Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 328: 117985, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38417600

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Of all primary liver cancer cases, hepatocellular carcinoma (HCC) accounts for about 90%. Most patients with HCC receive a diagnosis in the medium-to-late stages or with chronic liver disease, have lost the opportunity for radical treatment, such as surgical resection, and their 5-year survival rate is low. Qizhu Anticancer Prescription (QZACP) is an empirical formula composed of traditional Chinese herbs that can clinically relieve HCC symptoms, inhibit the progression of HCC, reduce recurrence rate, and prolong survival; however, its exact mode of action remains unknown. AIM OF THE STUDY: This study's purpose was to investigate the mode of action of QZACP in the prevention and treatment of HCC. MATERIALS AND METHODS: Initially, drug components in the QZACP decoction were analyzed using high-resolution mass spectrometry. A subcutaneous tumor xenograft model in nude mice was constructed to further analyze the active components of QZACP that had entered tumor tissues through oral administration. Potential targets of QZACP in the prevention and treatment of HCC were identified and then confirmed in vivo via network pharmacology and molecular docking. In addition, regulatory effects of QZACP on HCC cell proliferation and the cell cycle were detected using a CCK-8 assay and flow cytometry. RESULTS: High-resolution mass spectrometry revealed that the QZACP decoction contained deacetyl asperulosidic acid methyl ester (DAAME), paeoniflorin, calycosin-7-glucoside, liquiritin, glycyrrhizic acid, astragaloside IV, saikosaponin A, curdione, and atractylenolide II. In nude mice, QZACP could effectively inhibit the growth of subcutaneous tumors, where DAAME, paeoniflorin, liquiritin, and glycyrrhizic acid could enter liver cancer tissues after oral administration. Among these, DAAME was the most highly expressed in HCC tissues and may be an important active component of QZACP for inhibiting HCC. Utilizing network pharmacology, the targets of action of these four drug components were identified. After verification using western blotting, STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2 were identified as targets of QZACP inhibition in HCC. In vitro experiments revealed that QZACP inhibited the proliferation of HCC cells while inducing G0/G1 phase cell cycle arrest. In vivo experiments demonstrated that DAAME significantly inhibited HCC growth. After intersection of the 24 DAAME targets predicted using network pharmacology with the 435 HCC disease targets, only CA9 was identified as a DAAME-HCC crossover target. Molecular docking results revealed that the binding site of DAAME and CA9 had good stereo-complementarity with a docking score of -8.1 kcal/mol. Western blotting and immunohistochemical results also confirmed that DAAME significantly decreased CA9 protein expression in HCC. CONCLUSIONS: QZACP inhibits HCC by reducing the expression of STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2. DAAME may be an important active component of QZACP for the prevention and treatment of HCC, inhibiting it by targeting the expression of CA9.


Subject(s)
Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Glucosides , Liver Neoplasms , Monoterpenes , Animals , Mice , Humans , Carcinoma, Hepatocellular/drug therapy , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 7 , Mice, Nude , Liver Neoplasms/drug therapy , Fibroblast Growth Factor 2 , Glycyrrhizic Acid , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
2.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338474

ABSTRACT

Biological activities of six under-utilized medicinal leafy vegetable plants indigenous to Africa, i.e., Basella alba, Crassocephalum rubens, Gnetum africanum, Launaea taraxacifolia, Solanecio biafrae, and Solanum macrocarpon, were investigated via two independent techniques. The total phenolic content (TPC) was determined, and six microtiter plate assays were applied after extraction and fractionation. Three were antioxidant in vitro assays, i.e., ferric reducing antioxidant power (FRAP), cupric reduction antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and the others were enzyme (acetylcholinesterase, butyrylcholinesterase, and tyrosinase) inhibition assays. The highest TPC and antioxidant activity from all the methods were obtained from polar and medium polar fractions of C. rubens, S. biafrae, and S. macrocarpon. The highest acetyl- and butyrylcholinesterase inhibition was exhibited by polar fractions of S. biafrae, C. rubens, and L. taraxacifolia, the latter comparable to galantamine. The highest tyrosinase inhibition was observed in the n-butanol fraction of C. rubens and ethyl acetate fraction of S. biafrae. In vitro assay results of the different extracts and fractions were mostly in agreement with the bioactivity profiling via high-performance thin-layer chromatography-multi-imaging-effect-directed analysis, exploiting nine different planar assays. Several separated compounds of the plant extracts showed antioxidant, α-glucosidase, α-amylase, acetyl- and butyrylcholinesterase-inhibiting, Gram-positive/-negative antimicrobial, cytotoxic, and genotoxic activities. A prominent apolar bioactive compound zone was tentatively assigned to fatty acids, in particular linolenic acid, via electrospray ionization high-resolution mass spectrometry. The detected antioxidant, antimicrobial, antidiabetic, anticholinesterase, cytotoxic, and genotoxic potentials of these vegetable plants, in particular C. rubens, S. biafrae, and S. macrocarpon, may validate some of their ethnomedicinal uses.


Subject(s)
Anti-Infective Agents , Plants, Medicinal , Antioxidants/chemistry , Butyrylcholinesterase , Vegetables , Chromatography, Thin Layer , Acetylcholinesterase , Monophenol Monooxygenase , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Infective Agents/analysis
3.
Food Chem ; 443: 138548, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38277939

ABSTRACT

Fixation is a crucial step in green tea processing that can impact quality. In this study, we explored the differences in the chemical components of steamed and fried green teas made from the same batch of fresh tea leaves using different fixing methods. Results showed that concentrations of sucrose and free amino acids were significantly higher in steamed green tea. Abundances of 12 compounds including purine nucleoside, pyrimidine nucleoside derivatives, and catechins were higher in fried green tea, while 34 compounds such as amino acids and their derivatives, benzofurans and flavonoids were higher in steamed green tea. Thus, steaming retained more compounds associated with sweet and fresh tastes, such as free amino acids, while frying produced more compounds with bitter tastes, such as catechin. This might explain why steamed green tea is mellower than fried tea.


Subject(s)
Camellia sinensis , Catechin , Flavonoids/analysis , Tea/chemistry , Catechin/chemistry , Mass Spectrometry , Amino Acids/analysis , Metabolomics , Plant Leaves/chemistry , Camellia sinensis/chemistry
4.
J Sep Sci ; 47(2): e2300624, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38286726

ABSTRACT

The comprehensive and efficient characterization of components in traditional Chinese medicine is crucial for elucidating its active constituents and uncovering its mechanism. Identifying the compounds of the Bushen Huoxue Prescription (BHP) is difficult because of its complex composition and the large difference in concentration among its compounds. In this study, a hydrophilic interaction liquid chromatography coupled with reversed-phase LC (HILIC × RPLC) offline 2D-LC tandem high-resolution mass spectrometry method was established to analyze the total compounds of the BHP. Database screening and molecular networking were performed to identify the compounds. In contrast to conventional 1D chromatography, 2D chromatography increased peak capacity, enriched trace ingredients, and prevented the masking of high-abundance compounds. A total of 165 compounds were identified, and 14 potential compounds needed to be further identified. This study provided an effective method for comprehensively analyzing the complex system of traditional Chinese medicine compounds.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Mass Spectrometry , Chromatography, Liquid , Technology , Chromatography, Reverse-Phase
5.
Int J Food Sci Nutr ; 75(1): 31-44, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37867390

ABSTRACT

The aim of this study was to evaluate and compare the concentration of water-soluble bioactive compounds in tomato products (polyphenols profile, water-soluble vitamins and nucleophilic substances) with the concentration of the same bioactive molecules existing in a water-soluble patented tomato extract, water-soluble tomato extract (WSTC), commercially available as FruitFlow®. This patented tomato extract has been recognised by EFSA (European Food Safety Authority) in a specific Health Claim declaration as having an "Antiplatelet health effect". More than 100 commercial tomato samples, coming from 18 different processing tomato companies worldwide, were analysed and compared with the FruitFlow® supplement. According to the multivariate statistical analyses applied to the data matrix, it is possible to conclude that the commercial tomato products measured (pastes, purees, others) show a significantly higher concentration of water-soluble bioactive molecules (nucleosides/nucleotides and polyphenols) responsible for an anti-platelet aggregation effect than the FruitFlow® dietary supplement.


Subject(s)
Solanum lycopersicum , Water , Platelet Aggregation , Dietary Supplements , Polyphenols , Plant Extracts/pharmacology
6.
Anal Chim Acta ; 1278: 341716, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709459

ABSTRACT

Cannabis sativa has long been harvested for industrial applications related to its fibers. Industrial hemp cultivars, a botanical class of Cannabis sativa with a low expression of intoxicating Δ9-tetrahydrocannabinol (Δ9-THC) have been selected for these purposes and scarcely investigated in terms of their content in bioactive compounds. Following the global relaxation in the market of industrial hemp-derived products, research in industrial hemp for pharmaceutical and nutraceutical purposes has surged. In this context, metabolomics-based approaches have proven to fulfill the aim of obtaining comprehensive information on the phytocompound profile of cannabis samples, going beyond the targeted evaluation of the major phytocannabinoids. In the present paper, an HRMS-based metabolomics study was addressed to seven distinct industrial hemp cultivars grown in four experimental fields in Northern, Southern, and Insular Italy. Since the role of minor phytocannabinoids as well as other phytocompounds was found to be critical in discriminating cannabis chemovars and in determining its biological activities, a comprehensive characterization of phytocannabinoids, flavonoids, and phenolic acids was carried out by LC-HRMS and a dedicated data processing workflow following the guidelines of the metabolomics Quality Assurance and Quality Control Consortium. A total of 54 phytocannabinoids, 134 flavonoids, and 77 phenolic acids were annotated, and their role in distinguishing hemp samples based on the geographical field location and cultivar was evaluated by ANOVA-simultaneous component analysis. Finally, a low-level fused model demonstrated the key role of untargeted cannabinomics extended to lesser-studied phytocompound classes for the discrimination of hemp samples.


Subject(s)
Cannabis , Industry , Dietary Supplements , Flavonoids
7.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569395

ABSTRACT

Graviola (Annona muricata) is a tropical plant with many traditional ethnobotanic uses and pharmacologic applications. A metabolomic study of both aqueous and DMSO extracts from Annona muricata leaves recently allowed us to identify dozens of bioactive compounds. In the present study, we use a proteomic approach to detect altered patterns in proteins on both conditioned media and extracts of HT-1080 fibrosarcoma cells under treatment conditions, revealing new potential bioactivities of Annona muricata extracts. Our results reveal the complete sets of deregulated proteins after treatment with aqueous and DMSO extracts from Annona muricata leaves. Functional enrichment analysis of proteomic data suggests deregulation of cell cycle and iron metabolism, which are experimentally validated in vitro. Additional experimental data reveal that DMSO extracts protect HT-1080 fibrosarcoma cells and HMEC-1 endothelial cells from ferroptosis. Data from our proteomic study are available via ProteomeXchange with identifier PXD042354.

8.
J Sci Food Agric ; 103(15): 7569-7579, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37418584

ABSTRACT

BACKGROUND: Hemicellulose extraction from lignocellulosic biomasses has gained interest over the years, and hydrothermal treatment is one of the most common methods employed for this purpose. This work aimed to deeply study hazelnut (Corylus avellana L.) shells as a new source of dietary fibre, evaluating the effect of hydrothermal treatment temperatures on the type and structure of fibre extracted, but also on the formation of side-products derived from lignocellulose degradation. RESULTS: Different process temperatures led to diverse polysaccharides in the hydrothermal extract. Pectin was identified for the first time in hazelnut shells when experimenting with extraction at 125 °C, whereas at 150 °C a heterogeneous mixture of pectin, xylan, and xylo-oligosaccharides was present. The highest yield in terms of total fibre was gained at 150 and 175 °C, and then decreased again at 200 °C. Finally, more than 500 compounds from different chemical classes were putatively identified and they appeared to be present in the extracted fibre with a different distribution and relative amount, depending on the heat treatment severity. A generally high content of phenols, phenyls, oligosaccharides, dehydro-sugars, and furans was observed. CONCLUSIONS: Modulation of the hydrothermal treatment temperature allows fibre extracts with very different compositions, and therefore different potential end uses, to be obtained from hazelnut shells. A sequential temperature-based fractionation approach, as a function of the severity of the extraction parameters, can also be considered. Nevertheless, the study of the side-compounds formed from lignocellulosic matrix degradation, as a function of the applied temperature, needs to be fully addressed for a safe introduction of the fibre extract within the food chain. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Corylus , Corylus/chemistry , Temperature , Pectins/metabolism , Oligosaccharides/chemistry , Dietary Fiber/metabolism
9.
J Sep Sci ; 46(19): e2300159, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37525329

ABSTRACT

Qingshen granule, composed of 14 herbal drugs, is primarily used as the assistant therapy for chronic kidney disease. Qingshen granule chemical composition was complex, but its chemical constituents and the pharmacodynamic material basis remain unreported. Ultra-high-performance liquid chromatography (UHPLC)-quadrupole-orbitrap high-resolution mass spectrometry was applied to recognize the chemical constituents of Qingshen granule. The analysis was performed using the ACQUITY UHPLC BEH C18 column (2.1 × 50 mm, 1.7 µm) with acetonitrile-0.1% formic acid as the mobile phase for gradient elution. The data were collected using heated electrospray ionization in positive and negative ion modes. This study successfully applied the UPHLC-quadrupole-orbitrap high-resolution mass spectrometry technique with the Compound Discoverer 3.3 platform to analyze Qingshen granule chemical composition. A total of 127 and 42 chemical components were identified in Qingshen granule in vitro and in vivo, respectively. In the tissue distribution of Qingshen granule, 9, 10, 11, 10, and 18 prototype components were detected in the heart, liver, spleen, lungs, and kidneys, respectively. Qingshen granule chemical constituents were characterized rapidly for the first time in this study, laying a foundation for further research on the substance basis and quality control of Qingshen granule in treating chronic kidney disease.

10.
J Sep Sci ; 46(14): e2300094, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37339806

ABSTRACT

Coptis chinensis Franch. and Sophora flavescens Ait. is a herbal pair frequently used in treating ulcerative colitis. However, the bio-disposition profile of the major components in the inflamed gut remains unclear, which is essential to understand the pharmacological material basis of this herb pair. Here we established an integral quantitative and chemometric method to deduce the colonic metabolism differences of this herbal pair in normal and colitis mice. With this LC-MS method, a total of 41 components have been found in the Coptis chinensis Franch. and Sophora flavescens Ait. extract, and 28 metabolites were found in the colon after oral administration. Alkaloid and its phase I metabolites were the main components in the colon of normal and colitis mice. The results of principal component analysis at 6 h after oral administration showed significant colonic metabolism differences between normal and colitis mice. Heamap results showed that colitis induced significant changes in the colonic bio-disposition of this herbal pair extract. In particular, in the context of colitis, the phase I metabolism of berberine, coptisine, jatrorrhizine, palmatine,and epiberberine has been inhibited. These results may provide a basis for understanding the pharmacological material basis of Coptis chinensis Franch. and Sophora flavescens Ait. in treating ulcerative colitis.


Subject(s)
Alkaloids , Colitis, Ulcerative , Coptis , Drugs, Chinese Herbal , Animals , Mice , Coptis chinensis , Sophora flavescens , Colitis, Ulcerative/drug therapy , Chemometrics , Coptis/chemistry , Chromatography, High Pressure Liquid/methods , Alkaloids/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, Liquid , Drugs, Chinese Herbal/chemistry
11.
Environ Int ; 177: 108010, 2023 07.
Article in English | MEDLINE | ID: mdl-37307603

ABSTRACT

Organophosphate esters (OPEs) are widely used as plasticizers in plastic food packaging; however, the migration of OPEs from plastic to food is largely unstudied. We do not even know the specific number of OPEs that exist in the plastic food packaging. Herein, an integrated target, suspect, and nontarget strategy for screening OPEs was optimized using ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). The strategy was used to analyze 106 samples of plastic food packaging collected in Nanjing city, China, in 2020. HRMS allowed full or tentative identification of 42 OPEs, of which seven were reported for the first time. Further, oxidation products of bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite (AO626) in plastics were identified, implying that the oxidation of organophosphite antioxidants (OPAs) could be an important indirect source of OPEs in plastics. The migration of OPEs was examined with four simulated foods. Twenty-six out of 42 OPEs were detected in at least one of the four simulants, particularly isooctane, in which diverse OPEs were detected at elevated concentrations. Overall, the study supplements the list of OPEs that humans could ingest as well as provides essential information regarding the migration of OPEs from plastic food packaging to food.


Subject(s)
Flame Retardants , Plastics , Humans , Plastics/analysis , Food Packaging , Esters/analysis , Flame Retardants/analysis , Environmental Monitoring , Organophosphates/analysis , China , Dietary Supplements/analysis
12.
Front Plant Sci ; 14: 1187803, 2023.
Article in English | MEDLINE | ID: mdl-37384354

ABSTRACT

Introduction: Purslane (Portulaca oleracea L.) is a non-conventional food plant used extensively in folk medicine and classified as a multipurpose plant species, serving as a source of features of direct importance to the agricultural and agri-industrial sectors. This species is considered a suitable model to study the mechanisms behind resistance to several abiotic stresses including salinity. The recently achieved technological developments in high-throughput biology opened a new window of opportunity to gain additional insights on purslane resistance to salinity stress-a complex, multigenic, and still not well-understood trait. Only a few reports on single-omics analysis (SOA) of purslane are available, and only one multi-omics integration (MOI) analysis exists so far integrating distinct omics platforms (transcriptomics and metabolomics) to characterize the response of purslane plants to salinity stress. Methods: The present study is a second step in building a robust database on the morpho-physiological and molecular responses purslane to salinity stress and its subsequent use in attempting to decode the genetics behind its resistance to this abiotic stress. Here, the characterization of the morpho-physiological responses of adult purslane plants to salinity stress and a metabolomics and proteomics integrative approach to study the changes at the molecular level in their leaves and roots is presented. Results and discussion: Adult plants of the B1 purslane accession lost approximately 50% of the fresh and dry weight (from shoots and roots) whensubmitted to very high salinity stress (2.0 g of NaCl/100 g of the substrate). The resistance to very high levels of salinity stress increases as the purslane plant matures, and most of the absorbed sodium remains in the roots, with only a part (~12%) reaching the shoots. Crystal-like structures, constituted mainly by Na+, Cl-, and K+, were found in the leaf veins and intercellular space near the stoma, indicating that this species has a mechanism of salt exclusion operating on the leaves, which has its role in salt tolerance. The MOI approach showed that 41 metabolites were statistically significant on the leaves and 65 metabolites on the roots of adult purslane plants. The combination of the mummichog algorithm and metabolomics database comparison revealed that the glycine, serine, and threonine, amino sugar and nucleotide sugar, and glycolysis/gluconeogenesis pathways were the most significantly enriched pathways when considering the total number of occurrences in the leaves (with 14, 13, and 13, respectively) and roots (all with eight) of adult plants; and that purslane plants employ the adaptive mechanism of osmoprotection to mitigate the negative effect of very high levels of salinity stress; and that this mechanism is prevalent in the leaves. The multi-omics database built by our group underwent a screen for salt-responsive genes, which are now under further characterization for their potential to promote resistance to salinity stress when heterologously overexpressed in salt-sensitive plants.

13.
Food Chem ; 423: 136306, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37167673

ABSTRACT

An analytical procedure for the screening of 118 pyrrolizidine alkaloids (PAs) was successfully validated and applied to their quantitative determination in food supplements, herbal infusions, honey, and teas. It provides the reliable analyte identification by high-resolution tandem mass spectrometry (HRMS/MS), the accurate determination of 21 regulated PAs, and broad contamination profiles. 10% of 281 analyzed samples resulted contaminated at levels above the maximum levels (MLs) of European legislation. The contamination of herbal infusions of mixed plants can represent a possible health concern (23%; mean of PA sum above ML). A high number of PAs not included in the regulation was detected in honey and herbal food supplements, but their contribution was only relevant to the overall level in honey. The results indicate the need to continue collecting contamination data in food supplements and infusions of mixed herbs and to expand the PA-pool to be monitored in honey and related products.


Subject(s)
Honey , Pyrrolizidine Alkaloids , Teas, Herbal , Pyrrolizidine Alkaloids/analysis , Honey/analysis , Food Contamination/analysis , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Dietary Supplements/analysis , Teas, Herbal/analysis
14.
Anal Bioanal Chem ; 415(16): 3285-3293, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119358

ABSTRACT

Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a powerful analytical tool used for adulteration inspection. Nevertheless, it is a challenging task to identify illegal adulterants that are not included in the library or are unexpected from large MS data. Molecular networking is a good tool for exploring, visualizing, and organizing MS/MS spectra, and moreover, it employs shifted peak match to calculate spectral similarity, making it capable of identifying adulteration that is not included in the library. The key of molecular networking is spectral similarity algorithms, and therefore, in this study, we compared the performance of four cutting-edge similarity algorithms, modified cosine similarity (shifted peak match), entropy similarity, and two deep-learning-based algorithms, MS2DeepScore and Spec2Vec, in building molecular networking for identification of adulteration that is not included in the library. We conducted an analysis of excluded-query-compound on all MS/MS spectra in test library and performed a large-scale false discovery rate estimation to investigate whether the spectral similarity calculated by each algorithm could represent the actual structural similarity well. The obtained results demonstrated Spec2Vec exhibited good performance in both detection capability and false discovery rate. Further comprehensive evaluation of the performance of Spec2Vec in the identification of adulteration that is not included in the library or is unexpected in different matrices and in application to real samples proved the approach studied here is a promising and powerful tool for adulterant inspection and improved the capability of analyzing large MS data.


Subject(s)
Deep Learning , Plants, Medicinal , Tandem Mass Spectrometry/methods , Dietary Supplements/analysis , Algorithms , Plant Extracts/chemistry
15.
J Agric Food Chem ; 71(13): 5219-5229, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36971186

ABSTRACT

Zanthoxylum plants (ZPs), including multiple Chinese prickly ash species, are dual-purpose functional foods favored by the general population around the world in foods, cosmetics, and traditional medicines and have antipruritic, insecticidal, and fungicidal bioactivities. For the first time, the anti-roundworm bioactivity of ZPs and the active ingredients were compared and investigated. Through nontarget metabolomics following targeted quantitative analysis, qinbunamides, sanshools, sanshooel, asarinin, and sesamin were found to be the main different components of Zanthoxylum species. Coincidentally, the 12 chemical components were also the dominant anti-roundworm ingredients of ZP extracts. The extracts of three species of Chinese prickly ash (1 mg/mL) decreased the hatchability of roundworm eggs significantly, and the ChuanJiao seed killed roundworms (insecticidal rate 100%) and alleviated the symptoms of pneumonia in mice. Furthermore, retention time-accurate mass-tandem mass spectrometry-ion ratio (RT-AM-MS/MS-IR) were modeled by assaying 108 authentic compounds of ZP extracts, and 20 metabolites were confidently identified in biological samples from ZP extract-treated mice by analyzing the m/z values and the empirical substructures. This study provides a good reference for the proper application of ZPs.


Subject(s)
Lignans , Zanthoxylum , Humans , Mice , Animals , Zanthoxylum/chemistry , Tandem Mass Spectrometry , Lignans/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals
16.
Article in English | MEDLINE | ID: mdl-36965450

ABSTRACT

The evaluation of the chiral composition of phytocannabinoids in the cannabis plant is particularly important as the pharmacological effects of the (+) and (-) enantiomers of these compounds are completely different. Chromatographic attempts to assess the presence of the minor (+) enantiomers of the main phytocannabinoids, cannabidiolic acid (CBDA) and trans-Δ9-tetrahydrocannabinolic acid (trans-Δ9-THCA), were carried out on heated plant extracts for the determination of the corresponding decarboxylated species, cannabidiol (CBD) and trans-Δ9-tetrahydrocannabinol (trans-Δ9-THC), respectively. This process produces an altered phytocannabinoid composition with several new and unknown decomposition products. The present work reports for the first time the stereoselective synthesis of the pure (+) enantiomers of the main phytocannabinoids, trans-CBDA, trans-Δ9-THCA, trans-CBD and trans-Δ9-THC, and the development and optimization of an achiral-chiral liquid chromatography method coupled to UV and high-resolution mass spectrometry detection in reversed phase conditions (RP-HPLC-UV-HRMS) for the isolation of the single compounds and evaluation of their actual enantiomeric composition in plant. The isolation of the peaks with the achiral stationary phase ensured the absence of interferences that could potentially co-elute with the analytes of interest in the chiral analysis. The method applied to the Italian medicinal cannabis variety FM2 revealed no trace of the (+) enantiomers for all phytocannabinoids under investigation before and after decarboxylation, thus suggesting that the extraction procedure does not lead to an inversion of configuration.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Medical Marijuana , Dronabinol/analysis , Cannabinoids/analysis , Cannabis/chemistry , Cannabidiol/analysis
17.
Toxins (Basel) ; 15(2)2023 02 15.
Article in English | MEDLINE | ID: mdl-36828474

ABSTRACT

Dispersive magnetic solid-phase extraction (DMSPE) technique is proposed as a new sensitive and effective sample treatment method for the determination of aflatoxins in paprika samples. DMSPE was followed by ultrahigh-performance liquid chromatography and high-resolution mass spectrometry detection (UHPLC-HRMS) using a non-targeted acquisition mode for the detection of main aflatoxins (aflatoxin G1, G2, B1 and B2) and derivatives. DMSPE was based on the use of magnetic nanocomposite coated with polypyrrole (PPy) polymer and the main experimental parameters influencing the extraction efficiency in adsorption and desorption steps have been studied and optimized. Analyses were performed using 250 µL magnetic PPy nanocomposite into the sample solution, adsorbing the analytes in 30 min and desorbing them with ethyl acetate (2 mL) in 15 min. The method has been validated, obtaining quantification limits between 3.5 and 4.7 µg kg-1 and recoveries between 89.5-97.7%. The high recovery rate, wide detection range and the use for the first time of the reusable Fe3O4@PPy nanomaterial in suspension for solid food matrices, guarantee the usefulness of the method developed for adequate control of aflatoxins levels in paprika. The proposed methodology was applied for the analysis of 31 samples (conventional and organic) revealing the absence of aflatoxins in the samples.


Subject(s)
Aflatoxins , Capsicum , Polymers , Chromatography, High Pressure Liquid/methods , Pyrroles , Aflatoxins/analysis , Solid Phase Extraction/methods , Magnetic Phenomena
18.
Food Res Int ; 163: 112315, 2023 01.
Article in English | MEDLINE | ID: mdl-36596206

ABSTRACT

LC-HR-MS/MS is the predominant analytical technique in phenolic compound (PC) research. However, the manual interpretation of mass spectra is a heavy nontrivial time-consuming task and depends on mass spectrometry and phenolic compounds fragmentation deep knowledge. We think this manual approach should be partially translated into a practical software that allows users to perform such complicated analyses. In silico fragmentation software have been tested for small molecule identification, MS-FINDER and SIRIUS stood out at identification contests and challenges. We evaluated both software to identify PC from two data categories: 1st MS/MS spectra from 18 phenolic compound standards (PCS) and 2nd phenolic compounds from 8 food samples (FPC) (coffee, green tea, cranberry juice, grape juice, orange juice, apple juice, soy extract and parsley extract). MS-FINDER and SIRIUS were able to correctly identifymore than 90% of the PCS by LC-HR-MS/MS. The main FPC were also correctly identified by MS-FINDER (70%) and SIRIUS (38%). We highlight that these software were unable to differentiate PC isomers. This task is only possible by using additional information, such as chromatographic behavior and manual analysis of the relative intensity of fragments in the MS/MS spectra. Therefore, the combination of initial screening by using MS-FINDER and SIRIUS with manual analyses of additional information is a powerful and efficient approach for identifying phenolic compounds.


Subject(s)
Phenols , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Phenols/analysis , Chromatography, Liquid/methods , Coffee , Plant Extracts
19.
Methods Mol Biol ; 2571: 45-55, 2023.
Article in English | MEDLINE | ID: mdl-36152149

ABSTRACT

This methodological work demonstrates the potential of metabolomic approaches based on liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI(+/-)-HRMS) to investigate the antiproliferative capacity of underexplored biomasses (e.g., Passiflora mollissima seeds and Physalys peruviana calyx), by evaluating the molecular changes induced at the metabolite expression levels on HT-29 human colon cancer cells. This protocol describes in detail the optimal conditions to obtain bioactive extracts by pressurized liquid extraction (PLE), the experimental procedure to grow and treat HT-29 human colon cancer cells and CCD-18Co normal human colon fibroblasts with the target extracts, the metabolites extraction from the cytosolic fraction, and subsequent metabolomic fingerprinting. After treatment for 48 and 72 h, the viability of HT-29 colon cancer cells is markedly affected, and metabolites can be extracted for investigation. Following the proposed metabolomic data analysis and interpretation workflow, altered cellular redox homeostasis, as well as inactivation or dysfunction on other metabolic pathways, constitutes valuable biological information to understand the mechanisms underlying the antiproliferative effect.


Subject(s)
Colonic Neoplasms , Fruit , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Fruit/metabolism , Humans , Metabolomics/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology
20.
J Pharm Biomed Anal ; 222: 115086, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36219926

ABSTRACT

Dalitong Granules, a potent gastrointestinal motility promoting traditional Chinese medicine, is used to treat functional dyspepsia clinically. It shows good effect on alleviating gastrointestinal motility disorders and has a broad prospect of clinical application. However, there is no comprehensive study on its in vivo and in vitro chemical analysis. UPLC-Q-TOF-MS combined with the non-targeted characteristic filter analysis and in silico prediction strategies (NCFS) were used to deduce and identify the chemical components and in vivo metabolites in the bio-samples of rats following oral administration of Dalitong Granules. In this study, 108 chemical components were identified in Dalitong granules, including 50 flavonoids, 22 alkaloids, 13 terpenes, 11 organic acids, 10 coumarins and 2 volatile oils. In the plasma, tissue, urine and fecal samples of rats after administration of Dalitong granules, a total of 147 compounds were speculated (60 prototype compounds and 87 metabolites). The main metabolic pathways in vivo include methylation, demethylation, deglycosylation, hydrogenation, hydroxylation, sulfonation and glucuronidation as there are many flavonoids existing in Dalitong Granules. In conclusion, the chemical components and metabolites of Dalitong Granules were comprehensively identified by using a rapid and accurate analysis method, which laid a foundation for dissecting its bioactive substances. In addition, it provides a scientific basis for the in-depth study of the material basis of Dalitong Granules efficacy and its further comprehensive development and utilization.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Rats , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Alkaloids/analysis , Flavonoids/analysis , Administration, Oral
SELECTION OF CITATIONS
SEARCH DETAIL