Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Immunol ; 14: 1298416, 2023.
Article in English | MEDLINE | ID: mdl-38259457

ABSTRACT

Context: Ma Xing Shi Gan Decoction (MXSGD) is a traditional remedy for treating lung injuries that was developed by the Typhoid and Fever School of Pharmaceutical Biology. It has antitussive and expectorant effects, anti-inflammatory, antiviral, regulates the body's immunity, etc. Aim: The aim of this study is to investigate whether MXSGD can ameliorate cyclosporine A (CsA)-induced hypoimmunity lung injury by regulating microflora metabolism. Methods: Establishment of a model for CsA-induced hypoimmunity lung injury. Using 16S rRNA high-throughput sequencing and LC-MS, the effects of MXSGD on gut flora and lung tissue microecology of mice with CsA-induced hypoimmunity were investigated. Results: MXSGD was able to preserve lung tissue morphology and structure, reduce serum inflammatory marker expression and protect against CsA-induced lung tissue damage. Compared to the model, MXSGD increased beneficial gut bacteria: Eubacterium ventriosum group and Eubacterium nodatum group; decreased intestinal pathogens: Rikenellaceae RC9 intestinal group; reduced the abundance of Chryseobacterium and Acinetobacter, promoted the production of Lactobacillus and Streptococcus, and then promoted the lung flora to produce short-chain fatty acids. MXSGD was able to enhance the expression of serum metabolites such as Americine, 2-hydroxyhexadecanoylcarnitine, Emetine, All-trans-decaprenyl diphosphate, Biliverdin-IX-alpha, Hordatin A and N-demethyl mifepristone in the CsA-induced hypoimmunity lung injury model. Conclusion: MXSGD can restore gut and lung microbiota diversity and serum metabolite changes to inhibit inflammation, ameliorate CsA-induced hypoimmunity lung injury.


Subject(s)
Acinetobacter , Drugs, Chinese Herbal , Immunologic Deficiency Syndromes , Lung Injury , Animals , Mice , Lung Injury/chemically induced , Lung Injury/drug therapy , Cyclosporine , RNA, Ribosomal, 16S/genetics
2.
Fish Shellfish Immunol ; 106: 421-430, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32798694

ABSTRACT

An 8-week growth trial was conducted to study enterohepatic recirculation of bile acid metabolism and the intestinal microbiota of Amur sturgeon (Acipenser schrenckii) fed with three diets, including 540 g/kg, 270 g/kg or 0 g/kg fishmeal, which was correspondingly replaced by a plant protein blend (named P0, P50 and P100, respectively). The diets were designed to be isonitrogenous, isoenergetic and essential nutrients balanced. With rising levels of dietary plant protein, disruption of the spiral valve intestinal microbiota and more morbidity with liver disease were observed in the P100 group, although there were no haematological abnormalities observed. An obvious bile acids enterohepatic circulation disorder was found with phenotypes of increased liver bile acids compensatory synthesis, and reduced expression of bile acid receptors (FXR and TGR5), which induced BA accumulative toxicity. Accompanied by increased oxidative stress, it further induced hepatic lesions and hypoimmunity, which were non-negligible reasons for the high mortality and low utilization ability of plant protein by Amur sturgeon.


Subject(s)
Bile Acids and Salts/metabolism , Enterohepatic Circulation , Fishes/immunology , Gastrointestinal Microbiome/drug effects , Plant Proteins, Dietary/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Intestines/microbiology , Plant Proteins, Dietary/administration & dosage , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL