Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
Add more filters

Publication year range
1.
Foods ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611347

ABSTRACT

Hypertension is the crucial modifiable risk factor for cardiovascular diseases, and efforts to identify functional foods that are effective for hypertension control are increasing. The nutgall tree (NT, Rhus chinensis Mill.) is used in traditional medicine and food because of its medicinal value. However, the role of NT in hypertension has not been investigated. Therefore, the hypotensive effect of NT leaf ethanol extract (NTE) was investigated in spontaneously hypertensive rats (SHRs). SHRs were allocated to three groups (control, 300, or 1000 mg/kg NTE), and blood pressure was measured before and after oral administration. Systolic and diastolic blood pressure significantly decreased in the NTE 1000 mg/kg group and was the lowest at 2 h after administration (-26.4 ± 10.3, -33.5 ± 9.8%, respectively). Daily NTE administration for five days also resulted in a similar effect. Further, the vasorelaxant effects and related mechanisms were investigated in the aortas of Sprague Dawley rats. NTE showed the dose-dependent blood-vessel-relaxing effect, and its mechanism involves the NO-sGC-cGMP pathway, activation of K+ channels, and reduction in the vasoconstrictive action of angiotensin II. Therefore, our study provides basic data indicating the potential use of NTE as a functional food for high blood pressure.

2.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474581

ABSTRACT

Endothelial pro-inflammatory activation is pivotal in cardiac ischemia-reperfusion (I/R) injury pathophysiology. The dried flower bud of Edgeworthia gardneri (Wall.) Meisn. (EG) is a commonly utilized traditional Tibetan medicine. However, its role in regulating endothelium activation and cardiac I/R injury has not been investigated. Herein, we showed that the administration of EG ethanolic extract exhibited a potent therapeutic efficacy in ameliorating cardiac endothelial inflammation (p < 0.05) and thereby protecting against myocardial I/R injury in rats (p < 0.001). In line with the in vivo findings, the EG extract suppressed endothelial pro-inflammatory activation in vitro by downregulating the expression of pro-inflammatory mediators (p < 0.05) and diminishing monocytes' firm adhesion to endothelial cells (ECs) (p < 0.01). Mechanistically, we showed that EG extract inhibited the nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways to attenuate EC-mediated inflammation (p < 0.05). Collectively, for the first time, this study demonstrated the therapeutic potential of EG ethanolic extract in alleviating I/R-induced inflammation and the resulting cardiac injury through its inhibitory role in regulating endothelium activation.


Subject(s)
Myocardial Reperfusion Injury , Thymelaeaceae , Rats , Animals , Endothelial Cells/metabolism , NF-kappa B/metabolism , Inflammation/drug therapy , Plant Extracts/pharmacology , Myocardial Reperfusion Injury/drug therapy , Endothelium/metabolism , Thymelaeaceae/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
SAGE Open Med Case Rep ; 12: 2050313X241236148, 2024.
Article in English | MEDLINE | ID: mdl-38495732

ABSTRACT

The pathophysiology of the virus causing coronavirus disease 2019, the cytokine storm and severe vasculitis is well known. Diabetic patients and those with microcirculation issues are at risk of complications when diagnosed with coronavirus disease 2019. Calcium dobesilate has been used extensively for microangiopathy, diabetic retinopathy, chronic venous insufficiency, hemorrhoidal and post-thrombotic syndromes. We administered calcium dobesilate to several patients in our coronavirus disease hospital; documenting disease progression outcomes relating to cessation of disease worsening, reduction in glucocorticoid dose and oxygen. We present two case reports: patient 1 with acute and patient 2 with sub-acute coronavirus disease 2019; both patients received standard of care plus calcium dobesilate. Patient 1 achieved clinical, radiographic and laboratory improvements. Patient 2 derived calcium dobesilate benefits during the acute phase of coronavirus disease 2019 negating the need for supplemental oxygen and dose increases of dexamethasone. Further research is required to support the use of calcium dobesilate in coronavirus disease 2019 patients.

4.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338944

ABSTRACT

We aimed to test how the postbiotic butyrate impacts select gut bacteria, small intestinal epithelial integrity, and microvascular endothelial activation during acute ethanol exposure in mice and primary human intestinal microvascular endothelial cells (HIMECs). Supplementation during an acute ethanol challenge with or without tributyrin, a butyrate prodrug, was delivered to C57BL/6 mice. A separate group of mice received 3 days of clindamycin prior to the acute ethanol challenge. Upon euthanasia, blood endotoxin, cecal bacteria, jejunal barrier integrity, and small intestinal lamina propria dendritic cells were assessed. HIMECs were tested for activation following exposure to ethanol ± lipopolysaccharide (LPS) and sodium butyrate. Tributyrin supplementation protected a butyrate-generating microbe during ethanol and antibiotic exposure. Tributyrin rescued ethanol-induced disruption in jejunal epithelial barrier, elevated plasma endotoxin, and increased mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1) expression in intestinal microvascular endothelium. These protective effects of tributyrin coincided with a tolerogenic dendritic response in the intestinal lamina propria. Lastly, sodium butyrate pre- and co-treatment attenuated the direct effects of ethanol and LPS on MAdCAM-1 induction in the HIMECs from a patient with ulcerative colitis. Tributyrin supplementation protects small intestinal epithelial and microvascular barrier integrity and modulates microvascular endothelial activation and dendritic tolerizing function during a state of gut dysbiosis and acute ethanol challenge.


Subject(s)
Endothelial Cells , Ethanol , Mice , Humans , Animals , Ethanol/pharmacology , Butyric Acid/pharmacology , Butyric Acid/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Intestinal Mucosa/metabolism
5.
Phytother Res ; 38(5): 2182-2197, 2024 May.
Article in English | MEDLINE | ID: mdl-38414287

ABSTRACT

Excessive reactive oxygen species production during acute lung injury (ALI) will aggravate the inflammatory process and endothelial barrier dysfunction. Carnosol is a natural phenolic diterpene with antioxidant and anti-inflammatory properties, but its role in treating sepsis-induced ALI remains unclear. This study aims to explore the protective effects and underlying mechanisms of carnosol in sepsis-induced ALI. C57BL/6 mouse were preconditioned with carnosol for 1 h, then the model of lipopolysaccharide (LPS)-induced sepsis was established. The degree of pulmonary edema, oxidative stress, and inflammation were detected. Endothelial barrier function was evaluated by apoptosis and cell junctions. In vitro, Mito Tracker Green probe, JC-1 staining, and MitoSOX staining were conducted to investigate the effect of carnosol on mitochondria. Finally, we investigated the role of nuclear factor-erythroid 2-related factor (Nrf2)/sirtuin-3 (SIRT3) in carnosol against ALI. Carnosol alleviated LPS-induced pulmonary oxidative stress and inflammation by inhibiting excess mitochondrial reactive oxygen species production and maintaining mitochondrial homeostasis. Furthermore, carnosol also attenuated LPS-induced endothelial cell barrier damage by reducing vascular endothelial cell apoptosis and restoring occludin, ZO-1, and vascular endothelial-Cadherin expression in vitro and in vivo. In addition, carnosol increased Nrf2 nuclear translocation to promote SIRT3 expression. The protective effects of carnosol on ALI were largely abolished by inhibition of Nrf2/SIRT3. Our study has provided the first evidence that the Nrf2/SIRT3 pathway is a protective target of the endothelial barrier in ALI, and carnosol can serve as a potential therapeutic candidate for ALI by utilizing its ability to target this pathway.


Subject(s)
Abietanes , Acute Lung Injury , NF-E2-Related Factor 2 , Oxidative Stress , Reactive Oxygen Species , Sepsis , Signal Transduction , Animals , Male , Mice , Abietanes/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Antigens, CD , Antioxidants/pharmacology , Apoptosis/drug effects , Cadherins/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Inflammation/drug therapy , Lipopolysaccharides/adverse effects , Lung/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sepsis/complications , Sepsis/drug therapy , Signal Transduction/drug effects , Sirtuin 3/metabolism
6.
Chin J Integr Med ; 30(5): 387-397, 2024 May.
Article in English | MEDLINE | ID: mdl-38302647

ABSTRACT

OBJECTIVE: To develop an interference-free and rapid method to elucidate Guanxin II (GX II)'s representative vasodilator absorbed bioactive compounds (ABCs) among enormous phytochemicals. METHODS: The contents of ferulic acid, tanshinol, and hydroxysafflor yellow A (FTA) in GX II/rat serum after the oral administration of GX II (30 g/kg) were detected using ultra-performance liquid chromatography-mass spectrometry. Totally 18 rats were randomly assigned to the control group (0.9% normal saline), GX II (30 g/kg) and FTA (5, 28 and 77 mg/kg) by random number table method. Diastolic coronary flow velocity-time integral (VTI), i.e., coronary flow or coronary flow-mediated dilation (CFMD), and endothelium-intact vascular tension of isolated aortic rings were measured. After 12 h of exposure to blank medium or 0.5 mmol/L H2O2, endothelial cells (ECs) were treated with post-dose GX II of supernatant from deproteinized serum (PGSDS, 300 µL PGSDS per 1 mL of culture medium) or FTA (237, 1539, and 1510 mg/mL) for 10 min as control, H2O2, PGSDS and FTA groups. Nitric oxide (NO), vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), superoxide dismutase (SOD), malondialdehyde (MDA) and phosphorylated phosphoinositide 3 kinase (p-PI3K), phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS) were analyzed. PGSDS was developed as a GX II proxy of ex vivo herbal crude extracts. RESULTS: PGSDS effectively eliminates false responses caused by crude GX II preparations. When doses equaled the contents in GX II/its post-dose serum, FTA accounted for 98.17% of GX II -added CFMD and 92.99% of PGSDS-reduced vascular tension. In ECs, FTA/PGSDS was found to have significant antioxidant (lower MDA and higher SOD, P<0.01) and endothelial function-protective (lower VEGF, ET-1, P<0.01) effects. The increases in aortic relaxation, endothelial NO levels and phosphorylated PI3K/Akt/eNOS protein induced by FTA/PGSDS were markedly abolished by NG-nitro-L-arginine methyl ester (L-NA, eNOS inhibitor) and wortmannin (PI3K/AKT inhibitor), respectively, indicating an endothelium-dependent vasodilation via the PI3K/AKT-eNOS pathway (P<0.01). CONCLUSION: This study provides a strategy for rapidly and precisely elucidating GX II's representative in/ex vivo cardioprotective absorbed bioactive compounds (ABCs)-FTA, suggesting its potential in advancing precision ethnomedicine.


Subject(s)
Endothelium, Vascular , Vasodilation , Animals , Vasodilation/drug effects , Male , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Rats, Sprague-Dawley , Rats , Proto-Oncogene Proteins c-akt/metabolism , Nitric Oxide/metabolism , Vasodilator Agents/pharmacology , Vasodilator Agents/pharmacokinetics , Coumaric Acids/pharmacology , Coumaric Acids/pharmacokinetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Nitric Oxide Synthase Type III/metabolism
7.
J Tradit Complement Med ; 14(1): 40-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223805

ABSTRACT

Background and aim: Zhilong Huoxue Tongyu (ZL) capsule is a classical traditional Chinese medicine (TCM) with satisfactory curative effects. Endothelial cell (EC) dysfunction plays an important role during myocardial fibrosis (MF). But the therapeutic effect of ZL capsule on EC dysfunction remains unknown in the development of MF. This study aims to investigate the effect of ZL capsule on EC dysfunction during MF in vivo. Experimental procedure: The model of MF is established in vivo by injecting isoproterenol for 14 days, simultaneously, we examined the therapeutic effect of ZL capsule on MF in vivo. An integrative approach combining biomarker examination, echocardiography and myocardial fibrosis condition using Hematoxylin-eosin staining, Masson staining, and Sirius red staining were performed to assess the efficacy of ZL capsule against MF. Subsequently, comprehensive immunofluorescence staining was performed to evaluate the therapeutic effect of ZL capsule on EC dysfunction. Results and conclusion: Prior to experiments, analysis of the published single-cell sequencing data was performed and it was discovered that EC dysfunction plays an important role. Further pharmacological results showed that ZL capsule could alleviate fibrosis injury and collagen fiber deposition. The mechanism investigation results showed that the endothelial-to-mesenchymal transition (EndMT) and MHC class-II (MHC-II) expression in EC were improved. In addition, ZL capsule can attenuate the inflammatory response during MF by intervening the activation of CD4+T cell mediated by EC. For the first time, we provided evidence that ZL capsule could improve MF by alleviating EC dysfunction via the regulation of EndMT and expression of MHC-II. Taxonomy classification by evise: Myocardial fibrosis, Chinese Herbal Medicine, Traditional Medicine, Endothelium, dysfunction, Endothelial-to-mesenchymal transition.

8.
Clin Nutr ESPEN ; 59: 194-207, 2024 02.
Article in English | MEDLINE | ID: mdl-38220376

ABSTRACT

BACKGROUND AND PURPOSE: A number of studies have examined the impact of curcumin/turmeric on blood pressure and the factors allegedly responsible for hypertension. In this systematic review and meta-analysis, we tried to sum up the existing literature on randomized controlled trials (RCTs) investigating this hypothesis. METHODS: Online databases (PubMed, Scopus, Web of Science Core Collection, Cochrane Library, and Google Scholar) were searched from inception up to October 2022. We used the cochrane quality assessment tool to evaluate the risk of bias. Outcomes of interest included systolic blood pressure (SBP), diastolic blood pressure (DBP), blood levels of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), flow-mediated vasodilation (FMD), and pulse-wave velocity (PWV). Weighted mean differences (WMDs) were derived and reported. In case of significant between-study heterogeneity, subgroup analyses were carried out. Significance level was considered as P-values<0.05. RESULTS: Finally, 35 RCTs out of 4182 studies were included. Our findings suggested that curcumin/turmeric supplementation significantly improved SBP (WMD: -2.02 mmHg; 95 % CI: -2.85, -1.18), DBP (WMD: -0.82 mmHg; 95 % CI: -1.46, -0.18), VCAM-1 (WMD: -39.19 ng/mL; 95 % CI: -66.15, -12.23), and FMD (WMD: 2.00 %; 95 % CI: 1.07, 2.94). However, it did not significantly change levels of ICAM-1 (WMD: -17.05 ng/ml; 95 % CI: -80.79, 46.70), or PWV (WMD: -79.53 cm/s; 95 % CI: -210.38, 51.33). CONCLUSION: It seems that curcumin/turmeric supplementation could be regarded as a complementary method to improve blood pressure and endothelial function. However, further research is needed to clarify its impact on inflammatory adhesion molecules in the circulation.


Subject(s)
Curcumin , Humans , Blood Pressure , Curcumin/pharmacology , Curcuma , Vascular Cell Adhesion Molecule-1 , Intercellular Adhesion Molecule-1 , Dietary Supplements , Randomized Controlled Trials as Topic
9.
Eur J Clin Invest ; 54(2): e14109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37859571

ABSTRACT

INTRODUCTION: N-3 polyunsaturated fatty acids (PUFAs) supplementation has been reported to have an impact on flow-mediated dilatation (FMD), a conventionally used clinical technique for estimating endothelial dysfunction. However, its proven effects on endothelial function are unclear. This systematic review and meta-analysis were conducted to evaluate the effects of n-3 PUFAs supplementation on FMD of the brachial artery. METHOD: This study was performed following the PRISMA guidelines. To identify eligible RCTs, a systematic search was completed in PubMed/Medline, Scopus and Web of Science using relevant keywords. A fixed- or random-effects model was utilized to estimate the weighted mean difference (WMD) and 95% confidence interval (95% CI). RESULTS: Thirty-two studies (with 35 arms) were included in this meta-analysis, involving 2385 subjects with intervention duration ranging from 4 to 48 weeks. The pooled meta-analysis demonstrated a significant effect of omega-3 on FMD (WMD = 0.8%, 95% CI = 0.3-1.3, p = .001) and heterogeneity was significant (I2 = 82.5%, p < .001). CONCLUSION: We found that n-3 PUFA supplementation improves endothelial function as estimated by flow-mediated dilatation of the brachial artery.


Subject(s)
Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Endothelium, Vascular , Brachial Artery/diagnostic imaging , Dietary Supplements
10.
Ann Pharm Fr ; 82(1): 84-95, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37572955

ABSTRACT

OBJECTIVES: To investigate the antihypertensive effect of crude extract of Chenopodium album (Ca.Cr), based on its medicinal use in hypertension. METHODS: Ca.Cr and its fractions were tested in-vivo in normotensive anesthetized rats for blood pressure-lowering effect. In-vitro experiments were performed on isolated rat aortae to explore the vascular mechanism(s). RESULTS: In normotensive anesthetized rats, Ca.Cr produced a dose-dependent (1-300mg/kg) fall (30%mmHg) in mean arterial pressure (MAP). Among the fractions, nHexane was the most potent (46% fall). In rat aortic rings precontracted with phenylephrine (PE), Ca.Cr and its fractions (except Ca.Aq) produced endothelium-dependent vasorelaxation, which was partially reversed with endothelium removal and by pretreating intact aortic rings with L-NAME (10µM) and atropine (1µM). This relaxation to Ca.Cr and fractions (nHexane, ethylacetate and chloroform) was also eliminated with indomethacin pretreatment, however, it unmasked a vasoconstriction effect with Ca.Cr only. Surprisingly, the aqueous fraction produced a calcium sensitive strong vasoconstriction instead of vasorelaxation. The crude extract and its fractions (except Ca.Aq) also antagonized vasoconstriction induced with high K+ (80mM), suggesting calcium antagonistic effect. The aqueous fraction produced mild vasorelaxation against high K+. This effect was further confirmed when pretreatment of the aortic rings with different concentrations of crude extract and fractions suppressed CaCl2 concentration response curves, similar to verapamil. In acute toxicity test, Ca.Cr extract was found safe up to 5g/kg body weight in mice. CONCLUSION: These findings suggest that crude extract and fractions of C. album produced vasorelaxant effect through muscarinic receptors linked-NO pathway, prostaglandin (endothelium-dependent) and calcium antagonism (endothelium-independent), which explains the blood pressure lowering effect of C. album in rats.


Subject(s)
Chenopodium album , Vasodilation , Rats , Animals , Mice , Blood Pressure , Chenopodium album/metabolism , Calcium/metabolism , Calcium/pharmacology , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Vasodilator Agents/pharmacology , Calcium Channel Blockers , Endothelium/metabolism , Endothelium, Vascular/metabolism
11.
J Nutr Biochem ; 124: 109531, 2024 02.
Article in English | MEDLINE | ID: mdl-37984733

ABSTRACT

Garlic (Allium sativum) is a functional food containing multiple bioactive compounds that find widespread applications in culinary and medicinal practices. It consists of multiple chemical components, including allicin and alliin. This article offers a comprehensive review of the protective effects of garlic extracts and their active constituents on the vascular system. In vitro and in vivo experiments have shown that garlic extracts and their active ingredients possess various bioactive properties. These substances demonstrate beneficial effects on blood vessels by demonstrating anti-inflammatory and antioxidant activities, inhibiting lipid accumulation and migration, preventing lipid peroxidation, promoting angiogenesis, reducing platelet aggregation, enhancing endothelial function, and inhibiting endothelial cell apoptosis. In clinical studies, garlic and its extracts have demonstrated their efficacy in managing vascular system diseases, including atherosclerosis, diabetes, and high cholesterol levels. In summary, these studies highlight the potential therapeutic roles and underlying mechanisms of garlic and its constituents in managing conditions like diabetes, atherosclerosis, ischemic diseases, and other vascular disorders.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Garlic , Humans , Garlic/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Diabetes Mellitus/drug therapy
12.
J Ethnopharmacol ; 322: 117567, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38122909

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Patients with ischemic stroke (IS) often continue to exhibit cerebral microcirculatory dysfunction even after receiving thrombolytic therapy. Enhancing the function of cerebral microvascular endothelia represents a pivotal advancement in the therapeutic strategy for ischemic microcirculatory disturbances. A traditional Chinese medicinal formulation named Shexiang Tongxin Dropping Pills (STDP), has been clinically employed to ameliorate microcirculatory abnormalities. Existing literature attests to the beneficial role of STDP on endothelial cells (ECs). Nevertheless, specific impacts and underlying mechanisms of STDP in rectifying IS-induced cerebral microvascular dysfunction warrant further exploration. AIM OF THE STUDY: This investigation seeks to delineate the effects of STDP on cerebral microvascular endothelial damage induced by ischemic stroke and to elucidate the underlying mechanism involved. MATERIALS AND METHODS: Middle cerebral artery occlusion and reperfusion (MCAO/R) technique was employed to established ischemic stroke model in mice. The therapeutic efficacy of STDP on cerebral microvascular function was assessed through laser speckle contrast imaging, behavioral assays, and histological evaluations. Biochemical markers in the brain tissue, including GSH, SOD, MDA, and ROS, were quantified using specific assay kits. In vitro study, oxygen-glucose deprivation and reperfusion (OGD/R) was performed in bEnd.3 cells. The cytoprotective potential of STDP was then evaluated by measuring cell viability, LDH activity, endothelial permeability, and oxidative stress parameters. Important targets in critical pathway were verified by immunoblotting and immunofluorescence both in mice brain slices and bEnd.3 cells. RESULTS: STDP decrease brain infarct size, repaired microvascular cerebral blood flow and attenuated neurological deficiency in MCAO/R mice. Moreover, STDP abolished MCAO/R-induced oxidative stress which was reflected by rescuing GSH content, restoration of SOD activity and T-AOC, reduction of MDA and ROS. Ex vivo, STDP increased cerebral microvascular endothelial cells viability, abolished oxidative stress and decreased their permeability after ODG/R. Mechanistically, STDP significantly suppressed endothelial ROS-TXNIP mediated the activation of NLRP3 inflammasome in vivo and in vitro. CONCLUSION: STDP improves ischemic stroke-induced cerebral microcirculatory deficits by regulating cerebral microvascular endothelial ROS/TXNIP/NLRP3 signaling pathway.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Ischemic Stroke , Reperfusion Injury , Humans , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Endothelial Cells/metabolism , Ischemic Stroke/metabolism , Reactive Oxygen Species/metabolism , Microcirculation , Signal Transduction , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Superoxide Dismutase/metabolism , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Carrier Proteins/metabolism
13.
Curr Res Toxicol ; 5: 100128, 2023.
Article in English | MEDLINE | ID: mdl-37808439

ABSTRACT

Glucosamine (GlcN) is the most used supplement for osteoarthritis treatment. In vitro studies have related GlcN to beneficial and detrimental effects on health. The aim of this study was to evaluate the effects of O-linked-N-acetylglucosaminylation (O-GlcNAc) on GlcN-induced ROS production and Nrf2 expression in human dermal microvascular endothelial cells-1 (HMEC-1) and to evaluate the antioxidant capacity of GlcN compared to well-known antioxidants. For this, we evaluate the antioxidant capacity by in vitro assays. Besides, the GlcN (5-20 mM) effects on cell viability, reactive oxygen species (ROS) production, O-GlcNAc, and nuclear factor erythroid-2-related factor 2 (Nrf2) expression with and without the O-GlcNAc inhibitor OSMI-1 (10 µM) in HMEC-1 were evaluated. GlcN showed high inhibitory concentration (low scavenging activity) against superoxide (O2•─, IC20 = 47.67 mM), 2,2-diphenyl-1-picrylhydrazyl (DPPH•, IC50 = 21.32 mM), and hydroxyl (HO•, IC50 = 14.04 mM) radicals without scavenging activity against hydrogen peroxide (H2O2) and low antioxidant capacity determined by oxygen radical absorbance capacity (ORAC, 0.001 mM Trolox equivalent) and ferric reducing antioxidant power (FRAP, 0.046 mM Trolox equivalent). In cell culture, GlcN (20 mM) reduced cell viability up to 26 % and induced an increase in ROS production (up to 70 %), O-GlcNAc (4-fold-higher vs. control), and Nrf2 expression (56 %), which were prevented by OSMI-1. These data suggest an association between O-GlcNAc, ROS production, and Nrf2 expression in HMEC-1 cells stimulated with GlcN.

14.
J Ocul Pharmacol Ther ; 39(8): 551-562, 2023 10.
Article in English | MEDLINE | ID: mdl-37733302

ABSTRACT

On February 24-27, 2021, the Association for Ocular Pharmacology and Therapeutics (AOPT) held its 15th biennial scientific meeting online. The meeting was organized by Dr. Sanjoy Bhattacharya of the University of Miami in conjunction with the board of trustees of the AOPT. The 3-day conference was attended by academic scientists, clinicians, and industry and regulatory professionals. The theme of the meeting was Restoring Vision through Regeneration and it was sponsored, in part, by the National Institutes of Health, Bright Focus, Regeneron, and Santen (USA). During the 3 days of the meeting, presentations from several sessions explored different aspects of regenerative medicine in ophthalmology, including optic nerve regeneration, drugs and devices in glaucoma, retinal neuroprotection and plasticity, visual perception, and degeneration of trabecular meshwork. This article summarizes the proceedings of the session on corneal regenerative medicine research and discusses emerging concepts in drug development for corneal epithelial and endothelial regeneration. Since the meeting in 2021, several of these concepts have advanced to clinical-stage therapies, but so far as of 2023, none has been approved by regional regulatory authorities in the United States. One form of corneal endothelial cell therapy has been approved in Japan and only for bullous keratopathy. Ongoing work is proceeding in the United States and other countries. Clinical Registration No: National Clinical Trials 04894110, 04812667; Japan Registry for Clinical Trials a031210199.


Subject(s)
Cornea , Regenerative Medicine , Retina , Biological Therapy , Drug Development
15.
Nutrients ; 15(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37571305

ABSTRACT

The most common and increasing causes of death worldwide are cardiovascular diseases (CVD). Taking into account the fact that diet is a key factor, it is worth exploring this aspect of CVD prevention and therapy. The aim of this article is to assess the potential of the ketogenic diet in the prevention and treatment of CVD. The article is a comprehensive, meticulous analysis of the literature in this area, taking into account the most recent studies currently available. The ketogenic diet has been shown to have a multifaceted effect on the prevention and treatment of CVD. Among other aspects, it has a beneficial effect on the blood lipid profile, even compared to other diets. It shows strong anti-inflammatory and cardioprotective potential, which is due, among other factors, to the anti-inflammatory properties of the state of ketosis, the elimination of simple sugars, the restriction of total carbohydrates and the supply of omega-3 fatty acids. In addition, ketone bodies provide "rescue fuel" for the diseased heart by affecting its metabolism. They also have a beneficial effect on the function of the vascular endothelium, including improving its function and inhibiting premature ageing. The ketogenic diet has a beneficial effect on blood pressure and other CVD risk factors through, among other aspects, weight loss. The evidence cited is often superior to that for standard diets, making it likely that the ketogenic diet shows advantages over other dietary models in the prevention and treatment of cardiovascular diseases. There is a legitimate need for further research in this area.


Subject(s)
Cardiovascular Diseases , Diet, Ketogenic , Humans , Diet, Ketogenic/methods , Cardiovascular Diseases/prevention & control , Lipids , Diet , Ketone Bodies/metabolism
16.
Front Physiol ; 14: 1176748, 2023.
Article in English | MEDLINE | ID: mdl-37168231

ABSTRACT

The study of the mechanisms of regulation of vascular tone is an urgent task of modern science, since diseases of the cardiovascular system remain the main cause of reduction in the quality of life and mortality of the population. Myography (isometric and isobaric) of isolated blood vessels is one of the most physiologically relevant approaches to study the function of cells in the vessel wall. On the one hand, cell-cell interactions as well as mechanical stretch of the vessel wall remain preserved in myography studies, in contrast to studies on isolated cells, e.g., cell culture. On the other hand, in vitro studies in isolated vessels allow control of numerous parameters that are difficult to control in vivo. The aim of this review was to 1) discuss the specifics of experimental design and interpretation of data obtained by myography and 2) highlight the importance of the combined use of myography with various complementary techniques necessary for a deep understanding of vascular physiology.

17.
J Tradit Complement Med ; 13(3): 219-225, 2023 May.
Article in English | MEDLINE | ID: mdl-37128198

ABSTRACT

Background and aim: The leaves of Garcinia cowa (G. cowa) are used in Thai traditional medicine to improve blood circulation. However, there is no scientific evidence to confirm this therapeutic claim. Here, we investigated the vasorelaxing effect and its underlying mechanisms of an aqueous extract of G. cowa leaves in rat thoracic aortic rings. Materials and methods: Dried leaves of G. cowa were extracted with water, followed by phytochemical analysis. Vascular reactivity experiments were performed in isolated rat thoracic aortic rings using an organ bath system. The results were recorded using the data acquisition system Power Lab. Results: Phytochemical analysis showed that the leaves of G. cowa are rich in polyphenols and flavonoids, especially kaempferol, vitexin, and isovitexin. The G. cowa leaf extract caused a concentration-dependent relaxation of aortic rings. This effect was attenuated by denudation of the endothelium, or by pre-treatment of the aortic rings with l-NAME, ODQ, indomethacin, or glibenclamide, but not with TEA. Conclusion: This study indicates that G. cowa leaf extract induces vasorelaxation through both endothelium-dependent and endothelium-independent manners. Its mechanism of action mainly involves the production of nitric oxide and prostanoids, as well as opening ATP-sensitive K+ channels. The vasorelaxing effect of G. cowa leaf extract is probable promoted by the action of flavonoids.

18.
J Ethnopharmacol ; 315: 116562, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37201663

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional medicine recommends the use of Rheum rhaponticum L. and R. rhabarbarum L. to treat over thirty complaints, including disorders related to the cardiovascular system such as heartache, pains in the pericardium, epistaxis and other types of haemorrhage, blood purification as well as disorders of venous circulation. AIM OF THE STUDY: This work was dedicated to examining for the first time the effects of extracts from petioles and roots of R. rhaponticum and R. rhabarbarum, as well as two stilbene compounds (rhapontigenin and rhaponticin) on the haemostatic activity of endothelial cells and functionality of blood plasma components of the haemostatic system. MATERIALS AND METHODS: The study was based on three main experimental modules, including the activity of proteins of the human blood plasma coagulation cascade and the fibrinolytic system as well as analyses of the haemostatic activity of human vascular endothelial cells. Additionally, interactions of the main components of the rhubarb extracts with crucial serine proteases of the coagulation cascade and fibrinolysis (i.e. thrombin, the coagulation factor Xa and plasmin) were analyzed in silico. RESULTS: The examined extracts displayed anticoagulant properties and significantly reduced the tissue factor-induced clotting of human blood plasma (by about 40%). Inhibitory effects of the tested extracts on thrombin and the coagulation factor Xa (FXa) were found as well. For the extracts, the IC50 was ranging from 20.26 to 48.11 µg/ml. Modulatory effects on the haemostatic response of endothelial cells, including the release of von Willebrand factor, tissue-type plasminogen activator and the plasminogen activator inhibitor-1, have been also found. CONCLUSIONS: Our results indicated for the first time that the examined Rheum extracts influenced the haemostatic properties of blood plasma proteins and endothelial cells, with the prevalence of the anticoagulant action. The anticoagulant effect of the investigated extracts may be partly attributed to the inhibition of the FXa and thrombin activities, the key serine proteases of the blood coagulation cascade.


Subject(s)
Hemostatics , Rheum , Humans , Thrombin , Factor Xa , Endothelial Cells , Anticoagulants/pharmacology , Serine Endopeptidases , Plasma
19.
Life (Basel) ; 13(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37109395

ABSTRACT

Data available in the literature on the use of herbal products to treat inflammation-related vascular diseases were considered in this study, while also assessing the influence of gender. To this end, the articles published in PubMed over the past 10 years that described the use of plant extracts in randomized clinical trials studying the effectiveness in vascular pathologies were analyzed. The difference in efficacy of plant-derived preparations in female and male subjects was always considered when reporting. The safety profiles of the selected plants were described, reporting unwanted effects in humans and also by searching the WHO database (VigiBase®). The medicinal plants considered were Allium sativum, Campomanesia xanthocarpa, Sechium edule, Terminalia chebula. Additionally, an innovative type of preparation consisting of plant-derived nanovesicles was also reported.

20.
Lasers Med Sci ; 38(1): 104, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37072603

ABSTRACT

Photobiomodulation therapy (PBMT) causes stimulatory effects that raise cell metabolism. The study aimed to evaluate the effects of PBMT on the endothelial function of healthy individuals. It was a controlled, randomized, crossover, triple-blind trial with 22 healthy volunteers (female: 77.3%), aged 25.45 years which were randomly divided into three groups. PBMT with gallium-aluminum-arsenide (GaAlAs) diode laser (810 nm, continuous-wave mode, 1000 mW, 0.28 cm2) was applied over the radial and ulnar artery regions in two parallel spots: group 1-30 J (n = 22, 107 J/cm2) per spot; group 2-60 J (n = 22, 214 J/cm2) per spot; and group 3-placebo (n = 22, sham). The endothelial function was measured before and immediately after PBMT by the flow-mediated dilation technique (%FMD) with high-resolution ultrasound. Statistical analysis was made with ANOVA for repeated measures, the effect size was measured by Cohen's d, and results are presented as mean and standard error (or 95% confidence intervals). A p-value < 0.05 was considered statistically significant. The %FMD increases 10.4% with 60 J (mean difference = 0.496 mm, 95% CI = 0.42 to 0.57, p < 0.001), 7.3% with 30 J (mean difference = 0.518 mm, 95% CI = 0.44 to 0.59, p < 0.001), and 4.7% with placebo (mean difference = 0.560 mm, 95% CI = 0.48 to 0.63, p < 0.001). We found a small effect size (p = 0.702; d de Cohen = 0.24) without statistical difference between interventions. PBMT with the energy density of 60 J and 30 J did not improve endothelial function.Trial registration number: NCT03252184 (01/09/2017).


Subject(s)
Low-Level Light Therapy , Humans , Female , Low-Level Light Therapy/methods , Lasers, Semiconductor/therapeutic use , Research Design , Cross-Over Studies
SELECTION OF CITATIONS
SEARCH DETAIL