Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Control Release ; 369: 215-230, 2024 May.
Article in English | MEDLINE | ID: mdl-38508529

ABSTRACT

In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Apoptosis , Dexamethasone , Glycyrrhiza , Inflammation , Macrophages , Nanoparticles , Neutrophils , Animals , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Apoptosis/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Nanoparticles/chemistry , Macrophages/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Glycyrrhiza/chemistry , Mice, Inbred C57BL , Male , Mice , Phagocytosis/drug effects , Humans , Sepsis/drug therapy , Sepsis/immunology , Respiratory Distress Syndrome/drug therapy , RAW 264.7 Cells , Efferocytosis
2.
Cell Biochem Biophys ; 82(1): 53-65, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37794303

ABSTRACT

Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.


Subject(s)
Efferocytosis , Fatty Acids, Omega-3 , Humans , Inflammation , Macrophages , Fatty Acids, Omega-3/therapeutic use , Anti-Inflammatory Agents
3.
Front Pharmacol ; 14: 1233709, 2023.
Article in English | MEDLINE | ID: mdl-37886125

ABSTRACT

Background: Tanshinone IIA (TIIA) is the major lipid-soluble active ingredient of the traditional Chinese medicine Salvia miltiorrhiza, which slows down atherosclerosis (AS). However, it remains unclear whether TIIA has the potential to enhance macrophage efferocytosis and thereby improve atherosclerosis. Objective: The focus of this examination was to determine if TIIA could reduce lipid accumulation and treat AS by enhancing efferocytosis. Methods: Firstly, we conducted in vivo experiments using LDLR knockout (LDLR-/-) mice for a period of 24 weeks, using histopathological staining, immunofluorescence and Western blot experiments to validate from the efficacy and mechanism parts, respectively; in addition, we utilized cells to validate our study again in vitro. The specific experimental design scheme is as follows: In vivo, Western diet-fed LDLR-/- mice for 12 weeks were constructed as an AS model, and normal diet-fed LDLR-/- mice were taken as a blank control group. The TIIA group and positive control group (atorvastatin, ATO) were intervened for 12 weeks by intraperitoneal injection (15 mg/kg/d) and gavage (1.3 mg/kg/d), respectively. In vitro, RAW264.7 cells were cultured with ox-LDL (50 ug/mL) or ox-LDL (50 ug/mL) + TIIA (20 uM/L or 40 uM/L). Pathological changes in aortic plaques and foam cell formation in RAW264.7 cells were evaluated using Masson and Oil Red O staining, respectively. Biochemical methods were used to detect lipid levels in mice. The immunofluorescence assay was performed to detect apoptotic cells and efferocytosis-related signal expression at the plaques. RT-qPCR and Western blot were carried out to observe the trend change of efferocytosis-related molecules in both mouse aorta and RAW264.7 cells. We also used the neutral red assay to assess RAW264.7 cells' phagocytic capacity. Results: Compared with the model group, TIIA decreased serum TC, TG, and LDL-C levels (p < 0.01), reduced the relative lumen area of murine aortic lipid-rich plaques (p < 0.01), enhanced the stability of murine aortic plaques (p < 0.01), reduced ox-LDL-induced lipid build-up in RAW264.7 cells (p < 0.01), and upregulated efferocytosis-related molecules expression and enhance the efferocytosis rate of ox-LDL-induced RAW264.7 cells. Conclusion: TIIA might reduce lipid accumulation by enhancing the efferocytosis of macrophages and thus treat AS.

4.
Int Immunopharmacol ; 122: 110583, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423155

ABSTRACT

Macrophages as innate immune cells with great plasticity are of great interest for cell therapy. There are two main macrophage populations - pro- and anti-inflammatory cells also known as M1 and M2. High potential in cancer research contributed to the in-depth study of the molecular processes leading to the polarization of macrophages into the M1 phenotype, and much less attention has been paid to anti-inflammatory M2 macrophages, which can be successfully used in cell therapy of inflammatory diseases. This review describes ontogenesis of macrophages, main functions of pro- and and-inflammatory cells and four M2 subpopulations characterized by different functionalities. Data on agents (cytokines, microRNAs, drugs, plant extracts) that may induce M2 polarization through the changes in microenvironment, metabolism, and efferocytosis are summarized. Finally, recent attempts at stable macrophage polarization using genetic modifications are described. This review may be helpful for researchers concerned with the problem of M2 macrophage polarization and potential use of these anti-inflammatory cells for the purposes of regenerative medicine.


Subject(s)
Macrophages , MicroRNAs , Cytokines/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis , Anti-Inflammatory Agents/therapeutic use
5.
Phytomedicine ; 116: 154874, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37216760

ABSTRACT

BACKGROUND: 3, 3'-diindolylmethane (DIM), a classical aryl hydrocarbon receptor (AhR) agonist, has been shown to relieve neuropathic pain, but few studies have reported the efficacy of DIM in visceral pain under colitis condition. PURPOSE: This study aimed to investigate the effect and mechanism of DIM on visceral pain under colitis condition. METHODS: Cytotoxicity was performed using the MTT assay. RT-qPCR and ELISA assays were applied to determine the expression and release of algogenic substance P (SP), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Flow cytometry was used to examine the apoptosis and efferocytosis. The expression of Arg-1-arginine metabolism-related enzymes was detected using western blotting assays. ChIP assays were used to examine the binding of Nrf2 to Arg-1. Mouse models of dextran sulfate sodium (DSS) were established to illustrate the effect of DIM and validate the mechanism in vivo. RESULTS: DIM did not directly affect expressions and release of algogenic SP, NGF and BDNF in enteric glial cells (EGCs). However, when co-cultured with DIM-pre-treated RAW264.7 cells, the release of SP and NGF was decreased in lipopolysaccharides-stimulated EGCs. Furthermore, DIM increased the number of PKH67+ F4/80+ cells in the co-culture system of EGCs and RAW264.7 cells in vitro and alleviated visceral pain under colitis condition by regulating levels of SP and NGF as well as values of electromyogram (EMG), abdominal withdrawal reflex (AWR) and tail-flick latency (TFL) in vivo, which was significantly inhibited by efferocytosis inhibitor. Subsequently, DIM was found to down-regulate levels of intracellular arginine, up-regulate levels of ornithine, putrescine and Arg-1 but not extracellular arginine or other metabolic enzymes, and polyamine scavengers reversed the effect of DIM on efferocytosis and release of SP and NGF. Moving forward, Nrf2 transcription and the binding of Nrf2 to Arg-1-0.7 kb was enhanced by DIM, AhR antagonist CH223191 abolished the promotion of DIM on Arg-1 and efferocytosis. Finally, nor-NOHA validated the importance of Arg-1-dependent arginine metabolism in DIM-alleviated visceral pain. CONCLUSION: DIM enhances macrophage efferocytosis in an arginine metabolism-dependent manner via "AhR-Nrf2/Arg-1" signals and inhibits the release of SP and NGF to relieve visceral pain under colitis condition. These findings provide a potential therapeutic strategy for the treatment of visceral pain in patients with colitis.


Subject(s)
Colitis , Visceral Pain , Mice , Animals , Receptors, Aryl Hydrocarbon/metabolism , NF-E2-Related Factor 2 , Brain-Derived Neurotrophic Factor , Visceral Pain/drug therapy , Nerve Growth Factor , Macrophages/metabolism , Colitis/chemically induced , Colitis/drug therapy
6.
Redox Biol ; 62: 102666, 2023 06.
Article in English | MEDLINE | ID: mdl-36934646

ABSTRACT

Docosahexaenoic acid (DHA), a representative omega-3 (ω-3) polyunsaturated fatty acids, undergoes metabolism to produce biologically active electrophilic species. 17-Oxo-DHA is one such reactive metabolite generated from DHA by cyclooxygenase-2 and dehydrogenase in activated macrophages. The present study was aimed to investigate the effects of 17-oxo-DHA on ultraviolet B (UVB)-induced oxidative stress, inflammation, and carcinogenesis in mouse skin. UVB-induced epidermal cell death was ameliorated by topically applied 17-oxo-DHA. Topical application of 17-oxo-DHA onto hairless mouse skin inhibited UVB-induced phosphorylation of the proinflammatory transcription factor, STAT3 on tyrosine 705 (Tyr705). The 17-oxo-DHA treatment also reduced the levels of oxidative stress markers, 4-hydroxynonenal-modified protein, malondialdehyde, and 8-oxo-2'-deoxyguanosine. The protective effects of 17-oxo-DHA against oxidative damage in UVB-irradiated mouse skin were associated with activation of Nrf2. 17-Oxo-DHA enhanced the engulfment of apoptotic JB6 cells by macrophages, which was related to the increased expression of the scavenger receptor CD36. The 17-oxo-DHA-mediated potentiation of efferocytic activity of macrophages was attenuated by the pharmacologic inhibition or knockout of Nrf2. The pretreatment with 17-oxo-DHA reduced the UVB-induced skin carcinogenesis and tumor angiogenesis. It was also confirmed that 17-oxo-DHA treatment significantly inhibited the phosphorylation of the Tyr705 residue of STAT3 and decreased the expression of its target proteins in cutaneous papilloma. In conclusion, 17-oxo-DHA protects against UVB-induced oxidative cell death, dermatitis, and carcinogenesis. These effects were associated with inhibition of STAT3-mediated proinflammatory signaling and also activation of Nrf2 with subsequent upregulation of antioxidant and anti-inflammatory gene expression.


Subject(s)
Dermatitis , Fatty Acids, Omega-3 , Mice , Animals , Docosahexaenoic Acids/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Fatty Acids, Omega-3/pharmacology , Oxidative Stress , Carcinogenesis , Ultraviolet Rays/adverse effects , Cell Death
7.
Rev Bras Farmacogn ; 32(1): 50-64, 2022.
Article in English | MEDLINE | ID: mdl-34876760

ABSTRACT

Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A3 from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G2, lipoxins A4 and B4, and thromboxane A2. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure.

8.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681676

ABSTRACT

Our previous work has shown that topical thymosin beta 4 (Tß4) as an adjunct to ciprofloxacin treatment reduces inflammatory mediators and inflammatory cell infiltrates (neutrophils/PMN and macrophages/MΦ) while enhancing bacterial killing and wound healing pathway activation in an experimental model of P. aeruginosa-induced keratitis. This study aimed to mechanistically examine how Tß4 influences MΦ function in particular, leading to reduced inflammation and enhanced host defense following P. aeruginosa-induced infection of the cornea. Flow cytometry was conducted to profile the phenotype of infiltrating MΦ after infection, while generation of reactive nitrogen species and markers of efferocytosis were detected to assess functional activity. In vitro studies were performed utilizing RAW 264.7 cells to verify and extend the in vivo findings. Tß4 treatment decreases MΦ infiltration and regulates the activation state in response to infected corneas. MΦ functional data demonstrated that the adjunctive Tß4 treatment group significantly downregulated reactive nitrogen species (RNS) production and efferocytotic activity. In addition, the in vitro studies showed that both Tß4 alone and adjunctive Tß4 treatment influenced MΦ cellular function following LPS stimulation. Collectively, these data provide further evidence that adjunctive Tß4 + ciprofloxacin treatment offers a more efficacious option for treating bacterial keratitis. Not only does the adjunctive therapy address both the infectious pathogen and corneal wound healing response, but it also influences MΦ infiltration, activation, and function, as revealed by the current study.


Subject(s)
Eye Infections, Bacterial/complications , Keratitis/drug therapy , Macrophages/immunology , Pseudomonas Infections/complications , Thymosin/therapeutic use , Animals , Ciprofloxacin/therapeutic use , Drug Therapy, Combination , Eye Infections, Bacterial/immunology , Female , Inflammation , Keratitis/etiology , Keratitis/immunology , Mice , Mice, Inbred C57BL , Pseudomonas Infections/immunology , Pseudomonas aeruginosa , RAW 264.7 Cells
9.
Pharm Biol ; 59(1): 252-261, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33684026

ABSTRACT

CONTEXT: Naoxintong (NXT), a prescribed traditional Chinese medicine, widely used in cerebrovascular and cardiovascular diseases, could be effective in diabetic wounds. OBJECTIVE: This study evaluates the wound healing activity of NXT by employing an excisional wound splinting model. MATERIALS AND METHODS: NXT was dissolved in saline and given daily by gavage. Wounds were induced at the dorsum of non-diabetic (db/+) and diabetic (db/db) mice and treated with saline or 700 mg/kg/d NXT for 16 days. Wound closure was measured every four days. Extracellular matrix (ECM) remodelling, collagen deposition, leukocyte infiltration and expression of Col-3, CK14, CXCL1, CXCL2, MPO, Ly6G, CD68, CCR7, CD206, p-JAK1, p-STAT3 and p-STAT6 was analysed. RESULTS: NXT significantly accelerated rate of wound closure increased from 70% to 84%, accompanied by up-regulation of collagen deposition and ECM at days 16 post-injury. Moreover, NXT alleviated neutrophil infiltration, accompanied by down-regulation of CXCL1 and CXCL2 mRNA expression. In addition, NXT markedly augmented neutrophil efferocytosis. In diabetic wounds, the levels of M1 marker gene (CCR7) increased, while M2 marker gene (CD206) decreased, demonstrating a pro-inflammatory shift. Application of NXT increased M2 macrophage phenotype in db/db mice. Mechanistically, NXT treatment increased expression level of p-STAT3 and p-STAT6 at days 3 post-injury, indicating NXT mediated macrophages towards M2 phenotype and alleviated inflammation in diabetic wounds by activation of STAT3 and STAT6. CONCLUSIONS: Our study provides evidence that NXT accelerates diabetic wound healing by attenuating inflammatory response, which provides an important basis for use of NXT in the treatment of chronic diabetic wound healing.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Drugs, Chinese Herbal/pharmacology , Inflammation/drug therapy , Wound Healing/drug effects , Animals , Diabetes Mellitus, Experimental/complications , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Inflammation/pathology , Macrophages/metabolism , Male , Mice , STAT3 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism
10.
Eur J Pharmacol ; 895: 173873, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33460611

ABSTRACT

Neuronal survival and axonal renewal following central nervous system damage and in neurodegenerative illnesses, such as Alzheimer's disease (AD), can be enhanced by fast clearance of neuronal apoptotic debris, as well as the removal of amyloid beta (Aß) by phagocytic cells through the process of efferocytosis. This process quickly inhibits the release of proinflammatory and antigenic autoimmune constituents, enhancing the formation of a microenvironment vital for neuronal survival and axonal regeneration. Therefore, the detrimental features associated with microglial phagocytosis uncoupling, such as the accumulation of apoptotic cells, inflammation and phagoptosis, could exacerbate the pathology in brain disease. Some mechanisms of efferocytosis could be targeted by several promising agents, such as curcumin, URMC-099 and Y-P30, which have emerged as potential treatments for AD. This review aims to investigate and update the current research regarding the signaling molecules and pathways involved in efferocytosis and how these could be targeted as a potential therapy in AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apoptosis , Brain/pathology , Microglia/pathology , Neurons/pathology , Phagocytosis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Humans , Microglia/drug effects , Microglia/metabolism , Molecular Targeted Therapy , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/therapeutic use , Phagocytosis/drug effects
11.
Curr Med Chem ; 26(9): 1631-1643, 2019.
Article in English | MEDLINE | ID: mdl-29589525

ABSTRACT

Protein catabolism in macrophages, which is accomplished mainly through autophagy- lysosomal degradation, ubiquitin-proteasome system, and calpains, is disturbed in atheroprone vessels. Moreover, growing evidence suggests that defects in protein catabolism interfere with cholesterol handling in macrophages. Indeed, decreases in autophagy facilitate the deposition of cholesterol in atheroprone macrophages and the subsequent development of vulnerable atherosclerotic plaques due to impaired catabolism of lipid droplets and limited efferocytic clearance of dead cells. The proteasome is responsible for the degradation of ATP-binding cassette transporters, which leads to impaired cholesterol efflux from macrophages. Overactivation of conventional calpains contributes to excessive processing of functional proteins, thereby accelerating receptor-mediated uptake of oxidized low-density lipoproteins (LDLs) and slowing cholesterol efflux. Furthermore, calpain-6, an unconventional nonproteolytic calpain in macrophages, potentiates pinocytotic uptake of native LDL and attenuates the efferocytic clearance of dead cells. Herein, we focus on recent progress in understanding how defective protein catabolism is associated with macrophage cholesterol handling and subsequent atherogenesis.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Calpain/metabolism , Cholesterol/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Animals , Atherosclerosis/metabolism , Humans , Proteasome Endopeptidase Complex/metabolism
12.
Chinese Critical Care Medicine ; (12): 913-915, 2019.
Article in Chinese | WPRIM | ID: wpr-754079

ABSTRACT

As one of the top three causes of death in the world, chronic obstructive pulmonary disease (COPD) is a serious hazard to human health. Macrophages play an important role in COPD, and their efferocytosis function is essential for ending chronic inflammation of COPD. Efferocytosis damage of alveolar macrophages (AM) in patients with COPD causes the rising of bacterial infection and airway bacterial colonization risk in lungs, which is the main reason for the acute exacerbation and the rising of incidence rate and mortality rate in COPD. In recent years, the regulation of macrophage efferocytosis function in COPD has becoming a research hotspot. Progress on the role of macrophage efferocytosis function on COPD, and the breakthrough points of improving AM efferocytosis dysfunction by traditional Chinese medicine is reviewed, so as to provide new ideas for the prevention and treatment of COPD.

13.
Am J Chin Med ; 46(8): 1899-1914, 2018.
Article in English | MEDLINE | ID: mdl-30518232

ABSTRACT

Baicalin is the main active ingredient primary isolated from the Chinese herb, Scutellaria baicalensis Georgi. Although baicalin can induce M2 macrophage polarization, we still do not know the subtype of macrophages polarized by baicalin. In this study, we characterized that murine bone marrow derived macrophages induced by M-CSF can be further polarized into M2C phenotype by baicalin. The signatures of M2C macrophages for mRNA expression like interferon regulatory factor 4 (IRF4), interleukin-10 (IL-10), MERTK and PTX3 were up-regulated. Moreover, we observed the concomitantly decreasing of tumor necrosis factor alpha (TNF- α ), interferon regulatory factor 5 (IRF5), IL-6. In contrast, M2 macrophages polarized by IL-4 increased gene transcript of arginase-1 (Arg-1) and surface marker of CD206 indicates that their identity as M2A rather than M2C subtypes. Interestingly, the phagocytosis as well as efferocytosis activity were significantly enhanced in M2C macrophage polarized by baicalin and these capacities were associated with the expression of MERTK receptor. Finally, we conclude that baicalin induced M2C macrophages polarization with both elevations of efferocytosis and anti-inflammatory activity.


Subject(s)
Cell Differentiation/drug effects , Cell Polarity/drug effects , Flavonoids/pharmacology , Macrophages/physiology , Monocyte-Macrophage Precursor Cells/physiology , Monocytes/physiology , Up-Regulation/drug effects , c-Mer Tyrosine Kinase/metabolism , Animals , Anti-Inflammatory Agents , Female , Flavonoids/isolation & purification , Gene Expression/drug effects , Macrophage Colony-Stimulating Factor/pharmacology , Mice, Inbred ICR , Phagocytosis , Scutellaria baicalensis/chemistry , c-Mer Tyrosine Kinase/genetics
14.
Front Immunol ; 9: 742, 2018.
Article in English | MEDLINE | ID: mdl-29706963

ABSTRACT

Objective: Rheumatoid arthritis (RA) is a chronic and progressive joint disease. It appears that anti-inflammatory feedback mechanisms that could restrain joint inflammation and restore homeostasis are insufficient to perform this control. In this study, we investigated the contribution of the MER tyrosine kinase-mediated anti-inflammatory response on arthritis and whether targeting MER could be a valid approach to treat RA. Methods: KRN serum transfer arthritis (KRN STA) was induced in either Mertk-deficient mice or in mice that adenovirally overexpressed Pros1. Human synovial micromasses were treated with MER-specific antibodies or PROS1. Collagen-induced arthritis (CIA) mice were treated with MER-specific agonistic antibodies or by viral overexpression of Pros1. Results: Mertk-/- mice showed exacerbated arthritis pathology, whereas Pros1 overexpression diminished joint pathology in KRN STA. Human synovial micromasses challenged with MER-specific antibodies enhanced the secretion of inflammatory cytokines, whereas stimulating MER with PROS1 reduced the secretion of these cytokines, confirming the protective role of MER. Next, we treated CIA mice with MER-specific agonistic antibodies, and this unexpectedly resulted in exacerbated arthritis pathology. This was associated with increased numbers of apoptotic cells in their knee joints and higher serum levels of interleukin (IL)-16C, a cytokine released by secondary necrotic neutrophils. Apoptotic cell numbers and IL-16C levels were enhanced during arthritis in Mertk-/- mice and reduced in Pros1-overexpressing mice. Conclusion: MER plays a protective role during joint inflammation and activating MER by its ligand PROS1 ameliorates disease. Treatment of mice with MER receptor agonistic antibodies is deleterious due to its counterproductive effect of blocking efferocytosis in the arthritic joint.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Carrier Proteins/physiology , c-Mer Tyrosine Kinase/physiology , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Calcium-Binding Proteins , Cell Line , Cytokines/immunology , Disease Models, Animal , Female , Humans , Knee Joint/immunology , Knee Joint/pathology , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Synovial Membrane/immunology
15.
Cell Mol Life Sci ; 74(16): 3011-3021, 2017 08.
Article in English | MEDLINE | ID: mdl-28432377

ABSTRACT

Calpains are Ca2+-dependent intracellular proteases that play central roles in the post-translational processing of functional proteins. In mammals, calpain proteolytic systems comprise the endogenous inhibitor calpastatin as well as 15 homologues of the catalytic subunits and two homologues of the regulatory subunits. Recent pharmacological and gene targeting studies in experimental animal models have revealed the contribution of conventional calpains, which consist of the calpain-1 and -2 isozymes, to atherosclerotic diseases. During atherogenesis, conventional calpains facilitate the CD36-dependent uptake of oxidized low-density lipoprotein (LDL), and block cholesterol efflux through ATP-binding cassette transporters in lesional macrophages, allowing the expansion of lipid-enriched atherosclerotic plaques. In addition, calpain-6, an unconventional non-proteolytic calpain, in macrophages reportedly potentiates pinocytotic uptake of native LDL, and attenuates the efferocytic clearance of apoptotic and necrotic cell corpses from the lesions. Herein, we discuss the recent progress that has been made in our understanding of how calpain contributes to atherosclerosis, in particular focusing on macrophage cholesterol handling.


Subject(s)
Atherosclerosis/metabolism , Calpain/metabolism , Cholesterol/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , ATP-Binding Cassette Transporters/metabolism , Animals , Atherosclerosis/pathology , CD36 Antigens/metabolism , Humans , Macrophages/cytology , Macrophages/pathology , Phagocytosis , Pinocytosis , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Proteolysis , Receptors, Scavenger/metabolism
16.
Orphanet J Rare Dis ; 12(1): 23, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28166796

ABSTRACT

BACKGROUND: Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal ß-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. RESULTS: Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. CONCLUSION: These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.


Subject(s)
Gaucher Disease/metabolism , Macrophages/drug effects , Ubiquinone/analogs & derivatives , Glucosylceramidase , Humans , Inflammasomes , Lysosomes , Mitophagy/drug effects , Mitophagy/physiology , Reactive Oxygen Species , THP-1 Cells/drug effects , THP-1 Cells/metabolism , Ubiquinone/administration & dosage , Ubiquinone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL