Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 72(2): 1017-1024, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170676

ABSTRACT

Locally sourced waste cooking oil (WCO) was successfully base-catalyzed and transesterified with methanol into biodiesel to produce biostimulant (nitrobenzene) formulations and replace high-risk carrier solvents. Ideal synthesis conditions were composed of 1% NaOH, MeOH/oil molar ratio (6:1), reaction temperature (65 °C), a 3 h mixing rate, and 97-98% yields. Gas chromatography-mass spectrometry (GC-MS) analysis identified five fatty acid methyl esters (FAMEs) including palmitic, linoleic, oleic, stearic, and eicosenoic acids with high solubilization and olfactory characteristics. Using anionic and nonionic emulsifiers in conjunction with recycled biodiesel, a stable emulsifiable concentrate (NB 35% EC) was created with greater storage stability, wettability, and spreading capabilities than those of organic solvent-based ones. The highest counts of fruits per plant (35.80), flowers per plant (60.00), yield per plant (3.56 kg), and yield per hectare (143.7 quintals) were recorded in treatments with 4 mL/L biodiesel-based EC in field bioassays. In addition to having superior biosafety, FAME-based EC exhibits minimal phytotoxicity and is less harmful to aquatic creatures. It was discovered that the average cost-effectiveness was 5.49 times less expensive than solvent-based EC. In order to utilize waste oils as a locally obtained, sustainable alternative solvent with a wide solubilization range, low ecotax profile, circular economy, and high renewable carbon index, this integrative technique was expanded.


Subject(s)
Biofuels , Plant Oils , Plant Oils/chemistry , Solvents , Esterification , Biofuels/analysis , Fatty Acids/chemistry , Cooking , Catalysis
2.
Biomed Chromatogr ; 30(11): 1721-1727, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27106875

ABSTRACT

This study was conducted to characterize the residual level and perform a risk assessment on buprofezin formulated as an emulsifiable concentrate, wettable powder, and suspension concentrate over various treatment schedules in plum (Prunus domestica). The samples were extracted with an AOAC quick, easy, cheap, effective, rugged, and safe, 'QuEChERS', method after major modifications. As intrinsic interferences were observed in blank plum samples following dispersive-solid phase extraction (consisting of primary secondary amine and C18 sorbents), amino cartridges were used for solid-phase extraction. Analysis was carried out using liquid chromatography with diode array detection and confirmed by liquid chromatography-tandem mass spectrometry. The method showed excellent linearity with determination coefficient (R2 = 1) and satisfactory recoveries (at two spiking levels, 0.5 and 2.5 mg/kg) between 90.98 and 94.74% with relative standard deviation (RSD) ≤8%. The limit of quantification (0.05 mg/kg) was considerably lower than the maximum residue limit (2 mg/kg) set by the Codex Alimentarius. Absolute residue levels for emulsifiable concentrates were highest, perhaps owing to the dilution rate and adjuvant. Notably, all formulation residues were lower than the maximum residue limit, and safety data proved that the fruits are safe for consumers. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Food Contamination/analysis , Pesticides/analysis , Prunus domestica/chemistry , Tandem Mass Spectrometry/methods , Thiadiazines/analysis , Chromatography, High Pressure Liquid/methods , Prunus domestica/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL