Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.614
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Biosci Bioeng ; 138(1): 36-43, 2024 07.
Article in English | MEDLINE | ID: mdl-38653596

ABSTRACT

Genome co-editing technology is effective in breeding filamentous fungi for applications in the fermentation industry, achieving site-directed mutagenesis, the status of non-genetically modified organisms (non-GMOs), and wild-type-like growth phenotype. Prior to this study, thiI gene was found as a selectable marker for such genome co-editing in the filamentous fungus Aspergillus oryzae, while it cannot be reused via marker recycling. Therefore, we aimed to identify another marker gene to knock out another target gene via genome co-editing in A. oryzae. In this study, we focused on the membrane transporter gene nrtA (AO090012000623), which promotes uptake of nitrate (NO3-). It is known that, in nrtA knockout strain, chlorate (ClO3-), an analog of nitrate with antifungal activity, cannot be imported into the cytosol, which enables the mutant to grow in the presence of chlorate. Based on this information, knockout of the target gene wA was attempted using both nrtA- and wA-specific single-guide RNAs via genome co-editing with KClO3 supplementation in A. oryzae laboratory strain RIB40 and industrial strain KBN616. Resultantly, wA knockout mutant was generated, and nrtA was identified as a selectable marker. Moreover, this genome co-editing system using nrtA was compatible with that using thiI, and thus, a double knockout mutant of two target genes wA and yA was constructed in RIB40 while maintaining non-GMO status and wild-type-like growth. As nrtA homologs have been found in several industrial Aspergillus species, genome co-editing using homolog genes as selectable markers is plausible, which would contribute to the widespread breeding of industrial strains of Aspergilli.


Subject(s)
Anion Transport Proteins , Aspergillus oryzae , Fungal Proteins , Gene Editing , Gene Knockout Techniques , Nitrate Transporters , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Gene Editing/methods , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Nitrates/metabolism , Genetic Markers , Thiamine/metabolism , Chlorates/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
2.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632095

ABSTRACT

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Subject(s)
Glycine max , Infertility, Male , Male , Humans , Plants , Pollen/genetics , Fertility , Plant Infertility/genetics , Gene Expression Regulation, Plant
3.
Curr Pharm Des ; 30(15): 1178-1193, 2024.
Article in English | MEDLINE | ID: mdl-38561613

ABSTRACT

BACKGROUND: Spinal Muscular Atrophy (SMA) is a severe motor neuronal disorder with high morbidity and mortality. Securinine has shown the potential to treat SMA; however, its anti-SMA role remains unclear. OBJECTIVE: This study aims to reveal the anti-SMA mechanisms of securinine. METHODS: Securinine-associated targets were acquired from Herbal Ingredients' Targets (HIT), Similarity Ensemble Approach (SEA), and SuperPred. SMA-associated targets were obtained from GeneCards and Dis- GeNET. Protein-protein Interaction (PPI) network was constructed using GeneMANIA, and hug targets were screened using cytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfifiler. Molecular docking was conducted using Pymol and Auto- Dock. In vitro assays were used to verify the anti-SMA effects of securinine. RESULTS: Twenty-six intersection targets of securinine and SMA were obtained. HDAC1, HDAC2, TOP2A, PIK3R1, PRMT5, JAK2, HSP90AB1, TERT, PTGS2, and PAX8 were the core targets in PPI network. GO analysis demonstrated that the intersecting targets were implicated in the regulation of proteins, steroid hormones, histone deacetylases, and DNA transcription. KEGG analysis, pathway-pathway, and hub target-pathway networks revealed that securinine might treat SMA through TNF, JAK-STAT, Ras, and PI3K-Akt pathways. Securinine had a favorable binding affinity with HDAC1, HSP90AB, JAK2, PRMT5, PTGS2, and TERT. Securinine rescued viability suppression, mitochondria damage, and SMN loss in the SMA cell model. Furthermore, securinine increased HDAC1 and PRMT5 expression, decreased PTGS2 expression, suppressed the JAK2-STAT3 pathway, and promoted the PI3K-Akt pathway. CONCLUSION: Securinine might alleviate SMA by elevating HDAC1 and PRMT5 expression and reducing PTGS2 via JAK2-STAT3 suppression and PI3K-Akt activation.


Subject(s)
Muscular Atrophy, Spinal , Network Pharmacology , Plants, Medicinal , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Humans , Plants, Medicinal/chemistry , Molecular Docking Simulation , Azepines/pharmacology , Azepines/chemistry , Azepines/isolation & purification , Lactones/pharmacology , Lactones/chemistry , Lactones/isolation & purification , Molecular Structure , Heterocyclic Compounds, Bridged-Ring , Piperidines
4.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652744

ABSTRACT

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Subject(s)
Body Weight , Eating , Enhancer Elements, Genetic , Hypothalamus , Pro-Opiomelanocortin , Zebrafish , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Mice , Hypothalamus/metabolism , Eating/genetics , Eating/physiology , Zebrafish/genetics , Zebrafish/metabolism , Female , Male , Mice, Transgenic , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Mammals/metabolism , Mammals/genetics
5.
3 Biotech ; 14(5): 126, 2024 May.
Article in English | MEDLINE | ID: mdl-38585411

ABSTRACT

Genus Mucuna encompasses several plant species renowned for their utilization in traditional Ayurvedic medicine for the treatment of Parkinson's disease, chiefly due to their exceptionally high L-dopa content relative to other plants. However, limited information exists regarding Mucuna laticifera, a newly identified species within the Mucuna genus. This study unveils a remarkable L-dopa content of 174.3 mg/g in M. laticifera seeds, surpassing all previously documented Mucuna species. Moreover, this research marks the first documentation of L-dopa, flavonoids, and phenolics within M. laticifera seeds. Furthermore, the aqueous extract derived from these seeds exhibits robust antioxidant properties. Investigation into its anti-inflammatory potential reveals a significant reduction in paw swelling and neutrophil infiltration at inflammatory sites in a carrageenan-induced rat model. Gene expression analysis utilizing a rat paw model demonstrates that the seed extract significantly downregulates the expression of various inflammation-related genes compared to carrageenan-treated rats. Collectively, these findings clearly substantiate the anti-inflammatory activity of M. laticifera seed extract. The exceptional L-dopa content combined with its anti-inflammatory properties position M. laticifera seeds as a promising therapeutic option for neurodegenerative diseases like Parkinson's, as well as various inflammatory conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03969-w.

6.
J Agric Food Chem ; 72(18): 10257-10270, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38661009

ABSTRACT

Drought stress has become the primary severe threat to global agriculture production, including medicinal plants. Plant growth-promoting bacteria (PGPB) and environmentally friendly element silicon (Si) have emerged as effective methods in alleviating drought stress in various plants. Here, the effects of the plant endophytic G5 interaction with Si on regulating nitrogen absorption, assimilation, and metabolism pathways were investigated in the morphophysiological and gene attributes of Glycyrrhiza uralensis exposed to drought. Results showed that G5+Si application improved nitrogen absorption and assimilation by increasing the available nitrogen content in the soil, further improving the nitrogen utilization efficiency. Then, G5+Si triggered the accumulation of the major adjustment substances proline, γ-aminobutyric acid, putrescine, and chlorophyll, which played an important role in contributing to maintaining balance and energy supply in G. uralensis exposed to drought. These findings will provide new ideas for the combined application of PGPR and Si on both soil and plant systems in a drought habitat.


Subject(s)
Droughts , Endophytes , Glycyrrhiza uralensis , Nitrogen , Silicon , Nitrogen/metabolism , Silicon/metabolism , Endophytes/metabolism , Endophytes/physiology , Glycyrrhiza uralensis/microbiology , Glycyrrhiza uralensis/metabolism , Glycyrrhiza uralensis/chemistry , Glycyrrhiza uralensis/genetics , Bacillus/metabolism , Stress, Physiological , Chlorophyll/metabolism , Soil/chemistry , Plant Roots/microbiology , Plant Roots/metabolism
7.
Sci Total Environ ; 930: 172413, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38631632

ABSTRACT

Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.


Subject(s)
Chromium , Green Chemistry Technology , Helianthus , Titanium , Titanium/toxicity , Helianthus/drug effects , Chromium/toxicity , Metal Nanoparticles/toxicity , Soil Pollutants , Oxidative Stress/drug effects , Photosynthesis/drug effects , Nanoparticles
8.
Front Endocrinol (Lausanne) ; 15: 1355916, 2024.
Article in English | MEDLINE | ID: mdl-38665259

ABSTRACT

Introduction: 24-Hydroxylase, encoded by the CYP24A1 gene, is a crucial enzyme involved in the catabolism of vitamin D. Loss-of-function mutations in CYP24A1 result in PTH-independent hypercalcaemia with high levels of 1,25(OH)2D3. The variety of clinical manifestations depends on age, and underlying genetic predisposition mutations can lead to fatal infantile hypercalcaemia among neonates, whereas adult symptoms are usually mild. Aim of the study: We report a rare case of an adult with primary hyperparathyroidism and loss-of-function mutations in the CYP24A1 gene and a review of similar cases. Case presentation: We report the case of a 58-year-old woman diagnosed initially with primary hyperparathyroidism. Preoperatively, the suspected mass adjoining the upper pole of the left lobe of the thyroid gland was found via ultrasonography and confirmed by 99mTc scintigraphy and biopsy as the parathyroid gland. The patient underwent parathyroidectomy (a histopathology report revealed parathyroid adenoma), which led to normocalcaemia. After 10 months, vitamin D supplementation was introduced due to deficiency, and the calcium level remained within the reference range. Two years later, biochemical tests showed recurrence of hypercalcaemia with suppressed parathyroid hormone levels and elevated 1,25(OH)2D3 concentrations. Further investigation excluded the most common causes of PTH-independent hypercalcaemia, such as granulomatous disease, malignancy, and vitamin D intoxication. Subsequently, vitamin D metabolites were measured using LC-MS/MS, which revealed high levels of 25(OH)D3, low levels of 24,25(OH)2D3 and elevated 25(OH)2D3/24,25(OH)2D3 ratios, suggesting a defect in vitamin D catabolism. Molecular analysis of the CYP24A1 gene using the NGS technique revealed two pathogenic variants: p.(Arg396Trp) and p.(Glu143del) (rs114368325 and rs777676129, respectively). Conclusions: The diagnostic process for hypercalcaemia becomes complicated when multiple causes of hypercalcaemia coexist. The measurement of vitamin D metabolites using LC-MS/MS may help to identify carriers of CYP24A1 mutations. Subsequent molecular testing may contribute to establishing the exact frequency of pathogenic variants of the CYP24A1 gene and introducing personalized treatment.


Subject(s)
Adenoma , Hypercalcemia , Parathyroid Neoplasms , Vitamin D3 24-Hydroxylase , Humans , Hypercalcemia/genetics , Female , Middle Aged , Vitamin D3 24-Hydroxylase/genetics , Parathyroid Neoplasms/genetics , Parathyroid Neoplasms/complications , Parathyroid Neoplasms/surgery , Parathyroid Neoplasms/pathology , Adenoma/genetics , Adenoma/complications , Adenoma/pathology , Mutation , Parathyroidectomy
9.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633150

ABSTRACT

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Subject(s)
Cichlids , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/metabolism , Cichlids/metabolism , Disease Resistance , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/veterinary , Dietary Supplements , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress , Gene Expression
10.
Open Vet J ; 14(1): 116-135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633169

ABSTRACT

Background: Mannanoligosaccharides (MOS) usage in fish production has drawn more attention because of their positive benefits on disease resistance and fish performance. Aim: The ongoing research was executed to assess the potential advantages of Bio-Mos® dietary supplementation regarding the growth outcomes, physiological response, oxidative biomarkers, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Four experimental diets were developed using a 30% protein baseline diet, with Bio-Mos® added at variable levels; 0.0, 0.5, 1, and 2 g/kg, respectively. 240 healthy Nile tilapia fingerlings were split into 4 groups at random and assigned to 12 glass aquariums (three replicates of 20 fish/treatment). Diets were admitted at a 3% rate of fish biomass/aquarium for 8 weeks. Following the feeding trial, fish from every treatment were intraperitoneally injected with pathogenic A. hydrophila, and then observed for 15 days to record the survival rate percent (SR%) post challenge. Results: Results revealed significant improvement in growth performance, physiological response, immunological parameters (phagocytic index, phagocytic activity, and lysozyme), and antioxidant parameters [catalase, malondialdehyde, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD)] among Bio-Mos® treated groups. Moreover, Bio-Mos® increased the expression of tumor necrosis factor alpha and Interleukin 1ß, genes linked to the liver immune system. Growth-related genes (GHr), antioxidant-related genes (SOD and GSH-Px). In fish subjected to pathogens, dietary MOS supplementation could significantly lower oxidative stress, showing promise as a preventative supplement for Nile tilapia in place of antibiotics. On the other hand, Bio-Mos® considerably improved each of the three intestinal morphological measures (villus width, villus length, and crypt depth), showing the best overall intestinal structure-improving impact. The challenge with A. hydrophila caused marked degenerative alterations in the intestine, hepatopancreas, spleen, and posterior kidney of Nile tilapia, in the control group. However, lesion severity was greatly decreased and showed marked amelioration with an increased concentration of Bio-Mos®. The A. hydrophila-challenged groups revealed a 100% SR% mainly among the Bio-Mos® supplemented groups. Conclusion: It is recommended to enrich the Nile tilapia fingerlings diets with 2 g.kg-1 of MOS for better results on the growth rate, physiological response, immunological response, and intestinal absorptive capacity.


Subject(s)
Antioxidants , Cichlids , Animals , Antioxidants/metabolism , Aeromonas hydrophila/metabolism , Cichlids/metabolism , Dietary Supplements , Superoxide Dismutase/metabolism , Oxidative Stress , Gene Expression
11.
Open Vet J ; 14(1): 164-175, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633171

ABSTRACT

Background: Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are well defined as food poisoning pathogens that are highly resistant and need continuous studies. Aim: The purpose of the work was to examine phenotypic and genotypic characteristics of both P. aeruginosa and S. aureus, and treatment trials with medicinal plants. Methods: Samples were examined for isolation of P. aeruginosa and S. aureus on selective media followed by biochemical confirmation, biofilm formation, genes detection, and expression of P. aeruginosa pslA biofilm gene was performed by quantitative real-time polymerase chain reaction after treatment with 0.312 mg/ml Moringa oleifera aqueous extract as a minimum inhibitory concentration. Results: The highest isolation rate of P. aeruginosa was 20% from both raw milk and Kariesh cheese, followed by 16% and 12% from ice cream and processed cheese, respectively, while the highest isolation rate of S. aureus was 36% from raw milk followed by 28% in ice cream and 16% in both Kariesh cheese and processed cheese. 30% of P. aeruginosa isolates were biofilm producers, while only 21% of S. aureus isolates were able to produce biofilm. The P. aeruginosa isolates harbor virulence-associated genes nan1, exoS, toxA, and pslA at 100%, 80%, 40%, and 40%, respectively. Staphylococcus aureus SEs genes were examined in S. aureus strains, where SEA and SEB genes were detected with 60%, but no isolate harbored SEC, SED, or SEE. The significant fold change of P. aeruginosa pslA expression was 0.40332 after treatment with M. oleifera aqueous extract. Conclusion: Pseudomonas aeruginosa and S. aureus harbor dangerous virulence genes that cause food poisoning, but M. oleifera extract could minimize their action.


Subject(s)
Foodborne Diseases , Moringa oleifera , Staphylococcal Infections , Animals , Staphylococcus aureus/genetics , Pseudomonas aeruginosa/genetics , Milk , Moringa oleifera/genetics , Enterotoxins/genetics , Enterotoxins/metabolism , Enterotoxins/pharmacology , Food Microbiology , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Biofilms , Foodborne Diseases/veterinary , Gene Expression
12.
Front Mol Biosci ; 11: 1366020, 2024.
Article in English | MEDLINE | ID: mdl-38633216

ABSTRACT

Objective: Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods: Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results: Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-ß, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion: Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.

13.
Physiol Mol Biol Plants ; 30(3): 401-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633270

ABSTRACT

The gene family known as the Lateral Organ Boundary Domain (LBD) is responsible for producing transcription factors unique to plants, which play a crucial role in controlling diverse biological activities, including their growth and development. This research focused on examining Cerasus humilis'ChLBD gene, owing to its significant ecological, economic, and nutritional benefits. Examining the ChLBD gene family's member count, physicochemical characteristics, phylogenetic evolution, gene configuration, and motif revealed 41 ChLBD gene family members spread across 8 chromosomes, with ChLBD gene's full-length coding sequences (CDSs) ranging from 327 to 1737 base pairs, and the protein sequence's length spanning 109 (ChLBD30)-579 (ChLBD35) amino acids. The molecular weights vary from 12.068 (ChLBD30) to 62.748 (ChLBD35) kDa, and the isoelectric points span from 4.74 (ChLBD20) to 9.19 (ChLBD3). Categorizing them into two evolutionary subfamilies: class I with 5 branches, class II with 2, the majority of genes with a single intron, and most members of the same subclade sharing comparable motif structures. The results of collinearity analysis showed that there were 3 pairs of tandem repeat genes and 12 pairs of fragment repeat genes in the Cerasus humilis genome, and in the interspecific collinearity analysis, the number of collinear gene pairs with apples belonging to the same family of Rosaceae was the highest. Examination of cis-acting elements revealed that methyl jasmonate response elements stood out as the most abundant, extensively dispersed in the promoter areas of class 1 and class 2 ChLBD. Genetic transcript analysis revealed that during Cerasus humilis' growth and maturation, ChLBD developed varied control mechanisms, with ChLBD27 and ChLBD40 potentially playing a role in managing color alterations in fruit ripening. In addition, the quality of calcium fruit will be affected by the environment during transportation and storage, and it is particularly important to use appropriate means to preserve the fruit. The research used salicylic acid-treated Cerasus humilis as the research object and employed qRT-PCR to examine the expression of six ChLBD genes throughout storage. Variations in the expression of the ChLBD gene were observed when exposed to salicylic acid, indicating that salicylic acid could influence ChLBD gene expression during the storage of fruits. This study's findings lay the groundwork for additional research into the biological role of the LBD gene in Cerasus humilis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01438-5.

14.
Hum Genet ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642129

ABSTRACT

Copper is a vital micronutrient involved in many biological processes and is an essential component of tumour cell growth and migration. Copper influences tumour growth through a process called cuproplasia, defined as abnormal copper-dependent cell-growth and proliferation. Copper-chelation therapy targeting this process has demonstrated efficacy in several clinical trials against cancer. While the molecular pathways associated with cuproplasia are partially known, genetic heterogeneity across different cancer types has limited the understanding of how cuproplasia impacts patient survival. Utilising RNA-sequencing data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets, we generated gene regulatory networks to identify the critical cuproplasia-related genes across 23 different cancer types. From this, we identified a novel 8-gene cuproplasia-related gene signature associated with pan-cancer survival, and a 6-gene prognostic risk score model in low grade glioma. These findings highlight the use of gene regulatory networks to identify cuproplasia-related gene signatures that could be used to generate risk score models. This can potentially identify patients who could benefit from copper-chelation therapy and identifies novel targeted therapeutic strategies.

15.
Heliyon ; 10(7): e28636, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576577

ABSTRACT

The root of Angelica sinensis is utilized in Traditional Chinese medicine to enhance blood replenishment and facilitate blood circulation. The early bolting and flowering (EBF) of A. sinensis, however, compromises the quality of the roots and restricts the yield of medicinal substances. The study was conducted to compare the transcriptomic and metabolomic profiles between EBF plants and normal plants of two cultivars of A. sinensis, followed by validation of the transcriptome results using qRT-PCR. There were 3677 DEGs in EBF plants compared to normal plants of cultivar 2 (Mingui No.2), and cultivar 4 (Mingui No.4) was 3354. The main differential metabolites in the EBF and normal plants were phenolic acids, flavonoids, lignans, and coumarins. The analysis of 5 EBF-related pathways revealed 28 genes exhibiting differential expression and 5 metabolites showing differential accumulation. The expression of the Lhcb5, Lhcb2, Lhcb6, Lhcb1, Lhca4, ATPG1, EGLC, CELB, AMY, glgA, CYCD3, SnRK2, PYL, AHK2, AUX1, BSK, FabI/K, ACACA and FabV decreased and the expression of the PsbR, PsbA, LHY, FT, CO, malQ, HK, GPI and DELLA increased in EBF plants. In addition, the Abscisic acid, d-Glucose-6P, α-d-Glucose-1P, NADP+, and ADP were more significantly enriched in EBF plants. The findings offer novel perspectives on the EBF mechanisms in A. sinensis and other medicinal plants of the Apiaceae family.

16.
Plants (Basel) ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38592867

ABSTRACT

In light of expected climate change, it is important to seek nature-based solutions that can contribute to the protection of our planet as well as to help overcome the emerging adverse changes. In an agricultural context, increasing plant resistance to abiotic stress seems to be crucial. Therefore, the scope of the presented research was focused on the application of botanical extracts that exerted positive effects on model plants growing under controlled laboratory conditions, as well as plants subjected to sorbitol-induced osmotic stress. Foliar spraying increased the length and fresh mass of the shoots (e.g., extracts from Taraxacum officinale, Trifolium pratense, and Pisum sativum) and the roots (e.g., Solidago gigantea, Hypericum perforatum, and Pisum sativum) of cabbage seedlings grown under stressful conditions, as well as their content of photosynthetic pigments (Pisum sativum, Lens culinaris, and Hypericum perforatum) along with total phenolic compounds (Hypericum perforatum, Taraxacum officinale, and Urtica dioica). The antioxidant activity of the shoots measured with the use of DDPH (Pisum sativum, Taraxacum officinale, Urtica dioica, and Hypericum perforatum), ABTS (Trifolium pratense, Symphytum officinale, Valeriana officinalis, Pisum sativum, and Lens culinaris), and FRAP (Symphytum officinale, Valeriana officinalis, Urtica dioica, Hypericum perforatum, and Taraxacum officinale) assays was also enhanced in plants exposed to osmotic stress. Based on these findings, the most promising formulation based on Symphytum officinale was selected and subjected to transcriptomic analysis. The modification of the expression of the following genes was noted: Bol029651 (glutathione S-transferase), Bol027348 (chlorophyll A-B binding protein), Bol015841 (S-adenosylmethionine-dependent methyltransferases), Bol009860 (chlorophyll A-B binding protein), Bol022819 (GDSL lipase/esterase), Bol036512 (heat shock protein 70 family), Bol005916 (DnaJ Chaperone), Bol028754 (pre-mRNA splicing Prp18-interacting factor), Bol009568 (heat shock protein Hsp90 family), Bol039362 (gibberellin regulated protein), Bol007693 (B-box-type zinc finger), Bol034610 (RmlC-like cupin domain superfamily), Bol019811 (myb_SHAQKYF: myb-like DNA-binding domain, SHAQKYF class), Bol028965 (DA1-like Protein). Gene Ontology functional analysis indicated that the application of the extract led to a decrease in the expression of many genes related to the response to stress and photosynthetic systems, which may confirm a reduction in the level of oxidative stress in plants treated with biostimulants. The conducted studies showed that the use of innovative plant-based products exerted positive effects on crops and can be used to supplement current cultivation practices.

17.
Plants (Basel) ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38592895

ABSTRACT

Dendrobium officinale Kimura et Migo (D. officinale) is one of the most important traditional Chinese medicinal herbs, celebrated for its abundant bioactive ingredients. This study demonstrated that the diurnal temperature difference (DIF) (T1: 13/13 °C, T2: 25/13 °C, and T3: 25/25 °C) was more favorable for high chlorophyll, increased polysaccharide, and total flavonoid contents compared to constant temperature treatments in D. officinale PLBs. The transcriptome analysis revealed 4251, 4404, and 4536 differentially expressed genes (DEGs) in three different comparisons (A: 25/13 °C vs. 13/13 °C, B: 13/13 °C vs. 25/25 °C, and C: 25/13 °C vs. 25/25 °C, respectively). The corresponding up-/down-regulated DEGs were 1562/2689, 2825/1579, and 2310/2226, respectively. GO and KEGG enrichment analyses of DEGs showed that the pathways of biosynthesis of secondary metabolites, carotenoid biosynthesis, and flavonoid biosynthesis were enriched in the top 20; further analysis of the sugar- and flavonol-metabolism pathways in D. officinale PLBs revealed that the DIF led to a differential gene expression in the enzymes linked to sugar metabolism, as well as to flavonol metabolism. Certain key metabolic genes related to ingredient accumulation were identified, including those involved in polysaccharide metabolism (SUS, SUT, HKL1, HGL, AMY1, and SS3) and flavonol (UGT73C and UGT73D) metabolism. Therefore, these findings indicated that these genes may play an important role in the regulatory network of the DIF in the functional metabolites of D. officinale PLBs. In a MapMan annotation of abiotic stress pathways, the DEGs with significant changes in their expression levels were mainly concentrated in the heat-stress pathways, including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs). In particular, the expression levels of HSP18.2, HSP70, and HSF1 were significantly increased under DIF treatment, which suggested that HSF1, HSP70 and HSP18.2 may respond to the DIF. In addition, they can be used as candidate genes to study the effect of the DIF on the PLBs of D. officinale. The results of our qPCR analysis are consistent with those of the transcriptome-expression analysis, indicating the reliability of the sequencing. The results of this study revealed the transcriptome mechanism of the DIF on the accumulation of the functional metabolic components of D. officinale. Furthermore, they also provide an important theoretical basis for improving the quality of D. officinale via the DIF in production.

18.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664694

ABSTRACT

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Subject(s)
Camellia sinensis , Circadian Rhythm , Photosynthesis , Photosynthesis/genetics , Camellia sinensis/genetics , Camellia sinensis/physiology , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Multigene Family , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Photoperiod
19.
Biology (Basel) ; 13(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38666892

ABSTRACT

Astragalus mongholicus is a traditional Chinese medicine (TCM) with important medicinal value and is widely used worldwide. Heat shock (HSF) transcription factors are among the most important transcription factors in plants and are involved in the transcriptional regulation of various stress responses, including drought, salinity, oxidation, osmotic stress, and high light, thereby regulating growth and developmental processes. However, the HFS gene family has not yet been identified in A. mongholicus, and little is known regarding the role of HSF genes in A. mongholicus. This study is based on whole genome analysis of A. mongholicus, identifying a total of 22 AmHSF genes and analyzing their physicochemical properties. Divided into three subgroups based on phylogenetic and gene structural characteristics, including subgroup A (12), subgroup B (9), and subgroup C (1), they are randomly distributed in 8 out of 9 chromosomes of A. mongholicus. In addition, transcriptome data and quantitative real time polymerase chain reaction (qRT-PCR) analyses revealed that AmHSF was differentially transcribed in different tissues, suggesting that AmHSF gene functions may differ. Red and blue light treatment significantly affected the expression of 20 HSF genes in soilless cultivation of A. mongholicus seedlings. AmHSF3, AmHSF3, AmHSF11, AmHSF12, and AmHSF14 were upregulated after red light and blue light treatment, and these genes all had light-corresponding cis-elements, suggesting that AmHSF genes play an important role in the light response of A. mongholicus. Although the responses of soilless-cultivated A. mongholicus seedlings to red and blue light may not represent the mature stage, our results provide fundamental research for future elucidation of the regulatory mechanisms of HSF in the growth and development of A. mongholicus and its response to different light conditions.

20.
Curr Issues Mol Biol ; 46(4): 3328-3341, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38666938

ABSTRACT

Kidney cancer has emerged as a major medical problem in recent times. Multiple compounds are used to treat kidney cancer by triggering cancer-causing gene targets. For instance, isoquercitrin (quercetin-3-O-ß-d-glucopyranoside) is frequently present in fruits, vegetables, medicinal herbs, and foods and drinks made from plants. Our previous study predicted using protein-protein interaction (PPI) and molecular docking analysis that the isoquercitrin compound can control kidney cancer and inflammation by triggering potential gene targets of IGF1R, PIK3CA, IL6, and PTGS2. So, the present study is about further in silico and in vitro validation. We performed molecular dynamic (MD) simulation, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, cytotoxicity assay, and RT-PCR and qRT-PCR validation. According to the MD simulation (250 ns), we found that IGF1R, PIK3CA, and PTGS2, except for IL6 gene targets, show stable binding energy with a stable complex with isoquercitrin. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the final targets to determine their regulatory functions and signaling pathways. Furthermore, we checked the cytotoxicity effect of isoquercitrin (IQ) and found that 5 µg/mL and 10 µg/mL doses showed higher cell viability in a normal kidney cell line (HEK 293) and also inversely showed an inhibition of cell growth at 35% and 45%, respectively, in the kidney cancer cell line (A498). Lastly, the RT-PCR and qRT-PCR findings showed a significant decrease in PTGS2, PIK3CA, and IGF1R gene expression, except for IL6 expression, following dose-dependent treatments with IQ. Thus, we can conclude that isoquercitrin inhibits the expression of PTGS2, PIK3CA, and IGF1R gene targets, which in turn controls kidney cancer and inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL