Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(1): 33-41, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35224923

ABSTRACT

Understanding changes in soil enzyme activities and ecoenzymatic stoichiometry is important for assessing soil nutrient availability and microbial nutrient limitation in mountain ecosystems. However, the variations of soil microbial nutrient limitation across elevational gradients and its driving factors in subtropical mountain forests are still unclear. In this study, we measured soil properties, microbial biomass, and enzyme activities related to carbon (C), nitrogen (N), and phosphorus (P) cycling in Pinus taiwanensis forests at different altitudes of Wuyi Mountains. By analyzing the enzyme stoichiometric ratio, vector length (VL), and vector angle (VA), the relative energy and nutrient limitation of soil microorganisms and its key regulatory factors were explored. The results showed that ß-glucosaminidase (BG) activities increased along the elevational gradient, while the activities of ß-N-acetyl glucosaminidase (NAG), leucine aminopeptidase (LAP), acid phosphatase (AcP) and (NAG+LAP)/microbial biomass carbon (MBC) and AcP/MBC showed the opposite trend. Enzyme C/N, enzyme C/P, enzyme N/P, and VL were enhanced with increasing elevation, while VA decreased, indicating a higher degree of microbial P limitation at low elevation and higher C limitation at high elevation. In addition, our results suggested that dissolved organic carbon and microbial biomass phosphorus are critical factors affecting the relative energy and nutrient limitation of soil microorganisms at different elevations. The results would provide a theoretical basis for the responses of soil carbon, nitrogen, and phosphorus availability as well as the relative limitation of microbial energy and nutrition to elevational gradients, and improve our understanding of soil biogeochemical cycle process in subtropical montane forest ecosystems.


Subject(s)
Pinus , Soil , Carbon/analysis , China , Ecosystem , Forests , Nitrogen/analysis , Phosphorus/analysis , Soil Microbiology
2.
Sci Total Environ ; 622-623: 1463-1475, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29890611

ABSTRACT

Elevation is a complex environmental factor altering temperature, light, moisture and soil nutrient availability, and thus may affect plant growth and physiology. Such effects of elevation may also depend on seasons. Along an elevational gradient of the Balang Mountain, southwestern China, we sampled soil and 2-year old leaves, 2-year old shoots, stem sapwood and fine roots (diameter<5mm) of Quercus aquifolioides at 2843, 2978, 3159, 3327, 3441 and 3589m a.s.l. in both summer and winter. In summer, the concentrations of tissue non-structural carbohydrates (NSC) did not decrease with increasing elevation, suggesting that the carbon supply is sufficient for plant growth at high altitude in the growing season. The concentration of NSC in fine roots decreased with elevation in winter, and the mean concentration of NSC across tissues in a whole plant showed no significant difference between the two sampling seasons, suggesting that the direction of NSC reallocation among plant tissues changed with season. During the growing season, NSC transferred from leaves to other tissues, and in winter NSC stored in roots transferred from roots to aboveground tissues. Available soil N increased with elevation, but total N concentrations in plant tissues did not show any clear elevational pattern. Both available soil P and total P concentrations in all plant tissues decreased with increasing elevation. Thus, tissue N:P ratio increased with elevation, suggesting that P may become a limiting element for plant growth at high elevation. The present study suggests that the upper limit of Q. aquifolioides on Balang Mountain may be co-determined by winter root NSC storage and P availability. Our results contribute to better understanding of the mechanisms for plants' upper limit formation.


Subject(s)
Altitude , Environmental Monitoring , Quercus/physiology , Soil/chemistry , Carbohydrates , Carbon/analysis , China , Nitrogen/analysis , Phosphorus/analysis
3.
Sci China Life Sci ; 59(11): 1177-1186, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27601034

ABSTRACT

Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.


Subject(s)
Bacteria/genetics , Ecosystem , Genetic Variation/genetics , Soil Microbiology , Trees/growth & development , Altitude , Bacteria/classification , Bacteria/growth & development , Carbon/analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Hydrogen-Ion Concentration , Nitrogen/analysis , Phosphorus/analysis , Sequence Analysis, DNA , Soil/chemistry , Temperature , Trees/classification
4.
Ann Bot ; 117(7): 1111-20, 2016 06.
Article in English | MEDLINE | ID: mdl-27192710

ABSTRACT

BACKGROUND AND AIMS: Although plant distribution patterns are well documented, our understanding of the ecophysiological mechanisms that control the geographical ranges of plant species remains poor. We used a largely ignored method, the performance of the male gametophyte in vitro, to assess whether the thermal range of pollen germination and tube growth controls species distribution ranges, in this case along an elevational gradient. METHODS: Using in vitro pollen germination experiments, we obtained cardinal temperatures (minimal, optimal and maximal) of pollen germination and pollen tube growth for 25 herbaceous species along a mean annual temperature gradient of about 5 °C. These temperatures were correlated with temperatures of the sites where the species were collected. The presence of a phylogenetic signal in the data set as well as an effect of species flowering phenology were also estimated. KEY RESULTS AND CONCLUSIONS: We found a strong positive relationship between temperature conditions at our collection sites and the minimum temperature for both pollen germination and pollen tube growth. In addition, a significant correlation between maximum temperature of pollen tube growth and temperature of flowering month was apparent. We conclude that the restriction of pollen germination and growth by low temperatures is an important contributor to the climatic restriction of plant species distributions. Improved knowledge of this thermal precursor to seed production could, from a functional perspective, enhance our understanding of species distributions along climatic gradients and our ability to predict how anthropogenic climate change might affect plant community composition.


Subject(s)
Germination/physiology , Pollen/physiology , Ecosystem , Flowers/physiology , Germany , Phylogeny , Pollen Tube/growth & development , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL