Rubus/metabolism
4.
Genomics ; 113(4): 2221-2228, 2021 07.
Article in English | MEDLINE | ID: mdl-34022344

ABSTRACT

Centella asiatica is a herbaceous, perennial species indigenous to India and Southeast Asia. C. asiatica possesses several medicinal properties: anti-aging, anti-inflammatory, wound healing and memory enhancing. The lack of available genomics resources significantly impedes the improvement of C. asiatica varieties through molecular breeding. Here, we combined the 10× Genomics linked-read technology and the long-range HiC technique to obtain the genome assembly. The final assembly contained nine pseudomolecules, corresponding to the haploid chromosome number in C. asiatica. These nine chromosomes covered 402,536,584 bases or 93.6% of the 430-Mb assembly. Comparative genomics analyses based on single-copy orthologous genes showed that C. asiatica and the common ancestor of Coriandrum sativum (coriander) and Daucus carota (carrot) diverged about 48 million years ago. This assembly provides a valuable reference genome for future molecular studies, varietal development through marker-assisted breeding and comparative genomics studies in C. asiatica.


Subject(s)
Centella , Centella/genetics , Chromosomes , Genome , Genomics/methods , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL