Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Elife ; 122024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300670

ABSTRACT

Foxb1 -expressing neurons occur in the dorsal premammillary nucleus (PMd) and further rostrally in the parvafox nucleus, a longitudinal cluster of neurons in the lateral hypothalamus of rodents. The descending projection of these Foxb1+ neurons end in the dorsolateral part of the periaqueductal gray (dlPAG). The functional role of the Foxb1+ neuronal subpopulation in the PMd and the parvafox nucleus remains elusive. In this study, the activity of the Foxb1+ neurons and of their terminal endings in the dlPAG in mice was selectively altered by employing chemo- and optogenetic tools. Our results show that in whole-body barometric plethysmography, hM3Dq-mediated, global Foxb1+ neuron excitation activates respiration. Time-resolved optogenetic gain-of-function manipulation of the terminal endings of Foxb1+ neurons in the rostral third of the dlPAG leads to abrupt immobility and bradycardia. Chemogenetic activation of Foxb1+ cell bodies and ChR2-mediated excitation of their axonal endings in the dlPAG led to a phenotypical presentation congruent with a 'freezing-like' situation during innate defensive behavior.


Subject(s)
Bradycardia , Optogenetics , Animals , Mice , Hypothalamus , Neurons , Tachypnea , Forkhead Transcription Factors
2.
Ann N Y Acad Sci ; 1530(1): 138-151, 2023 12.
Article in English | MEDLINE | ID: mdl-37818796

ABSTRACT

Previous studies showed that the dorsal premammillary nucleus of the hypothalamus (PMD) is involved in social passive defensive behaviors likely to be meditated by descending projections to the periaqueductal gray (PAG). We focused on the rostral dorsomedial PAG (rPAGdm) to reveal its putative neural mechanisms involved in mediating social defensive responses. By combining retrograde tracing and FOS expression analysis, we showed that in addition to the PMD, the rPAGdm is influenced by several brain sites active during social defeat. Next, we found that cytotoxic lesions of the rPAGdm drastically reduced passive defense and did not affect active defensive responses. We then examined the rPAGdm's projection pattern and found that the PAGdm projections are mostly restricted to midbrain sites, including the precommissural nucleus, different columns of the PAG, and the cuneiform nucleus (CUN). Also, we found decreased FOS expression in the caudal PAGdm, CUN, and PMD after the rPAGdm was lesioned. The results support that the rPAGdm mediates passive social defensive responses through ascending paths to prosencephalic circuits likely mediated by the CUN. This study provides further support for the role of the PAG in the modulation of behavioral responses by working as a unique hub for influencing prosencephalic sites during the mediation of aversive responses.


Subject(s)
Periaqueductal Gray , Social Defeat , Rats , Animals , Periaqueductal Gray/physiology , Hypothalamus/physiology
3.
Neuron ; 111(20): 3270-3287.e8, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37557180

ABSTRACT

The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.


Subject(s)
Arousal , Thalamus , Mice , Animals , Arousal/physiology , Thalamus/physiology , Wakefulness/physiology , Neurons/physiology , Synaptic Transmission
4.
Elife ; 122023 03 17.
Article in English | MEDLINE | ID: mdl-36930206

ABSTRACT

Defensive behaviors are critical for animal's survival. Both the paraventricular nucleus of the hypothalamus (PVN) and the parabrachial nucleus (PBN) have been shown to be involved in defensive behaviors. However, whether there are direct connections between them to mediate defensive behaviors remains unclear. Here, by retrograde and anterograde tracing, we uncover that cholecystokinin (CCK)-expressing neurons in the lateral PBN (LPBCCK) directly project to the PVN. By in vivo fiber photometry recording, we find that LPBCCK neurons actively respond to various threat stimuli. Selective photoactivation of LPBCCK neurons promotes aversion and defensive behaviors. Conversely, photoinhibition of LPBCCK neurons attenuates rat or looming stimuli-induced flight responses. Optogenetic activation of LPBCCK axon terminals within the PVN or PVN glutamatergic neurons promotes defensive behaviors. Whereas chemogenetic and pharmacological inhibition of local PVN neurons prevent LPBCCK-PVN pathway activation-driven flight responses. These data suggest that LPBCCK neurons recruit downstream PVN neurons to actively engage in flight responses. Our study identifies a previously unrecognized role for the LPBCCK-PVN pathway in controlling defensive behaviors.


Subject(s)
Hypothalamus , Parabrachial Nucleus , Rats , Animals , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Cholecystokinin/metabolism , Neurons/physiology , Parabrachial Nucleus/physiology
5.
Cell Rep ; 41(5): 111570, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36323263

ABSTRACT

An appropriate balance between explorative and defensive behavior is essential for the survival and reproduction of prey animals in risky environments. However, the neural circuit and mechanism that allow for such a balance remains poorly understood. Here, we use a semi-naturalistic predator threat test (PTT) to observe and quantify the defense-exploration balance, especially risk exploration behavior in mice. During the PTT, the activity of the putative dorsal CA3 glutamatergic neurons (dCA3Glu) is suppressed by predatory threat and risk exploration, whereas the neurons are activated during contextual exploration. Moreover, optogenetic excitation of these neurons induces a significant increase in risk exploration. A circuit, comprising the dorsal CA3, dorsal lateral septal, and dorsomedial hypothalamic (dCA3Glu-dLSGABA-DMH) areas, may be involved. Moreover, activation of the dCA3Glu-dLSGABA-DMH circuit promotes the switch from defense to risk exploration and suppresses threat-induced increase in arousal.


Subject(s)
Exploratory Behavior , Hypothalamus , Animals , Mice , gamma-Aminobutyric Acid , Neurons
6.
Neuron ; 109(23): 3717-3719, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34856131

ABSTRACT

In this issue of Neuron and in Cell Reports, Fratzl et al. (2021) and Salay and Huberman (2021) identify the ventral lateral geniculate nucleus (vLGN) of the thalamus as a key regulator for adjusting defensive behaviors according to the level of perceived visual threat.


Subject(s)
Geniculate Bodies , Visual Pathways , Neurons , Thalamus
7.
Brain Struct Funct ; 226(7): 2431-2458, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34318365

ABSTRACT

The lateral hypothalamus is a major integrative hub with a complex architecture characterized by intricate and overlapping cellular populations expressing a large variety of neuro-mediators. In rats, the subfornical lateral hypothalamus (LHsf) was identified as a discrete area with very specific outputs, receiving a strong input from the nucleus incertus, and involved in defensive and foraging behaviors. We identified in the mouse lateral hypothalamus a discrete subfornical region where a conspicuous cluster of neurons express the mu opioid receptor. We thus examined the inputs and outputs of this LHsf region in mice using retrograde tracing with the cholera toxin B subunit and anterograde tracing with biotin dextran amine, respectively. We identified a connectivity profile largely similar, although not identical, to what has been described in rats. Indeed, the mouse LHsf has strong reciprocal connections with the lateral septum, the ventromedial hypothalamic nucleus and the dorsal pre-mammillary nucleus, in addition to a dense output to the lateral habenula. However, the light input from the nucleus incertus and the moderate bidirectional connectivity with nucleus accumbens are specific to the mouse LHsf. A preliminary neurochemical study showed that LHsf neurons expressing mu opioid receptors also co-express calcitonin gene-related peptide or somatostatin and that the reciprocal connection between the LHsf and the lateral septum may be functionally modulated by enkephalins acting on mu opioid receptors. These results suggest that the mouse LHsf may be hodologically and functionally comparable to its rat counterpart, but more atypical connections also suggest a role in consummatory behaviors.


Subject(s)
Hypothalamic Area, Lateral , Animals , Habenula , Hypothalamus , Mice , Neural Pathways , Neurons , Raphe Nuclei , Receptors, Opioid, mu
8.
J Vet Med Sci ; 81(8): 1121-1128, 2019 Aug 24.
Article in English | MEDLINE | ID: mdl-31270283

ABSTRACT

Wild animals tend to avoid novel objects that do not elicit clear avoidance behaviors in domesticated animals. We previously found that the basolateral complex of the amygdala (BLA) and dorsal bed nucleus of the stria terminalis (dBNST) were larger in trapped wild rats compared with laboratory rats. Based on these findings, we hypothesized that the BLA and/or dBNST would be differentially activated when wild and laboratory rats showed different avoidance behaviors towards novel objects. In this study, we placed novel objects at one end of the home cage. We measured the time spent in that half of the cage and expressed the data as a percentage of the time spent in that region with no object placement. We found that this percentage was lower in the wild rats compared with the laboratory rats. These behavioral differences were accompanied by increased Fos expression in the BLA, but not in the dBNST, of the wild rats. These results suggest that wild rats show greater BLA activation compared with laboratory rats in response to novel objects. We also found increased Fos expression in the paraventricular nucleus of the hypothalamus, ventral BNST, and ventromedial hypothalamus, but not in the central amygdala of wild rats. Taken together, our data represent new information regarding differences in behavioral and neural responses towards novel objects in wild vs. laboratory rats.


Subject(s)
Animals, Wild/psychology , Avoidance Learning/physiology , Basolateral Nuclear Complex/physiology , Rats/psychology , Animals , Animals, Wild/anatomy & histology , Fluorescent Antibody Technique, Indirect , Hypothalamus/physiology , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats/anatomy & histology
9.
Behav Brain Res ; 357-358: 18-28, 2019 01 14.
Article in English | MEDLINE | ID: mdl-28716675

ABSTRACT

There is not a single and perfect instinctive behavior to react to threatening situations. However, the study of particular features of these situations suggests the existence of prototypical emotional reactions and associated defensive behaviors. Since all living beings are subjected to common evolutionary pressures, such as predation and conspecific competition, it is plausible that there is conservation of some basic defensive responses in their behavioral repertoire. The choice for approaching or withdrawing from a given situation depends, among others things, on environmental features, including the threat intensity and the distance from the source of the threat. If these basic responses were conserved in humans, they should be expressed in ways similar to those observed in non-human animals. Due to ethical reasons and easy application, mental imagery has been used to test this hypothesis. The studies included in this review point to the validity of this method, with both self-report and neurophysiological findings corroborating the hypothesis under scrutiny. Despite the need for additional investigation to deal with some limitations, the information obtained with this method can help to a better understanding of the conditions that provoke specific defensive behaviors and related emotions. This knowledge may also contribute to identify vulnerability factors for fear/anxiety-related disorders.


Subject(s)
Defense Mechanisms , Imagery, Psychotherapy , Mood Disorders , Animals , Humans , Mood Disorders/diagnosis , Mood Disorders/physiopathology , Mood Disorders/psychology
10.
Behav Brain Res ; 313: 358-369, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27452804

ABSTRACT

Functional neuroimaging studies have shown that actual situations of uncertain or distant threats increase the activity of forebrain regions, whereas proximal threats increase the activity of the dorsal midbrain. This experiment aimed at testing the hypothesis that brain activity elicited by imagined scenarios of threats with two different magnitudes, potential and imminent, resembles that found in response to actual threats. First, we measured subjective responses to imagined scenarios of potential and imminent threats compared with neutral and pleasant scenarios. The same scenarios were used as a paradigm in a functional magnetic resonance imaging experiment. Behavioral results show that the scenarios draw a gradient of hedonic valence and arousal dimensions. Both potential and imminent threat scenarios increased subjective anxiety; the imminent threat scenario also increased feelings of discomfort and bodily symptoms. The functional magnetic resonance imaging results revealed modulations of BOLD signal in the ventromedial prefrontal cortex by potential threat and in the periaqueductal gray matter by imminent threat. These results agree with previously reported evidence using actual threat situations, indicating that mental imagery is a reliable method for studying the functional neuroanatomy of relevant behavioral processes.


Subject(s)
Emotions/physiology , Fear , Imagery, Psychotherapy , Adult , Anxiety/physiopathology , Anxiety Disorders/physiopathology , Fear/physiology , Female , Functional Neuroimaging , Humans , Imagery, Psychotherapy/methods , Imagination/physiology , Magnetic Resonance Imaging/methods , Male , Young Adult
11.
Psychol Sci ; 26(11): 1706-16, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26408036

ABSTRACT

When detecting a threat, humans and other animals engage in defensive behaviors and supporting physiological adjustments that vary with threat imminence and potential response options. In the present study, we shed light on the dynamics of defensive behaviors and associated physiological adjustments in humans using multiple psychophysiological and brain measures. When participants were exposed to a dynamically approaching, uncontrollable threat, attentive freezing was augmented, as indicated by an increase in skin conductance, fear bradycardia, and potentiation of the startle reflex. In contrast, when participants had the opportunity to actively avoid the approaching threat, attention switched to response preparation, as indicated by an inhibition of the startle magnitude and by a sharp drop of the probe-elicited P3 component of the evoked brain potentials. These new findings on the dynamics of defensive behaviors form an important intersection between animal and human research and have important implications for understanding fear and anxiety-related disorders.


Subject(s)
Defense Mechanisms , Evoked Potentials , Fear , Reflex, Startle , Acoustic Stimulation , Adult , Female , Humans , Male , Reaction Time , Young Adult
12.
Behav Brain Res ; 278: 563-8, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25447305

ABSTRACT

Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system.


Subject(s)
Anxiety/drug therapy , Benzoxazoles/therapeutic use , Gene Expression Regulation/drug effects , Hypothalamus/drug effects , Odorants , Proto-Oncogene Proteins c-fos/metabolism , Urea/analogs & derivatives , Analysis of Variance , Animals , Anxiety/chemically induced , Anxiety/pathology , Cats , Disease Models, Animal , Hypothalamus/metabolism , Male , Naphthyridines , Random Allocation , Rats , Rats, Wistar , Receptors, Neuropeptide/antagonists & inhibitors , Urea/therapeutic use
13.
Neurosci Biobehav Rev ; 37(8): 1549-66, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23792048

ABSTRACT

The symptoms we identify and the behaviors we recognize as defenses define which symptoms we see as trauma-related. Early conceptions of trauma-related disorders focused on physical signs of distress while current ones emphasize mental symptoms, but traumatizing experiences evoke psychobiological reactions. An evolutionary perspective presumes that psychophysical reactions to traumatizing events evolved to ensure survival. This theoretical review examines several primitive mechanisms (e.g., sensitization and dissolution) associated with responses to diverse stressors, from danger to life-threat. Some rapidly acquired symptoms form without conscious awareness because severe stresses can dysregulate mental and physical components within systems ensuring survival. Varied defensive options engage specialized and enduring psychophysical reactions; this allows for more adaptive responses to diverse threats. Thus, parasympathetically mediated defense states such as freeze or collapse increase trauma-related symptom variability. Comorbidity and symptom variability confuse those expecting mental rather than psychophysical responses to trauma, and active (sympathetically mediated flight and fight) rather than immobility defenses. Healthcare implications for stress research, clinical practice and diagnostic nosology stem from the broader evolutionary view.


Subject(s)
Adaptation, Physiological/physiology , Adaptation, Psychological/physiology , Biological Evolution , Fear/physiology , Stress Disorders, Post-Traumatic/etiology , Fear/psychology , Humans , Stress Disorders, Post-Traumatic/psychology
SELECTION OF CITATIONS
SEARCH DETAIL