Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
ACS Appl Mater Interfaces ; 16(12): 14722-14741, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497196

ABSTRACT

Energy harvesting and storing by dual-functional photoenhanced (photo-E) energy storage devices are being developed to battle the current energy hassles. In this research work, our investigations on the photoinduced efficiency of germanane (Ge-H) and its functionalized analogue cyanoethyl (Ge-C2-CN) are assessed as photocathodes in photo-E hybrid zinc-ion capacitors (ZICs). The evaluated self-powered photodetector devices made by these germanene-based samples revealed effective performances in photogenerated electrons and holes. The photo-E ZICs findings provided a photoinduced capacitance enhancement of ∼52% (for Ge-H) and ∼26% (for Ge-C2-CN) at a scan rate of 10 mV s-1 under 100 mW cm-2 illumination with 435 nm wavelength. Further characterizations demonstrated that the photo-E ZIC with Ge-C2-CN supply higher specific capacitance (∼6000 mF g-1), energy density (∼550 mWh kg-1), and power density (∼31,000 mW kg-1), compared to the Ge-H. In addition, capacitance retention of photo-E ZIC with Ge-C2-CN is ∼91% after 3000 cycles which is almost 6% greater than Ge-H. Interestingly, the photocharging voltage response in photo-E ZIC made by Ge-C2-CN is 1000 mV, while the photocharging voltage response with Ge-H is approximately 970 mV. The observed performances in Ge-H-based photoactive cathodes highlight the pivotal role of such two-dimensional materials to be applied as single architecture in new unconventional energy storage systems. They are particularly noteworthy when compared to the other advanced photo-E supercapacitors and could even be enhanced greatly with other suitable inorganic and organic functional precursors.

2.
ACS Appl Mater Interfaces ; 16(3): 4089-4098, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38268145

ABSTRACT

Flexible electrothermal composite phase change materials (PCMs) are promising candidates for portable thermotherapy. However, a great challenge remains to achieve high PCM loading while maintaining reasonable flexibility. Herein, the polypyrrole-decorated melamine foam (PPy@MF) was fabricated and thereafter applied to confine binary PCM mixtures composed of a high-enthalpy long-chain polyethylene glycol (PEG4000) and its short-chain homologue (PEG200) to make the novel PPy@MF-PEG4000+200 composite PCM. At a high loading of up to 74.1% PEG4000 and a high latent heat energy storage density of 150.1 J/g, the composite PCM remained flexible at temperature (-20 °C) far below its phase transition point thanks to the plasticine effect of PEG200. The composite also demonstrated good Joule heating performance, providing fast heating from 28 to 70 °C at low applied voltages (4.5-6.0 V). The energy could be stored efficiently and released to maintain the composites at the proper temperature. The electrothermal performance of the composite remained undisturbed during curved or repeated bending, showing good potential to be used for personal thermal management and thermotherapy.

3.
Nanomicro Lett ; 16(1): 57, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110610

ABSTRACT

The severe dependence of traditional phase change materials (PCMs) on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios. Here, we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing. Subsequently, a series of MXene/ K+/paraffin wax (PW) phase change composites (PCCs) were obtained via vacuum impregnation in molten PW. The prepared MXene-based PCCs showed versatile applications from macroscale technologies, successfully transforming solar, electric, and magnetic energy into thermal energy stored as latent heat in the PCCs. Moreover, due to the absence of binder in the MXene-based aerogel, MK3@PW exhibits a prime solar-thermal conversion efficiency (98.4%). Notably, MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion (producing 206 mV of voltage with light radiation intensity of 200 mw cm-2). An excellent Joule heat performance (reaching 105 °C with an input voltage of 2.5 V) and responsive magnetic-thermal conversion behavior (a charging time of 11.8 s can achieve a thermal insulation effect of 285 s) for contactless thermotherapy were also demonstrated by the MK3@PW. Specifically, as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions, MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value (57.7 dB) than pure MXene aerogel/PW PCC (29.8 dB) with the same MXene mass. This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.

4.
iScience ; 26(9): 107517, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37636078

ABSTRACT

Laser desorption/ionization-mass spectrometry (LDI-MS) is introduced as a complementary technique for the analysis of interphases formed at electrode|electrolyte interfaces in lithium ion batteries (LIBs). An understanding of these interphases is crucial for designing interphase-forming electrolyte formulations and increasing battery lifetime. Especially organic species are analyzed more effectively using LDI-MS than with established methodologies. The combination with trapped ion mobility spectrometry and tandem mass spectrometry yields additional structural information of interphase components. Furthermore, LDI-MS imaging reveals the lateral distribution of compounds on the electrode surface. Using the introduced methods, a deeper understanding of the mechanism of action of the established solid electrolyte interphase-forming electrolyte additive 3,4-dimethyloxazolidine-2,5-dione (Ala-N-CA) for silicon/graphite anodes is obtained, and active electrochemical transformation products are unambiguously identified. In the future, LDI-MS will help to provide a deeper understanding of interfacial processes in LIBs by using it in a multimodal approach with other surface analysis methods to obtain complementary information.

5.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446554

ABSTRACT

Heteroatom doping is considered an effective method to substantially improve the electrochemical performance of Ti3C2Tx MXene for supercapacitors. Herein, a facile and controllable strategy, which combines heat treatment with phosphorous (P) doping by using sodium phosphinate (NaH2PO2) as a phosphorus source, is used to modify Ti3C2Tx. The intercalated ions from NaH2PO2 act as "pillars" to expand the interlayer space of MXene, which is conducive to electrolyte ion diffusion. On the other hand, P doping tailors the surface electronic state of MXene, optimizing electronic conductivity and reducing the free energy of H+ diffusion on the MXene surface. Meanwhile, P sites with lower electronegativity owning good electron donor characteristics are easy to share electrons with H+, which is beneficial to charge storage. Moreover, the adopted heat treatment replaces -F terminations with O-containing groups, which enhances the hydrophilicity and provides sufficient active sites. The change in surface functional groups increases the content of high valence-stated Ti with a high electrochemical activity that can accommodate more electrons during discharge. Synergistic modification of interlayer structure and chemical state improves the possibility of Ti3C2Tx for accommodating more H+ ions. Consequently, the modified electrode delivers a specific capacitance of 510 F g-1 at 2 mV s-1, and a capacitance retention of 90.2% at 20 A g-1 after 10,000 cycles. The work provides a coordinated strategy for the rational design of high-capacitance Ti3C2Tx MXene electrodes.


Subject(s)
Body Fluids , Titanium , Diffusion , Phosphorus
6.
Chemosphere ; 338: 139519, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37459927

ABSTRACT

Poplar waste is acted as feedstock to produce renewable biofuel and green chemical by catalytic pyrolysis using ferric nitrate and zinc chloride as additive. The additive contributes to the generation of furfural in bio-oil. Additive promotes the generation of H2 and inhibits the generation of CO with bio-gas heating value of 12.16 MJ (Nm3)-1. Biochar exists ZnO and Fe3O4 with large surface area, which could be used as absorbent and photocatalyst for tetracycline and ciprofloxacin removal. The tetracycline and ciprofloxacin adsorption amount of biochar are 316.41 and 255.23 mg g-1 respectively. While the photocatalytic degradation removal of the tetracycline and ciprofloxacin is close to 100%. The adsorption and photocatalytic degradation mechanism are investigate and analyzed using the density functional theory and electron paramagnetic resonance analysis. Biochar can be quickly recycled and regenerated after use. Besides, biochar can be used in lithium ion battery industry for energy storage, which specific capacity is 535 mAh g-1.


Subject(s)
Anti-Bacterial Agents , Wastewater , Pyrolysis , Charcoal , Ciprofloxacin , Tetracycline , Adsorption
7.
Adv Mater ; 35(20): e2211400, 2023 May.
Article in English | MEDLINE | ID: mdl-36919977

ABSTRACT

Edible electronics is a growing field that aims to produce digestible devices using only food ingredients and additives, thus addressing many of the shortcomings of ingestible electronic devices. Edible electronic devices will have major implications for gastrointestinal tract monitoring, therapeutics, as well as rapid food quality monitoring. Recent research has demonstrated the feasibility of edible circuits and sensors, but to realize fully edible electronic devices edible power sources are required, of which there have been very few examples. Drawing inspiration from living organisms, which use redox cofactors to power biochemical machines, a rechargeable edible battery formed from materials eaten in everyday life is developed. The battery is realized by immobilizing riboflavin and quercetin, common food ingredients and dietary supplements, on activated carbon, a widespread food additive. Riboflavin is used as the anode, while quercetin is used as the cathode. By encapsulating the electrodes in beeswax, a fully edible battery is fabricated capable of supplying power to small electronic devices. The proof-of-concept battery cell operated at 0.65 V, sustaining a current of 48 µA for 12 min. The presented proof-of-concept will open the doors to new edible electronic applications, enabling safer and easier medical diagnostics, treatments, and unexplored ways to monitor food quality.


Subject(s)
Food Ingredients , Quercetin/chemistry , Electronics , Electric Power Supplies
8.
Adv Mater ; 35(16): e2209768, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738144

ABSTRACT

Molecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy-storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole-containing microcapsules with a deep-UV-filter shell is reported. The MOST fabric, which can co-harvest solar and thermal energy, achieves efficient photocharging and photo-discharging (>90% photoconversion), a high energy density of 2.5 kJ m-2 , and long-term storage sustainability at month scale. Moreover, it can undergo multiple cycles of washing, rubbing, and recharging without significant loss of energy-storage capacity. This MOST microcapsule strategy is easily used for the scalable production of a MOST fabric for solar thermal moxibustion. This achievement offers a promising route for the application of wearable MOST materials with high energy-storage performance and robustness in PTM.

9.
Waste Manag ; 157: 339-347, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36603448

ABSTRACT

Spent coffee grounds (SCGs) are waste residues arising from the process of coffee brewing and are usually sent to landfills, causing environmental concerns. SCGs contain a considerable amount of fatty acids and is therefore a promising green alternative bio-based phase change material (PCMs) compared to conventional organic and inorganic PCMs. In this study, the extraction of coffee oil from SCGs was conducted using three different organic solvents-ethanol, acetone, and hexane. The chemical composition, chemical, and thermophysical properties of these coffee oil extracts were studied to evaluate their feasibility as a bio-based PCM. Gas chromatography-mass spectroscopy (GC-MS) analysis indicated that coffee oil contains about 60-80 % of fatty acids while the phase transition temperature of the coffee oil extracts is approximately 4.5 ± 0.72 °C, with latent heat values of 51.15 ± 1.46 J/g as determined by differential scanning calorimetry (DSC). Fourier Transform Infrared Spectroscopy (FTIR) and DSC results of coffee oil extracts after thermal cycling revealed good thermal and chemical stability. An application study to evaluate coffee oil extract as a potential cold therapy modality showed that it can maintain temperatures below normal body temperature for up to 46 min. In conclusion, this work exemplifies the potential of SCGs as a promising green and sustainable resource for bio-based PCMs for low-temperature thermal energy storage applications such as cold-chain transportation and cold therapy.


Subject(s)
Coffee , Hot Temperature , Coffee/chemistry , Solvents , Fatty Acids , Plant Extracts
10.
Carbohydr Polym ; 294: 119786, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868796

ABSTRACT

The main objective of this work is to prepare completely biodegradable macrocapsules containing organic phase change materials (PCMs) for thermal energy storage applications. Three different PCMs hexadecane (paraffin), butyl stearate (ester) and caprylic acid (fatty acid) were encapsulated inside barium crosslinked pectin shell using ionic gelation method. Millimeter size(≤2 mm) pectin-PCM capsules were prepared with highest encapsulation efficiency of 83.66 wt% (H5), 83.21 wt% (B5) and 84.39 wt% (C5) containing hexadecane, butyl stearate and caprylic acid respectively as core, while corresponding melting enthalpies were 184.89 kJ kg-1 (H5), 116 kJ kg-1 (B5) and 118 kJ kg-1 (C5). Pectin encapsulation improved thermal stability of PCM-capsules by 70 °C-130 °C compared to core PCMs. 25 g of H5, B5 and C5 capsules provided thermal buffering of 62 min, 50 min and 51mins respectively during discharge experiments. Thus, the prepared biodegradable pectin-PCM capsules are effective for thermal energy storage.


Subject(s)
Hot Temperature , Polysaccharides , Capsules , Pectins , Thermodynamics
11.
ChemSusChem ; 15(18): e202200913, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35839135

ABSTRACT

Green resources for lithium-based batteries excite many researchers due to their eco-friendly nature. In this work, a sustainable bio-based solid-state electrolyte was developed based on carbonated soybean oil (CSBO), obtained by organocatalyzed coupling of CO2 to epoxidized soybean oil. CSBO coupled with lithium bis(trifluoromethanesulfonyl)imide salt on a bio-based cellulose separator resulted in free-standing membranes. Those membranes on electrochemical measurements exhibited ionic conductivity of around 10-3  S cm-1 at 100 °C and around 10-6  S cm-1 at room temperature with wide electrochemical stability window (up to 4.6 V vs. Li/Li+ ) and transference number up to 0.39 at RT. Further investigations on the galvanostatic charge-discharge of LiFePO4 cathodes with CSBO-based electrolyte membranes and lithium metal anodes delivered the gravimetric capacity of 112 and 157 mAh g-1 at RT and 60 °C, respectively, providing a promising direction to further develop bio-based solid electrolytes for sustainable solid-state lithium batteries.


Subject(s)
Lithium , Soybean Oil , Carbon Dioxide , Carbonates , Cellulose , Electrolytes
12.
Environ Sci Pollut Res Int ; 29(33): 50617-50631, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35235116

ABSTRACT

Solar energy will assist in lowering the price of fossil fuels. The current research is based on a study of a solar dryer with thermal storage that uses water and waste engine oil as the working medium at flow rates of 0.035, 0.045, and 0.065 l/s. A parabolic trough collector was used to collect heat, which was then stored in a thermal energy storage device. The system consisted of rectangular boxes containing stearic acid phase change materials with 0.3vol % Al2O3 nanofluids, which stored heat for the waste engine oil medium is 0.33 times that of the water medium at a rate of flow of 0.035 l/s which was also higher than the flow rates of 0.045 and 0.065 l/s. The parabolic trough reflected solar radiation to the receiver, and the heat was collected in the storage medium before being forced into circulation and transferred to the solar dryer. At a flow rate of 0.035 l/s, the energy output of the solar dryer's waste engine oil medium and water was determined to be roughly 12.4, 14, and 15.1, and 9.8, 10.5, and 11.5 times lower than the crops output of groundnut, ginger, and turmeric, respectively. The energy output in the storage tank and the drying of groundnut, ginger, and turmeric crops with water and waste engine oil medium at varied flow rates of 0.035, 0.045, and 0.065 l/s were studied. Finally, depending on the findings of the tests, this research could be useful in agriculture, notably in the drying of vegetables.


Subject(s)
Hot Temperature , Solar Energy , Aluminum Oxide , Sunlight , Water
13.
Small ; 17(38): e2102337, 2021 09.
Article in English | MEDLINE | ID: mdl-34369073

ABSTRACT

Flexible energy storage devices are becoming significantly important to power wearable and portable devices that monitor physiological parameters for many biomedical applications. Many hybrid nanomaterials based on 2D materials are used in order to improve the performance of flexible energy storage devices. Here, a hybrid nanocomposite is synthesized through in situ polymerization of aniline in the presence of black phosphorus (BP) nanoflakes. This nanocomposite, polyaniline (PANI)@BP, is employed to fabricate flexible supercapacitor (FSC) electrodes. PANI@BP FSCs can provide a power source for biometric devices. The generated signal can be transmitted to a smartphone in real time via wireless communication. Such a compact and lightweight integrated device has been used to track a human heart beat while powered by PANI@BP FSC. These findings are providing a promising example of a flexible energy storage device that can be integrated with different real-time health monitoring devices.


Subject(s)
Nanocomposites , Phosphorus , Aniline Compounds , Biological Monitoring , Humans
14.
Chem Rec ; 21(5): 1098-1118, 2021 May.
Article in English | MEDLINE | ID: mdl-33913239

ABSTRACT

Providing energy and materials are considered one most important issue in the world. Produce and storage energy and also, prepare chemical substances from disposable biomass materials have been widely developed in recent decades to decrease environmental pollutions and production costs. The waste of hot drinks including coffee wastes and tea wastes have considerable potentials to provide energy and different chemical substances. Also, hazardous materials (especially aqueous ions) can be absorbed via hot drinks wastes to protect the environment against perilous pollutants. The low-cost and benign hot drinks wastes including tea wastes and coffee grounds and also the pyrolyzed of them as the hot drinks waste biochar materials have been widely used to produce and store green energies and also, absorb hazardous materials. Production and storage energy and environmental remediation in these sustainable procedures not only reduce the cost of energy but also protect the environment.


Subject(s)
Coffea/chemistry , Environmental Restoration and Remediation , Renewable Energy , Tea/chemistry , Waste Products
15.
Waste Manag ; 120: 280-289, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33316548

ABSTRACT

The electrochemical energy storage performance of activated carbons (ACs) obtained from coffee-derived biowastes was assessed. ACs were obtained from spent coffee ground second waste, after polyphenol extraction, by means of a hydrothermal process followed by physical or chemical activation. The resulting materials exhibited microporous structures with a total specific area between 585 and 2330 m2·g-1. Scanning electron microscopy (SEM) revealed a highly porous microstructure in the case of the chemically activated carbons, while physical activation led to a cracked micro-sized morphology. The electrochemical properties of the materials for supercapacitor applications were investigated in 1 M Na2SO4. After chemical activation, the coffee-derived material displayed a capacitance of 84 F·g-1 at 1 A·g-1 in a 1.9 V voltage window, with 70% capacitance retention at 10 A·g-1 and 85% retention after 5000 cycles of continuous charge-discharge. This work demonstrates how coffee secondary biowaste can be conveniently activated to perform as electrochemical energy storage material, contributing to its revalorization and reinsertion in a circular economy.


Subject(s)
Charcoal , Coffee , Electric Capacitance , Electrodes , Porosity
16.
Molecules ; 26(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383631

ABSTRACT

Environmental problems have been associated with energy consumption and waste management. A solution is the development of renewable materials such as organic phase change materials. Characterization of new materials allows knowing their applications and simulations provide an idea of how they can developed. Consequently, this research is focused on the thermal and chemical characterization of five different avocado seed oils depending on the maturity stage of the seed: 100% unripe, 25% mature-75% unripe, 50% mature-50% unripe, 75% mature-25% unripe, and 100% mature. The characterization was performed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The best oil for natural environments corresponded to 100% matured seed with an enthalpy of fusion of 52.93 J·g-1, and a degradation temperature between 241-545 °C. In addition, the FTIR analysis shows that unripe seed oil seems to contain more lipids than a mature one. Furthermore, a simulation with an isothermal box was conducted with the characterized oil with an initial temperature of -14 °C for the isothermal box, -27 °C for the PCM box, and an ambient temperature of 25 °C. The results show that without the PCM the temperature can reach -8 °C and with it is -12 °C after 7 h, proving its application as a cold thermal energy system.


Subject(s)
Persea/chemistry , Plant Oils/chemistry , Seeds/chemistry , Cold Temperature , Fatty Acids/analysis , Phase Transition , Thermodynamics
17.
Chemosphere ; 238: 124609, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31524604

ABSTRACT

Human pharmaceuticals are pollutants of special concern due to their widespread consumption over the last decades, their high persistence in the environment, and the reported alterations produced on non-target organism. The antidepressant fluoxetine (FLX) exerts its effect by inhibiting serotonin (5-HT) reuptake at the presynaptic membrane, thus increasing brain serotonergic activity. In vertebrates, there is a clear inverse relationship between hypothalamic 5-HT levels and food intake, therefore we hypothesized that FLX would inhibit food intake, and in consequence alter energy metabolism in freshwater fish. The aim of this study was to analyze the effect of FLX on feeding behavior and energy storage of the cichlid fish Cichlasoma dimerus. Adult fish were intraperitoneally injected daily with 2 or 20 µg.g-1 FLX or saline for a 5-day period, during which the 20 µg.g-1 FLX-injected fish exhibited a marked reduction in food intake, consistent with a decrease in total body weight and total hepatocyte area observed at the end of the experiment. Although not statistically significant, a marked 50% decrease in glycogen and lipid content and an increase in protein levels in liver was observed for the 20 µg.g-1 FLX dose. This was evidenced histochemically by a weak PAS positive reaction and an intense Coomasie Blue stain. Taken together, these results suggest that the SSRI antidepressant FLX produces an anorectic effect in adults of C. dimerus, which could alter normal physiological function and, in consequence, have a negative impact on fish growth, reproduction, and population success.


Subject(s)
Cichlids/metabolism , Energy Metabolism/drug effects , Feeding Behavior/drug effects , Fluoxetine/toxicity , Selective Serotonin Reuptake Inhibitors/toxicity , Water Pollutants, Chemical/toxicity , Animals , Body Weight/drug effects , Eating/drug effects , Hypothalamus/drug effects , Liver/metabolism , Male , Reproduction/drug effects
18.
Bioresour Technol ; 245(Pt A): 1220-1228, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28893503

ABSTRACT

Surplus energy out of fluctuating energy sources like wind and solar energy is strongly increasing. Biological hydrogen (H2) methanation (BHM) is a highly promising approach to move the type of energy from electricity to natural gas via electrolysis and the subsequent step of the Sabatier-reaction. This review provides an overview of the numerous studies concerning the topic of BHM. The technical and biological parameters regarding the research results of these studies are compared and analyzed hereafter. A holistic view on how to overcome physical limitations of the fermentation process, such as gas-liquid mass transfer or a rise of the pH value, and on the enhancement of environmental circumstances for the bacterial biomass are delivered within. With regards to ex-situ methanation, the evaluated studies show a distinct connection between methane production and the methane percentage in the off-gas.


Subject(s)
Energy-Generating Resources , Hydrogen , Methane , Biomass , Natural Gas
19.
ChemSusChem ; 10(16): 3243-3251, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28643863

ABSTRACT

Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) µW cm-2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 µW cm-2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly.


Subject(s)
Bioelectric Energy Sources , Drug Design , Ferrous Compounds/chemistry , Indoles/chemistry , Oxygen/chemistry , Electrochemistry , Electrodes , Oxidation-Reduction , Surface Properties
20.
ChemSusChem ; 9(11): 1329-38, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27106165

ABSTRACT

A newly prepared type of carbon felt with oxygen-rich phosphate groups is proposed as a promising electrode with good stability for all-vanadium redox flow batteries (VRFBs). Through direct surface modification with ammonium hexafluorophosphate (NH4 PF6 ), phosphorus can be successfully incorporated onto the surface of the carbon felt by forming phosphate functional groups with -OH chemical moieties that exhibit good hydrophilicity. The electrochemical reactivity of the carbon felt toward the redox reactions of VO(2+) /VO2 (+) (in the catholyte) and V(3+) /V(2+) (in the anolyte) can be effectively improved owing to the superior catalytic effects of the oxygen-rich phosphate groups. Furthermore, undesirable hydrogen evolution can be suppressed by minimizing the overpotential for the V(3+) /V(2+) redox reaction in the anolyte of the VRFB. Cell-cycling tests with the catalyzed electrodes show improved energy efficiencies of 88.2 and 87.2 % in the 1(st) and 20(th)  cycles compared with 83.0 and 81.1 %, respectively, for the pristine electrodes at a constant current density of 32 mA cm(-2) . These improvements are mainly attributed to the faster charge transfer allowed by the integration of the oxygen-rich phosphate groups on the carbon-felt electrode.


Subject(s)
Carbon/chemistry , Electric Power Supplies , Oxygen/chemistry , Vanadium/chemistry , Catalysis , Electrochemistry , Electrodes , Oxidation-Reduction , Phosphorus/chemistry , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL