Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Plant Sci ; 12: 559511, 2021.
Article in English | MEDLINE | ID: mdl-34386020

ABSTRACT

Trichosanthes is a genus in Cucurbitaceae comprising 90-100 species. Trichosanthes species are valuable as herbaceous medicinal ingredients. The fruits, seeds, and roots of species such as T. kirilowii and T. rosthornii are used in Korean traditional herbal medicines. T. rosthornii is only found in China, whereas in South Korea two varieties, T. kirilowii var. kirilowii and T. kirilowii var. japonica, are distributed. T. kirilowii var. kirilowii and T. kirilowii var. japonica have different fruit and leaf shapes but are recognized as belonging to the same species. Furthermore, although its members have herbal medicine applications, genomic information of the genus is still limited. The broad goals of this study were (i) to evaluate the taxonomy of Trichosanthes using plastid phylogenomic data and (ii) provide molecular markers specific for T. kirilowii var. kirilowii and T. kirilowii var. japonica, as these have differences in their pharmacological effectiveness and thus should not be confused and adulterated. Comparison of five Trichosanthes plastid genomes revealed locally divergent regions, mainly within intergenic spacer regions (trnT-UGU-trnL-UAA: marker name Tri, rrn4.5-rrn5: TRr, trnE-UUC-trnT-GGU: TRtt). Using these three markers as DNA-barcodes for important herbal medicine species in Trichosanthes, the identity of Trichosanthes material in commercial medicinal products in South Korea could be successfully determined. Phylogenetic analysis of the five Trichosanthes species revealed that the species are clustered within tribe Sicyoeae. T. kirilowii var. kirilowii and T. rosthornii formed a clade with T. kirilowii var. japonica as their sister group. As T. kirilowii in its current circumscription is paraphyletic and as the two varieties can be readily distinguished morphologically (e.g., in leaf shape), T. kirilowii var. japonica should be treated (again) as an independent species, T. japonica.

2.
Plants (Basel) ; 9(2)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012666

ABSTRACT

Actaea (Ranunculaceae; syn. Cimicifuga) is a controversial and complex genus. Dried rhizomes of Actaea species are used as Korean traditional herbal medicine. Although Actaea species are valuable, given their taxonomic classification and medicinal properties, sequence information of Actaea species is limited. In this study, we determined the complete chloroplast (cp) genome sequences of three Actaea species, including A. simplex, A. dahurica, and A. biternata. The cp genomes of these species varied in length from 159,523 to 159,789 bp and contained 112 unique functional genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Gene order, orientation, and content were well conserved in the three cp genomes. Comparative sequence analysis revealed the presence of hotspots, including ndhC-trnV-UAC, in Actaea cp genomes. High-resolution phylogenetic relationships were established among Actaea species based on cp genome sequences. Actaea species were clustered into each Actaea section, consistent with the Angiosperm Phylogeny Group (APG) IV system of classification. We also developed a novel indel marker, based on copy number variation of tandem repeats, to facilitate the authentication of the herbal medicine Cimicifugae Rhizoma. The availability Actaea cp genomes will provide abundant information for the taxonomic and phylogenetic analyses of Actaea species, and the Actaea (ACT) indel marker will be useful for the authentication of the herbal medicine.

3.
Front Plant Sci ; 9: 965, 2018.
Article in English | MEDLINE | ID: mdl-30026751

ABSTRACT

Ipomoea L. is the largest genus within the Convolvulaceae and contains 600-700 species. Ipomoea species (morning glories) are economically valuable as horticultural species and scientifically valuable as ecological model plants to investigate mating systems, molecular evolution, and both plant-herbivore and plant-parasite interactions. Furthermore, the dried seeds of I. nil or I. purpurea are used in Korean traditional herbal medicines. In this study, chloroplast (cp) genomes were sequenced from six Ipomoea species, namely, I. nil and I. purpurea and, for the first time, I. triloba, I. lacunosa, I. hederacea, and I. hederacea var. integriuscula. The cp genomes were 161,354-161,750 bp in length and exhibited conserved quadripartite structures. In total, 112 genes were identified, including 78 protein-coding regions, 30 transfer RNA genes, and 4 ribosomal RNA genes. The gene order, content, and orientation of the six Ipomoea cp genomes were highly conserved and were consistent with the general structure of angiosperm cp genomes. Comparison of the six Ipomoea cp genomes revealed locally divergent regions, mainly within intergenic spacer regions (petN-psbM, trnI-CAU-ycf2, ndhH-ndhF, psbC-trnS, and ccsA-ndhD). In addition, the protein-coding genes accD, cemA, and ycf2 exhibited high sequence variability and were under positive selection (Ka/Ks > 1), indicating adaptive evolution to the environment within the Ipomoea genus. Phylogenetic analysis of the six Ipomoea species revealed that these species clustered according to the APG IV system. In particular, I. nil and I. hederacea had monophyletic positions, with I. purpurea as a sister. I. triloba and I. lacunosa in the section Batatas and I. hederacea and I. hederacea var. integriuscula in the section Quamoclit were supported in this study with strong bootstrap values and posterior probabilities. We uncovered high-resolution phylogenetic relationships between Ipomoeeae. Finally, indel markers (IPOTY and IPOYCF) were developed for the discrimination of the important herbal medicine species I. nil and I. purpurea. The cp genomes and analyses in this study provide useful information for taxonomic, phylogenetic, and evolutionary analysis of the Ipomoea genome, and the indel markers will be useful for authentication of herbal medicines.

4.
Zhongguo Zhong Yao Za Zhi ; 43(7): 1441-1445, 2018 Apr.
Article in Chinese | MEDLINE | ID: mdl-29728034

ABSTRACT

Panax ginseng and P. quinquefolius are two kinds of important medicinal herbs. They are morphologically similar but have different pharmacological effects. Therefore, botanical origin authentication of these two ginsengs is of great importance for ensuring pharmaceutical efficacy and food safety. Based on the fact that intron position in orthologous genes is highly conserved across plant species, intron length polymorphisms were exploited from unigenes of ginseng. Specific primers were respectively designed for these two species based on their insertion/deletion sequences of cytochrome P450 and glyceraldehyde 3-phosphate dehydrogenase, and multiplex PCR was conducted for molecular authentication of P.ginseng and P. quinquefolius. The results showed that the developed multiplex PCR assay was effective for molecular authentication of P.ginseng and P. quinquefolius without strict PCR condition and the optimization of reaction system.This study provides a preferred ideal marker system for molecular authentication of ginseng,and the presented method can be employed in origin authentication of other herbal preparations.


Subject(s)
Genetic Markers , INDEL Mutation , Panax/classification , DNA Primers , Polymerase Chain Reaction , Species Specificity
5.
Article in Chinese | WPRIM | ID: wpr-687279

ABSTRACT

Panax ginseng and P. quinquefolius are two kinds of important medicinal herbs. They are morphologically similar but have different pharmacological effects. Therefore, botanical origin authentication of these two ginsengs is of great importance for ensuring pharmaceutical efficacy and food safety. Based on the fact that intron position in orthologous genes is highly conserved across plant species, intron length polymorphisms were exploited from unigenes of ginseng. Specific primers were respectively designed for these two species based on their insertion/deletion sequences of cytochrome P450 and glyceraldehyde 3-phosphate dehydrogenase, and multiplex PCR was conducted for molecular authentication of P.ginseng and P. quinquefolius. The results showed that the developed multiplex PCR assay was effective for molecular authentication of P.ginseng and P. quinquefolius without strict PCR condition and the optimization of reaction system.This study provides a preferred ideal marker system for molecular authentication of ginseng,and the presented method can be employed in origin authentication of other herbal preparations.

6.
Molecules ; 22(4)2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28430157

ABSTRACT

Perilla (Perilla frutescens) is an economically and culturally important plant in East Asia. Plant breeding between cultivars has enhanced the genetic diversity of perilla overall, but means that functionally diverse subspecies are more difficult to identify and distinguish. In this study, we developed gene-based DNA markers to distinguish between the Korean herbal medicinal perilla varieties. We identified informative simple sequence repeat (SSR) regions on the promoter regions of the Myb-P1 and dihydroflavonol 4-reductase (DFR) genes, as well as a large insertion-deletion (indel) region in the limonene synthase (LS) gene, and developed markers to characterize the distinct subspecies differences (PfMyb-P1pro, PfDFRpro, and PfLS, respectively). Using the PfLS primers, a 430-bp region could be amplified from P. frutescens var. acuta, crispa, and f. viridis (known as Jasoyeop, Jureum-soyeop, and Chungsoyeop, respectively), but not from P. frutescens var. japonica (Dlggae). The PfMybpro primers resulted in PCR products of 314 or 316, 330, 322, and 315 bp from Dlggae, Jasoyeop, Jureum-soyeop, and Chungsoyeop, respectively, and the PfDFRpro primers resulted in products of 189 or 202, 187 or 189, 185 or 189, and 193bp, respectively, for the four perilla subspecies. Combining these three reactions into a single multiplex PCR approach resulted in subspecies-specific PCR band patterns for six common types of commercial perilla, distinguishing between three varieties of Dlggae (Cham-Dlggae, Ip-Dlggae, and Bora-Dlggae), as well as identifying Jasoyeop, Jureum-soyeop, and Chungsoyeop. These user-friendly markers will be valuable as a simple and efficient method for identifying the Korean medicinal herb Jasoyeop, as well as distinguishing between other functionally distinct subspecies, which may have broad applications in the Korean herbal industry.


Subject(s)
Multiplex Polymerase Chain Reaction/methods , Perilla frutescens/classification , Perilla frutescens/genetics , Alcohol Oxidoreductases/genetics , DNA/analysis , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Perilla frutescens/chemistry , Plants, Medicinal , Seeds , Xenopus Proteins/genetics
7.
Plant Cell Rep ; 35(10): 2113-23, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27417695

ABSTRACT

KEY MESSAGE: Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.


Subject(s)
Genome, Chloroplast , Hybridization, Genetic , Solanum/genetics , Base Sequence , Codon/genetics , Crosses, Genetic , DNA, Circular/genetics , Genetic Markers , Genetic Variation , Genotype , INDEL Mutation/genetics , Phylogeny , Polymerase Chain Reaction , Tandem Repeat Sequences/genetics
SELECTION OF CITATIONS
SEARCH DETAIL