Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611823

ABSTRACT

(1) Background: Diabetes is a common metabolic disease that seriously endangers human health. In the present study, we investigated the therapeutic effects of the active ingredient Eleutheroside B (EB) from the traditional Chinese medicine Eleutheroside on diabetes mellitus in a zebrafish model. Concomitant hepatic injury was also analysed, along with the study of possible molecular mechanisms using metabolomics technology. This work should provide some theoretical references for future experimental studies. (2) Methods: A zebrafish diabetes model was constructed by soaking in a 1.75% glucose solution and feeding a high-fat diet. The intervention drug groups were metformin (100 µg∙mL-1) and EB (50, 100, and 150 µg∙mL-1) via water-soluble exposure for 30 days. Glucose, TG, TC, LDL-C, and HDL-C were evaluated in different treatment groups. GLUT4 protein expression was also evaluated in each group, and liver injury was observed by HE staining. Metabolomics techniques were used to investigate the mechanism by which EB regulates endogenous markers and metabolic pathways during the development of diabetes. (3) Results: All EB treatment groups in diabetic zebrafish showed significantly reduced body mass index (BMI) and improved blood glucose and lipid profiles. EB was found to upregulate GLUT4 protein expression and ameliorate the liver injury caused by diabetes. Metabolomics studies showed that EB causes changes in the metabolic profile of diabetic zebrafish. These were related to the regulation of purine metabolism, cytochrome P450, caffeine metabolism, arginine and proline metabolism, the mTOR signalling pathway, insulin resistance, and glycerophospholipid metabolism. (4) Conclusions: EB has a hypoglycaemic effect in diabetic zebrafish as well as significantly improving disorders of glycolipid metabolism. The mechanism of action of EB may involve regulation of the mTOR signalling pathway, purine metabolism, caffeine metabolism, and glycerophospholipid metabolism.


Subject(s)
Diabetes Mellitus , Glucose , Glucosides , Phenylpropionates , Humans , Animals , Lipid Metabolism , Zebrafish , Caffeine , Glucose Transporter Type 4 , TOR Serine-Threonine Kinases , Glycerophospholipids
2.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6693-6701, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212029

ABSTRACT

This study investigated the effect of eleutheroside B on apoptosis and autophagy of lung cancer A549 and H460 cells and its molecular mechanism. MTT assay was used to detect the cytotoxicity of eleutheroside B at 5, 10, 15, 20, 25, 30, 35, 40, and 45 mmol·L~(-1) on lung cancer cells. Trypan blue exclusion assay was used to detect the effect of eleutheroside B on the survival rate of lung cancer A549 and H460 cells at different time. Colony formation assay was used to detect the effect of eleutheroside B on the proliferation of lung cancer A549 and H460 cells. AO/EB fluorescence double staining and Hoechst 33342 fluorescence staining were used to detect the effect of eleutheroside B on apoptosis of lung cancer A549 and H460 cells, and Western blot was used to detect apoptosis-related proteins to explore the apoptosis-related molecular mechanism. AO fluorescence staining and Western blot were used to detect the expression of autophagic vesicles and autophagy-related proteins P62 and LC3. The results showed that compared with the control group, eleutheroside B inhibited the growth of lung cancer A549 and H460 cells in a concentration-dependent manner. The optimal effect time of eleutheroside B on lung cancer A549 and H460 cells was 24 h, and the optimal concentrations were 28.64 and 22.16 mmol·L~(-1), respectively. Eleutheroside B could inhibit the colony formation of A549 and H460 cells. Compared with the control group, eleutheroside B could promote the formation of apoptotic bodies and induce cell apoptosis, as well as induce the expression of mitochondrial pathway-related proteins. Under the effect of eleutheroside B, the acidic autophagy vacuole in lung cancer cells increased, LC3Ⅱ expression increased, P62 protein expression decreased, and PI3K, p-Akt, and p-mTOR protein expression decreased in the PI3K/Akt/mTOR pathway. Studies have shown that eleutheroside B can inhibit the growth of lung cancer cells, reduce colony formation, induce apoptosis of lung cancer cells through mitochondrial pathway, and induce autophagy. The mechanism may be related to the PI3K/Akt/mTOR pathway.


Subject(s)
Glucosides , Lung Neoplasms , Phenylpropionates , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Apoptosis Regulatory Proteins , Autophagy , Cell Proliferation , Cell Line, Tumor
3.
Ultrason Sonochem ; 86: 106039, 2022 May.
Article in English | MEDLINE | ID: mdl-35598514

ABSTRACT

The safety of ethanol in operations and its effects on human health are gradually being questioned. Under this premise, we attempted to use the natural surfactant tea saponin, which originates from the processing residues of camellia oil, as the additive of the extraction solvent and to extract eleutheroside B and eleutheroside E in the roots and rhizomes of E. senticosus by ultrasonic mediation. After a single-factor experiment, extraction kinetics at different powers and reaction temperatures, and Box-Behnken design optimization, the optimal conditions obtained were 0.3% tea saponin solution as the extraction solvent, 20 mL/g liquid-solid ratio, 250 W ultrasonic irradiation power (43.4 mW/g ultrasonic power density) and 40 min ultrasonic irradiation time. Under optimal conditions, satisfactory yields of eleutheroside B (1.06 ± 0.04 mg/g) and eleutheroside E (2.65 ± 0.12 mg/g) were obtained with semi pilot scale ultrasonic extraction equipment. The experiments showed that compared with the traditional thermal extraction process, the extraction time is significantly reduced at lower operating temperatures.


Subject(s)
Eleutherococcus , Saponins , Eleutherococcus/chemistry , Glucosides , Humans , Phenylpropionates , Plant Extracts/chemistry , Solvents , Tea , Ultrasonics
4.
Phytother Res ; 35(11): 6401-6416, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34585457

ABSTRACT

Although renal fibrosis is a common complication of chronic kidney disease (CKD), effective options for its treatment are currently limited. In this study, we evaluated the renal protective effect and possible mechanism of eleutheroside B. In order to solve the allergic reactions, side effects, and low oral bioavailability of eleutheroside B, we successfully prepared PLGA (poly [lactic-co-glycolic acid])-eleutheroside B nanoparticles (NPs) with the diameter of about 128 nm. In vitro and in vivo results showed that eleutheroside B could inhibit expression levels of α-smooth muscle actin (α-SMA) and collagen I. Molecular docking results showed that eleutheroside B bound to Smad3 and significantly decreased the expression of phospho-Smad3 (p-Smad3). Silencing Smad3 reversed the fibrotic protective effect of eleutheroside B in HK2 cells. Furthermore, small animal imaging showed that NPs can selectively accumulate in the UUO kidneys of mice, and retention time reached as long as 7 days. In conclusion, our results suggested that eleutheroside B is a potential drug to protect renal fibrosis and PLGA-eleutheroside B NPs could facilitate specific targeted therapy for renal fibrosis.


Subject(s)
Fibrosis , Kidney Diseases , Nanoparticles , Animals , Glucosides , Glycolates , Kidney Diseases/drug therapy , Mice , Molecular Docking Simulation , Phenylpropionates , Polylactic Acid-Polyglycolic Acid Copolymer , Smad3 Protein
5.
J Biomol Struct Dyn ; 39(17): 6553-6566, 2021 10.
Article in English | MEDLINE | ID: mdl-32757816

ABSTRACT

Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., popularly known as 'Siberian ginseng', is an important medicinal plant. Pharmacologically active compounds of this plant are called eleutherosides and among them, eleutheroside B is the most prevalent. The E. senticosus has been reported to have many medicinal properties however; very few studies are reported to understand the medicinal properties of eleutheroside B. Consequently, in the present study various computational tools have been used to predict the drug-likeness, bioactivities, and pharmacokinetic properties of eleutheroside B. Besides, the inhibitory potential of eleutheroside B has been investigated against cyclooxygenase 2 (COX-2) enzyme. This study suggests that eleutheroside B is a drug-like compound with bioactivity score (-0.08 to 0.38), having satisfactory pharmacokinetic values. Metabolism and toxicities were further studied using FAME3, GLORY, pred-hERG and Endocrine Disruptome tools. No severe toxicities (Ames, hepatotoxicity, cardiotoxicity, skin sensitization) were predicted. Rat acute toxicity, ecotoxicity and cell line cytotoxicity were evaluated based on GUSAR and CLC-pred. The compound has been predicted as non-toxic (class 5), non-hERG inhibitor and less likely to cause adverse drug interactions. Molecular docking against COX-2 enzyme revealed strong hydrogen bonds (SER530, TYR355, LEU352, SER353, VAL349, TYR385, MET522) and hydrophobic interaction (LEU352) with eleutheroside B. The docking score (-6.97 kcal/mol) suggested that this molecule can be utilized as an anti-inflammatory agent as well as a potential anticancer drug in the future. Hence, this is a comprehensive integrated in silico approach to establish the anti-inflammatory mechanism of eleutheroside B in the background of its potential in future drug development.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Eleutherococcus , Glucosides/pharmacology , Phenylpropionates/pharmacology , Animals , Cyclooxygenase 2 , Molecular Docking Simulation , Plant Extracts/pharmacology , Rats
6.
Chin J Integr Med ; 27(7): 534-541, 2021 Jul.
Article in English | MEDLINE | ID: mdl-31784933

ABSTRACT

OBJECTIVE: To study the antidepressant-like effect and action mechanism of geniposide and eleutheroside B combination treatment on the lipopolysaccharide (LPS)-induced depression mice model. METHODS: Depression mice model was established by lipopolysaccharide (LPS) injection. Totally 48 mice were randomly divided into 6 groups (8 rats per group) according to a random number table, including normal, model, fluoxetine (20 mg/kg), geniposide (100 mg/kg) + eleutheroside B (100 mg/kg), geniposide + eleutheroside B + WAY 100635 (0.03 mg/kg), geniposide + eleutheroside B+ N-methyl-D-aspartic acid receptor (NMDA, 75 mg/kg) groups, respectively. After continuous administration for 10 days, autonomic activity tests after 30 min of administration were performed on the 10th day. On the 11th day, except for the normal group, the mice in the other groups were intraperitoneally injected with LPS (1 mg/kg), and the behavioral tests were performed 4 h later. Enzyme linked immunosorbent assay was used to detect tumor necrosis factor alpha (TNF- α) and interleukin-1 ß (IL-1 ß) levels in mice serum. The mRNA expression of indoleamine 2,3-dioxygenase (IDO) and nuclear transcription factor (NF- κB) were detected by real-time quantitative polymerase chain reaction. Western-blot analysis was used to detect IDO and NF- κB protein expressions in hippocampus tissue. RESULTS: Compared with the normal group, a single administration of LPS increased the immobility time in the forced swimming test (FST) and tail suspension test (TST, P<0.01), without affecting autonomous activity. Compared with the model group, fluoxetine and geniposide + eleutheroside B administration significantly improved the immobility time of depressed mice in the FST and TST, decreased serum IL-1 ß content, inhibited the expression levels of NF- κ B gene and protein in hippocampus tissues (P<0.05 or P<0.01). Compared with the model group, geniposide + eleutheroside B treatment significantly reduced serum TNF-α content and inhibited IDO mRNA and protein expressions in hippocampus (P<0.05 or P<0.01). In addition, NMDA partly prevented the inhibition of IDO mRNA expression by geniposide + eleutheroside B; NMDA and WAY-100635 also partly prevented the reduction of IL-1 ß content induced by geniposide + eleutheroside B treatment (P<0.05 or P<0.01). CONCLUSIONS: The combination of geniposide and eleutheroside B showed a certain antidepression-like effect. Its main mechanism of action may be contributed to inhibiting the activation of NF- κB, decreasing the proinflammatory cytokines such as TNF-α, IL-1 ß, and inhibiting in the neuroinflammatory reaction. Additionally, it also affects tryptophan metabolism, reduces the expression of a key enzyme of tryptophan metabolism, IDO. And this antidepressant-like effect may be mediated by 5-hydroxytryptamine and glutamate systems.


Subject(s)
Depression , Lipopolysaccharides , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/chemically induced , Depression/drug therapy , Glucosides , Iridoids , Mice , Mice, Inbred ICR , NF-kappa B , Phenylpropionates , Rats , Tumor Necrosis Factor-alpha/genetics
7.
Food Chem ; 141(3): 2426-33, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23870977

ABSTRACT

An ionic liquids-based ultrasonic-assisted extraction (ILUAE) method was successfully developed for extracting eleutheroside B and E from Radix Acanthopanax senticosus. Thirteen 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-butyl-3-methylimidazolium bromide ([C4mim]Br) solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, soaking time, ultrasonic power, ultrasonic time, solid-liquid ratio and number of extraction cycles, were optimized. With the proposed method, the energy consumption time was reduced to 30 min, whereas conventional method requires about 4h. The proposed method had good recovery (97.96-103.39%) and reproducibility (RSD, n=5; 3.3% for eleutheroside B, 4.6% for eleutheroside E). ILUAE was an efficient, rapid and simple sample preparation technique that showed high reproducibility and was environmental friendly.


Subject(s)
Chemical Fractionation/methods , Eleutherococcus/chemistry , Glucosides/isolation & purification , Lignans/isolation & purification , Phenylpropionates/isolation & purification , Plant Extracts/isolation & purification , Ultrasonics/methods , Chemical Fractionation/instrumentation , Chromatography, High Pressure Liquid , Glucosides/analysis , Ionic Liquids/chemistry , Lignans/analysis , Phenylpropionates/analysis , Plant Extracts/analysis
8.
Neural Regen Res ; 8(12): 1103-12, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-25206404

ABSTRACT

Eleutheroside B or E, the main component of Acanthopanax, can relieve fatigue, enhance memory, and improve human cognition. Numerous studies have confirmed that high doses of acetylcholine significantly attenuate clinical symptoms and delay the progression of Alzheimer's disease. The present study replicated a rat model of aging induced by injecting quinolinic acid into the hippocampal CA1 region. These rats were intraperitoneally injected with low, medium and high doses of eleutheroside B or E (50, 100, 200 mg/kg), and rats injected with Huperzine A or PBS were used as controls. At 4 weeks after administration, behavioral tests showed that the escape latencies and errors in searching for the platform in a Morris water maze were dose-dependently reduced in rats treated with medium and high-dose eleutheroside B or E. Hematoxylin-eosin staining showed that the number of surviving hippocampal neurons was greater and pathological injury was milder in three eleutheroside B or E groups compared with model group. Hippocampal homogenates showed enhanced cholinesterase activity, and dose-dependent increases in acetylcholine content and decreases in choline content following eleutheroside B or E treatment, similar to those seen in the Huperzine A group. These findings indicate that eleutheroside B or E improves learning and memory in aged rats. These effects of eleutheroside B or E may be mediated by activation of cholinesterase or enhanced reuse of choline to accelerate the synthesis of acetylcholine in hippocampal neurons.

SELECTION OF CITATIONS
SEARCH DETAIL