Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Dairy Sci ; 101(6): 4992-5005, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29525320

ABSTRACT

Agro-industrial by-products contain several secondary plant metabolites, such as polyphenols, tannins, saponins, and essential oils. The effects of these compounds on animal metabolism may vary significantly according to the dose, the chemical nature of the molecules, and the overall composition of the diet. In the Mediterranean area, the olive oil extraction is associated with 2 by-products: olive pomace and wastewater, both rich in polyphenols. In particular, wastewater may be further processed to obtain olive crude phenolic concentrate (OCPC). An experiment was carried out aiming to evaluate animal performance, milk fatty acid (FA) profile, diversity of rumen microbial population, and rumen liquor FA profile in dairy ewes fed diets containing extruded linseed (EL) and increasing doses of OCPC. Twenty-eight Comisana ewes in mid lactation were allotted to 4 experimental groups. The experiment lasted 5 wk after 3 wk of adaptation. Diets were characterized by lucerne hay administrated ad libitum and by 800 g/ewe and day of 4 experimental concentrates containing 22% of EL on dry matter and increasing dose of OCPC: 0 (L0), 0.6 (L0.6), 0.8 (L0.8), and 1.2 (L1.2) g of OCPC/kg of dry matter. Milk yield was daily recorded and milk composition was analyzed weekly. At the beginning and at the end of the experiment, samples of rumen liquor were collected to analyze FA profile, changes in rumen microbial population, and dimethylacetal (DMA) composition. The inclusion of OCPC did not affect milk yield and gross composition, whereas milk from L0.8 and L1.2 sheep contained higher concentrations of linoleic (+18%) and α-linolenic acid (+24%) and lower concentration of the rumen biohydrogenation intermediates. A similar pattern was observed for rumen liquor FA composition. No differences were found in the diversity of the rumen microbial population. Total amount of DMA did not differ among treatments, whereas significant differences were found in the concentration of individual DMA; in the diet with a higher amount of OCPC, DMA 13:0, 14:0, 15:0, and 18:0 increased, whereas DMA 16:0 decreased. Probably the presence of polyphenols in the diet induced a rearrangement of bacteria membrane phospholipids as a response to the rumen environment stimulus. Overall, the use of OCPC allowed a significant increase in the polyunsaturated FA content of milk, probably due to a perturbation of the rumen biohydrogenation process. Further studies are needed to understand the correlation between diet composition and the pattern of DMA in rumen liquor.


Subject(s)
Animal Feed/analysis , Fatty Acids/chemistry , Milk/chemistry , Olea/metabolism , Phenol/metabolism , Rumen/metabolism , Sheep/metabolism , Animals , Diet/veterinary , Dietary Supplements/analysis , Fatty Acids/metabolism , Female , Flax/metabolism , Lactation , Linseed Oil/pharmacology , Milk/metabolism , alpha-Linolenic Acid/analysis
2.
Animal ; 12(9): 1856-1866, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29306345

ABSTRACT

Fat supplementation plays an important role in defining milk fatty acids (FA) composition of ruminant products. The use of sources rich in linoleic and α-linolenic acid favors the accumulation of conjugated linoleic acids isomers, increasing the healthy properties of milk. Ruminal microbiota plays a pivotal role in defining milk FA composition, and its profile is affected by diet composition. The aim of this study was to investigate the responses of rumen FA production and microbial structure to hemp or linseed supplementation in diets of dairy goats. Ruminal microbiota composition was determined by 16S amplicon sequencing, whereas FA composition was obtained by gas-chromatography technique. In all, 18 pluriparous Alpine goats fed the same pre-treatment diet for 40±7 days were, then, arranged to three dietary treatments consisting of control, linseed and hemp seeds supplemented diets. Independently from sampling time and diets, bacterial community of ruminal fluid was dominated by Bacteroidetes (about 61.2%) and Firmicutes (24.2%) with a high abundance of Prevotellaceae (41.0%) and Veillonellaceae (9.4%) and a low presence of Ruminococcaceae (5.0%) and Lachnospiraceae (4.3%). Linseed supplementation affected ruminal bacteria population, with a significant reduction of biodiversity; in particular, relative abundance of Prevotella was reduced (-12.0%), whereas that of Succinivibrio and Fibrobacter was increased (+50.0% and +75.0%, respectively). No statistically significant differences were found among the average relative abundance of archaeal genera between each dietary group. Moreover, the addition of linseed and hemp seed induced significant changes in FA concentration in the rumen, as a consequence of shift from C18 : 2n-6 to C18 : 3n-3 biohydrogenation pathway. Furthermore, dimethylacetal composition was affected by fat supplementation, as consequence of ruminal bacteria population modification. Finally, the association study between the rumen FA profile and the bacterial microbiome revealed that Fibrobacteriaceae is the bacterial family showing the highest and significant correlation with FA involved in the biohydrogenation pathway of C18 : 3n-3.


Subject(s)
Fatty Acids , Goats , Microbiota , Rumen , Animals , Diet , Dietary Supplements , Fatty Acids/metabolism , Female , Goats/physiology , Lactation , Milk , Rumen/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL