Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Nat Med ; 75(2): 299-307, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33389592

ABSTRACT

Alzheimer's disease (AD) and type 2 diabetes (T2D) are common diseases in the elderly, and the increasing number of patients with these diseases has become a serious health problem worldwide. The aggregation and development of plaque of amyloid polypeptides (amyloid ß; Aß and human islet amyloid polypeptide; hIAPP, amylin) are found in the brains of patients with AD and the pancreas of patients with T2D and are considered to be, in part, the causes of both diseases, respectively. Therefore, preventing amyloid aggregation may be a promising therapeutic strategy for preventing AD and T2D. In addition, the disaggregation of the already aggregated amyloid polypeptides is expected to contribute to the prevention and treatment of both diseases as amyloid polypeptide aggregations begin several decades before the onset of disease. Therefore, in this study, we investigated the hIAPP aggregation inhibitory activity and Aß42/hIAPP disaggregation activity of clovamide which had shown inhibitory activity against Aß42 aggregation in our previous studies. In addition, active sites were identified (structure-activity relationship analysis) using clovamide-related compounds in which hydroxyl groups of these compounds were either eliminated or methylated. Our results showed that the compounds with one or two catechol moieties showed strong hIAPP aggregation inhibitory activity and Aß42/hIAPP disaggregation activity; and the non-catechol type compounds showed little or no activity. This suggests that the catechol moiety is important in amyloid polypeptide aggregation inhibition and disaggregation. Thus, clovamide and its related compounds may be promising therapeutic strategies for inhibiting amyloid polypeptide-related pathology in AD and T2D.


Subject(s)
Amyloid beta-Peptides/drug effects , Diabetes Mellitus, Type 2/drug therapy , Tyrosine/analogs & derivatives , Humans , Structure-Activity Relationship , Tyrosine/pharmacology , Tyrosine/therapeutic use
2.
J Endocrinol ; 248(2): 133-143, 2021 02.
Article in English | MEDLINE | ID: mdl-33258801

ABSTRACT

γ-Aminobutyric acid (GABA) and glucagon-like peptide-1 receptor agonist (GLP-1RA) improve rodent ß-cell survival and function. In human ß-cells, GABA exerts stimulatory effects on proliferation and anti-apoptotic effects, whereas GLP-1RA drugs have only limited effects on proliferation. We previously demonstrated that GABA and sitagliptin (Sita), a dipeptidyl peptidase-4 inhibitor which increases endogenous GLP-1 levels, mediated a synergistic ß-cell protective effect in mice islets. However, it remains unclear whether this combination has similar effects on human ß-cell. To address this question, we transplanted a suboptimal mass of human islets into immunodeficient NOD-scid-gamma mice with streptozotocin-induced diabetes, and then treated them with GABA, Sita, or both. The oral administration of either GABA or Sita ameliorated blood glucose levels, increased transplanted human ß-cell counts and plasma human insulin levels. Importantly, the combined administration of the drugs generated significantly superior results in all these responses, as compared to the monotherapy with either one of them. The proliferation and/or regeneration, improved by the combination, were demonstrated by increased Ki67+, PDX-1+, or Nkx6.1+ ß-cell numbers. Protection against apoptosis was also significantly improved by the drug combination. The expression level of α-Klotho, a protein with protective and stimulatory effects on ß cells, was also augmented. Our study indicates that combined use of GABA and Sita produced greater therapeutic benefits, which are likely due to an enhancement of ß-cell proliferation and a decrease in apoptosis.


Subject(s)
Diabetes Mellitus/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , GABA Agents/therapeutic use , Sitagliptin Phosphate/therapeutic use , gamma-Aminobutyric Acid/therapeutic use , Animals , Apoptosis/drug effects , Blood Glucose/drug effects , Cell Proliferation/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Drug Evaluation, Preclinical , Drug Therapy, Combination , GABA Agents/pharmacology , Humans , Islets of Langerhans/drug effects , Islets of Langerhans Transplantation , Male , Mice, Inbred NOD , Middle Aged , Sitagliptin Phosphate/pharmacology , gamma-Aminobutyric Acid/pharmacology
3.
J Nat Med ; 74(3): 579-583, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32219646

ABSTRACT

The number of patients with Alzheimer's disease (AD) and type 2 diabetes (T2D) is increasing rapidly, and thus more research has been focused on the relationship between these two age-related chronic diseases. According to the amyloid hypothesis, prevention of the aggregation of amyloid ß (Aß) and human islet amyloid polypeptide (hIAPP) is a promising strategy for AD and T2D. In this study, thioflavin-T assay and transmission electron microscopy were performed to evaluate the inhibitory effect of three phenylpropanoids isolated from Lycopus lucidus-schizotenuin A and lycopic acids A and B-on both Aß and hIAPP fibrillization. All tested compounds exhibited similarly strong inhibitory activity toward amyloid aggregation. These results suggested that catechol moieties play important roles in the inhibition of amyloid plaque formation.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Islet Amyloid Polypeptide/antagonists & inhibitors , Lycopus/chemistry , Catechols/metabolism , Humans , Plant Extracts/pharmacology
4.
Cell Transplant ; 26(11): 1733-1741, 2017 11.
Article in English | MEDLINE | ID: mdl-29338387

ABSTRACT

Efficient islet release from the pancreas requires the combination of collagenase, neutral protease (cNP), or thermolysin (TL). Recently, it has been shown that clostripain (CP) may also contribute to efficient islet release from the human pancreas. The aim of this study was to evaluate the impact of these proteases on human islet integrity in a prospective approach. Islets were isolated from the pancreas of 10 brain-dead human organ donors. Purified islets were precultured for 3 to 4 d at 37 °C to ensure that preparations were cleared of predamaged islets, and only integral islets were subjected to 90 min of incubation at 37 °C in Hank's balanced salt solution supplemented with cNP, TL, or CP. The protease concentrations were calculated for a pancreas of 100 g trimmed weight utilizing 120 dimethyl-casein units of cNP, 70,000 caseinase units of TL, or 200 benzoyl-l-arginine-ethyl-ester units of CP (1×). These activities were then increased both 5× and 10×. After subsequent 24-h culture in enzyme-free culture medium, treated islets were assessed and normalized to sham-treated controls. Compared with controls and CP, islet yield was significantly reduced by using the 5× activity of cNP and TL, inducing also fragmentation and DNA release. Viability significantly decreased not until adding the 1× activity of cNP, 5× activity of TL, or 10× activity of CP. Although mitochondrial function was significantly lowered by 1× cNP and 5× TL, CP did not affect mitochondria at any concentration. cNP- and TL-incubated islets significantly lost intracellular insulin already at 1× activity, while the 10× activity of CP had to be added to observe a similar effect. cNP and TL have a similar toxic potency regarding islet integrity. CP also induces adverse effects on islets, but the toxic threshold is generally higher. We hypothesize that CP can serve as supplementary protease to minimize cNP or TL activity for efficient pancreas digestion.


Subject(s)
Islets of Langerhans/enzymology , Metalloendopeptidases/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Cysteine Endopeptidases/pharmacology , Female , Humans , In Vitro Techniques , Islets of Langerhans Transplantation , Male , Middle Aged , Prospective Studies , Thermolysin/metabolism
5.
Am J Physiol Endocrinol Metab ; 311(5): E859-E868, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27624103

ABSTRACT

Numerous compounds stimulate rodent ß-cell proliferation; however, translating these findings to human ß-cells remains a challenge. To examine human ß-cell proliferation in response to such compounds, we developed a medium-throughput in vitro method of quantifying adult human ß-cell proliferation markers. This method is based on high-content imaging of dispersed islet cells seeded in 384-well plates and automated cell counting that identifies fluorescently labeled ß-cells with high specificity using both nuclear and cytoplasmic markers. ß-Cells from each donor were assessed for their function and ability to enter the cell cycle by cotransduction with adenoviruses encoding cell cycle regulators cdk6 and cyclin D3. Using this approach, we tested 12 previously identified mitogens, including neurotransmitters, hormones, growth factors, and molecules, involved in adenosine and Tgf-1ß signaling. Each compound was tested in a wide concentration range either in the presence of basal (5 mM) or high (11 mM) glucose. Treatment with the control compound harmine, a Dyrk1a inhibitor, led to a significant increase in Ki-67+ ß-cells, whereas treatment with other compounds had limited to no effect on human ß-cell proliferation. This new scalable approach reduces the time and effort required for sensitive and specific evaluation of human ß-cell proliferation, thus allowing for increased testing of candidate human ß-cell mitogens.


Subject(s)
Cell Proliferation/drug effects , Insulin-Secreting Cells/drug effects , Activins/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Adult , Automation , Cell Culture Techniques , Drug Evaluation, Preclinical , Erythropoietin/pharmacology , Exenatide , Female , GABA Agents/pharmacology , Harmine/pharmacology , Humans , Incretins/pharmacology , Male , Middle Aged , Monoamine Oxidase Inhibitors/pharmacology , Myostatin/pharmacology , Nucleosides/pharmacology , Peptides/pharmacology , Platelet-Derived Growth Factor/pharmacology , Prolactin/pharmacology , Regeneration/drug effects , Serotonin/pharmacology , Serotonin Receptor Agonists/pharmacology , Vasodilator Agents/pharmacology , Venoms/pharmacology , Young Adult , gamma-Aminobutyric Acid/pharmacology
6.
Free Radic Res ; 49(11): 1308-18, 2015.
Article in English | MEDLINE | ID: mdl-26118714

ABSTRACT

In type 2 diabetes, it has been proposed that pancreatic beta-cell dysfunction is promoted by oxidative stress caused by NADPH oxidase (NOX) overactivity. Five different NOX enzymes (NOX1-5) have been characterized, among which NOX1 and NOX2 have been proposed to negatively affect beta-cells, but the putative role of NOX4 in type 2 diabetes-associated beta-cell dysfunction and glucose intolerance is largely unknown. Therefore, we presently investigated the importance of NOX4 for high-fat diet or HFD-induced glucose intolerance using male C57BL/6 mice using the new NOX4 inhibitor GLX351322, which has relative NOX4 selectivity over NOX2. In HFD-treated male C57BL/6 mice a two-week treatment with GLX351322 counteracted non-fasting hyperglycemia and impaired glucose tolerance. This effect occurred without any change in peripheral insulin sensitivity. To ascertain that NOX4 also plays a role for the function of human beta-cells, we observed that glucose- and sodium palmitate-induced insulin release from human islets in vitro was increased in response to NOX4 inhibitors. In long-term experiments (1-3 days), high-glucose-induced human islet cell reactive oxygen species (ROS) production and death were prevented by GLX351322. We propose that while short-term NOX4-generated ROS production is a physiological requirement for beta-cell function, persistent NOX4 activity, for example, during conditions of high-fat feeding, promotes ROS-mediated beta-cell dysfunction. Thus, selective NOX inhibition may be a therapeutic strategy in type 2 diabetes.


Subject(s)
Diet, High-Fat/adverse effects , Enzyme Inhibitors/pharmacology , Glucose Intolerance/drug therapy , NADPH Oxidases/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Hyperglycemia/drug therapy , Hyperglycemia/etiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , NADPH Oxidase 4 , NADPH Oxidases/metabolism , Piperazines/pharmacology , Reactive Oxygen Species/metabolism , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL