Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Publication year range
1.
Glob Chang Biol ; 30(1): e17094, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273479

ABSTRACT

External nutrient loading can cause large changes in freshwater ecosystems. Many local field and laboratory experiments have investigated ecological responses to nutrient addition. However, these findings are difficult to generalize, as the responses observed may depend on the local context and the resulting nutrient concentrations in the receiving water bodies. In this research, we combined and analysed data from 131 experimental studies containing 3054 treatment-control abundance ratios to assess the responses of freshwater taxa along a gradient of elevated nutrient concentrations. We carried out a systematic literature search in order to identify studies that report the abundance of invertebrate, macrophyte, and fish taxa in relation to the addition of nitrogen, phosphorus, or both. Next, we established mixed-effect meta-regression models to relate the biotic responses to the concentration gradients of both nutrients. We quantified the responses based on various abundance-based metrics. We found no responses to the mere addition of nutrients, apart from an overall increase of total invertebrate abundance. However, when we considered the gradients of N and P enrichment, we found responses to both nutrients for all abundance metrics. Abundance tended to increase at low levels of N enrichment, yet decreased at the high end of the concentration gradient (1-10 mg/L, depending on the P concentration). Responses to increasing P concentrations were mostly positive. For fish, we found too few data to perform a meaningful analysis. The results of our research highlight the need to consider the level of nutrient enrichment rather than the mere addition of nutrients in order to better understand broad-scale responses of freshwater biota to eutrophication, as a key step to identify effective conservation strategies for freshwater ecosystems.


Subject(s)
Ecosystem , Invertebrates , Animals , Fresh Water , Biota , Fishes , Nutrients/analysis , Phosphorus/analysis , Nitrogen/analysis , Eutrophication
2.
Biol Rev Camb Philos Soc ; 99(1): 131-176, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37698089

ABSTRACT

Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.


Subject(s)
Arthropods , Ecosystem , Animals , Humans , Invertebrates
3.
Estuaries Coast ; 46(6): 1612-1631, 2023.
Article in English | MEDLINE | ID: mdl-37520332

ABSTRACT

Infaunal invertebrate communities of coastal marine sediments are often impacted by human activities, particularly in harbours and estuaries. However, while many studies have attempted to identify the key factors affecting benthic infauna, few have done so for highly energetic tidal estuaries. Samples were collected over a decade (2011-2020) from a series of reference sites in Saint John Harbour (45.25° N, 66.05° W), a highly tidal estuary in the Bay of Fundy, Canada. These data were used to examine spatial and temporal trends in infaunal invertebrate communities and sediment properties and to determine the extent to which the biological patterns were driven by measured physical and chemical variables. There were substantial differences among sites in infaunal invertebrate abundance (median ranging from 688 to 13,700 individuals per square meter), infaunal species richness (median ranging from 8 to 22), and Shannon diversity (median ranging from 1.26 to 2.34); multivariate analysis also revealed variation in species composition among sites. Sediment contaminant concentrations also varied among sites, but differences tended to be smaller (e.g. median chromium concentrations ranging from 21.6 to 27.6 mg/kg). Sample contaminant concentrations were all below probable effect levels, and almost all below threshold effect levels (Canadian interim sediment quality guidelines), but relationships with biological data were still detectable. However, physical variables (depth, sediment characteristics) were better predictors of biological variables and community composition. These results confirm the importance of physical factors in shaping infaunal communities in soft-sediment habitats in tidally influenced coastal waters. Supplementary Information: The online version contains supplementary material available at 10.1007/s12237-023-01222-w.

4.
Molecules ; 28(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110847

ABSTRACT

Klebsiella is a common dangerous pathogen for humans and animals and is widely present in the digestive system. The genus Klebsiella is ubiquitous, as it is endemic to surface water, soil, and sewage. In this study, 70 samples were obtained from soil-dwelling invertebrates from September 2021 to March 2022 from Taif and Shafa in different altitudinal regions of Saudi Arabia. Fifteen of these samples were identified as Klebsiella spp. The Klebsiella isolates were genetically identified as Klebsiella pneumoniae using rDNA sequencing. The antimicrobial susceptibility of the Klebsiella isolates was determined. Amplification of virulence genes was performed using PCR. In this study, 16S rDNA sequencing showed a similarity from 98% to 100% with related K. pneumonia from the NCBI database, and the sequences were deposited in the NCBI GenBank under accession numbers ON077036 to ON077050. The growth inhibition properties of ethanolic and methanolic extracts of the medicinal plant Rhazya stricta's leaves against K. pneumoniae strains using the minimum inhibitory concentration (MIC) method and disc diffusion were evaluated. In addition, the biofilm inhibitory potential of these extracts was investigated using crystal violet. HPLC analysis identified 19 components divided into 6 flavonoids, 11 phenolic acids, stilbene (resveratrol), and quinol, and revealed variations in the number of components and their quantities between extracts. Both extracts demonstrated interesting antibacterial properties against K. pneumoniae isolates. The 2 extracts also showed strong biofilm inhibitory activities, with percentages of inhibition extending from 81.5% to 98.7% and from 35.1% to 85.8% for the ethanolic and methanolic extracts, respectively. Rhazya stricta leaf extract revealed powerful antibacterial and antibiofilm activities against K. pneumoniae isolates and could be a good candidate for the treatment or prevention of K. pneumonia-related infections.


Subject(s)
Apocynaceae , Klebsiella pneumoniae , Humans , Altitude , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Klebsiella , DNA, Ribosomal , Microbial Sensitivity Tests
5.
Neurosci Biobehav Rev ; 148: 105129, 2023 05.
Article in English | MEDLINE | ID: mdl-36914078

ABSTRACT

The startle response consists of whole-body muscle contractions, eye-blink, accelerated heart rate, and freezing in response to a strong, sudden stimulus. It is evolutionarily preserved and can be observed in any animal that can perceive sensory signals, indicating the important protective function of startle. Startle response measurements and its alterations have become a valuable tool for exploring sensorimotor processes and sensory gating, especially in the context of pathologies of psychiatric disorders. The last reviews on the neural substrates underlying acoustic startle were published around 20 years ago. Advancements in methods and techniques have since allowed new insights into acoustic startle mechanisms. This review is focused on the neural circuitry that drives the primary acoustic startle response in mammals. However, there have also been very successful efforts to identify the acoustic startle pathway in other vertebrates and invertebrates in the past decades, so at the end we briefly summarize these studies and comment on the similarities and differences between species.


Subject(s)
Mammals , Reflex, Startle , Animals , Reflex, Startle/physiology , Acoustic Stimulation/methods
6.
Bull Environ Contam Toxicol ; 110(2): 46, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36690874

ABSTRACT

We attempted to characterize zooplankton community response following spills of the unconventional crude oil, diluted bitumen (dilbit), into 10-m diameter, ~ 100 m3, ~ 1.5-m deep boreal lake limnocorrals, including two controls and seven dilbit treatments ranging from 1.5 to 180 L (1:100,000 to 1:1,000 v/v, dilbit:water). Community composition and abundances were monitored weekly to bi-weekly over three months. Total zooplankton biomass and abundance seemingly collapsed in all limnocorrals, regardless of treatment, though some rotifer species persisted. As a result, it was not possible to determine the impacts of dilbit. We theorize several potential non-oil-related reasons for the sudden community collapse - including elevated zinc levels, fish grazing pressures, and sampling biases - and provide guidance for future work using in-lake enclosures.


Subject(s)
Petroleum , Water Pollutants, Chemical , Animals , Lakes , Zooplankton , Water Pollutants, Chemical/analysis , Hydrocarbons
7.
Environ Pollut ; 319: 120960, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36587783

ABSTRACT

While meta-analyses are common in the health and some biological sciences, there is a lack of such analyses for petroleum-related marine research. Oil is a highly complex substance consisting of thousands of different compounds. Measurement limitations, different protocols and a lack of standards in recording and reporting various elements of laboratory experiments impede attempts to homogenize and compare data and identify trends. Nevertheless, oil toxicology research would benefit from meta-analyses, through which we could develop meaningful research questions and design robust experiments. Here we report findings from an effort to quantitatively summarize results from oil toxicology studies on arctic and subarctic marine invertebrates. We discovered that the vast majority of studies was conducted on crustaceans, followed by molluscs. Analyzing the sensitivity of response measures across taxa we found that the most sensitive responses tend to rank low in ecological relevance, while less sensitive response measures tend to be more ecologically relevant. We further uncovered that crustaceans appear to be more sensitive to mechanically dispersed than chemically dispersed oil while the opposite seems true for molluscs, albeit not statistically significant. Both crustaceans and molluscs show a higher sensitivity to fresh than to weathered oil. No differences in the sensitivities of crustacean life stages were found. However, due to a lack of data, many questions remain unanswered. Our study revealed that while trends in responses can be elucidated, heterogeneous experimental protocols and reporting regimes prevent a proper meta-analysis.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Arctic Regions , Aquatic Organisms , Invertebrates , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
8.
Ecotoxicology ; 31(6): 967-975, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35701565

ABSTRACT

Concentrations of major ions in coal mine discharge waters and unconventional hydrocarbon produced waters derived from coal bed methane (CBM) production, are potentially harmful to freshwater ecosystems. Bicarbonate is a major constituent of produced waters from CBM and coal mining. However, little is known about the relative toxicity of differing ionic proportions, especially bicarbonate, found in these CBM waters. As all freshwater invertebrates tested are more acutely sensitive to sodium bicarbonate (NaHCO3) than sodium chloride (NaCl) or synthetic sea water, we tested the hypotheses that toxicity of CBM waters are driven by bicarbonate concentration, and waters containing a higher proportion of bicarbonate are more toxic to freshwater invertebrates than those with less bicarbonate. We compared the acute (96 h) lethal toxicity to six freshwater invertebrate species of NaHCO3 and two synthetic CBM waters, with ionic proportions representative of water from CBM wells across New South Wales (NSW) and Queensland (Qld), in Australia. The ranking of LC50 values expressed as total salinity was consistent with the hypotheses. However, when toxicity was expressed as bicarbonate concentration, the hypothesis that the toxicity of coal bed waters would be explained by bicarbonate concentration was not well supported, and other ionic components were either ameliorating or exacerbating the NaHCO3 toxicity. Our findings showed NaHCO3 was more toxic than NaCl and that the NaHCO3 proportion of synthetic CBM waters drives toxicity, however other ions are altering the toxicity of bicarbonate.


Subject(s)
Bicarbonates , Water Pollutants, Chemical , Animals , Coal , Ecosystem , Fresh Water , Invertebrates , Ions , Sodium Chloride , Water Pollutants, Chemical/toxicity
9.
Ecotoxicol Environ Saf ; 237: 113554, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35487174

ABSTRACT

The oil sands industry in Canada, produces heavy unconventional oils, diluted for transport and called diluted bitumen. However, despite advances in our knowledge of the ecotoxicological risk that these products represent, their effects on benthic organisms following a spill are still largely unknown. In order to fill these gaps, this study aims to determine the lethal and sublethal effects of two diluted bitumens (Bluesky and Cold Lake) and one conventional oil (Lloydminster) for two freshwater benthic invertebrates: Chironomus riparius and Hyalella azteca. The objective of this study is to assess the toxicity of dissolved hydrocarbons, resulting from the physical dispersion of oil, immediately after a spill on the benthic invertebrates. To this end, organisms were exposed for 7 days for chironomids and 14 days for amphipods to a fraction containing soluble hydrocarbons (WAF: water accommodated fraction; 10 g/L, 18 h of agitation, followed by 6 h of sedimentation) with natural or artificial sediment. After exposure, the effects of hydrocarbons were determined using size, mortality, and antioxidant capacities. Dissolved hydrocarbons induced mortality for both species, but these hydrocarbons disappeared very quickly from the water column, regardless of the oil type. The amphipods were sensitive to both types of oil while the chironomids were only sensitive to diluted bitumens. The presence of a natural sediment seems to provide a protective role against dissolved hydrocarbons. The antioxidant enzymes measured (CAT, SOD and GPx) do not appear to be relevant biomarkers for the exposure of these organisms to diluted bitumen.


Subject(s)
Amphipoda , Chironomidae , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Antioxidants , Hydrocarbons/toxicity , Invertebrates , Lakes , Oil and Gas Fields , Petroleum/analysis , Petroleum/toxicity , Petroleum Pollution/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Sci Total Environ ; 828: 154435, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278552

ABSTRACT

The effect of coagulants used in lake reclamation on crayfish is poorly understood. Therefore, the aim of this study was to evaluate changes in the bioaccumulation of Al, Ca, Cu, Fe, K, Mg, Na and Zn in the gills, exoskeleton, muscle and hepatopancreas of spiny-cheek crayfish (Faxonius limosus) as a result of exposure to PAX®18 coagulant, containing polyaluminum chloride. The study also evaluated the risk to human health from the consumption of crayfish muscle. Metal levels, determined using atomic absorption spectrometry, differed between metals (the highest concentrations for Ca, K, Na, Mg) and the body part. Calcium was most abundant in the exoskeleton, K in the muscles, while Cu and Al in the hepatopancreas. The bioaccumulation of metals was affected by exposure to the coagulant, with a statistically significant (p < 0.05) increase in muscle concentration of Al and Na and a decrease in Ca and Fe. The concentrations of elements (in µg g-1) in the muscle of the control group crayfish and those in contact with the coagulant were, respectively: K (2150; 2090), Na (1540; 2020), Ca (749; 602), Mg (207; 174), Al (103; 164), Zn (21.1; 19.1), Fe (7.6; 3.8) and Cu (8.4; 7.6). Most elements were below 12% of the Dietary Reference Values (DRV). The Al concentration in the muscle exceeded the tolerable weekly intake (TWI) (maximum 164% TWI for muscle of crayfish exposed to polyaluminum chloride). In conclusion, the studied F. limosus had typical elemental bioaccumulation for a crayfish, but the contact with the coagulant increased Al concentration and decreased Fe, Ca, Mg, Zn and Cu concentrations. The muscle of crayfish can be used as a supplementary source of essential elements in the human diet, but it seems necessary to introduce obligatory control of Al levels due to the use of polyaluminum chloride in lake restoration.


Subject(s)
Astacoidea , Metals, Heavy , Aluminum Hydroxide , Animals , Astacoidea/physiology , Bioaccumulation , Cheek , Environmental Monitoring , Humans , Metals/analysis , Metals, Heavy/analysis
11.
Sci Total Environ ; 804: 150160, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34798729

ABSTRACT

Along six transects in each of six lakes across the Western Balkans, we collected data for three groups of littoral biological water quality indicators: epilithic diatoms, macrophytes, and benthic invertebrates. We assessed the relationships between them and three environmental pressures: nutrient load (eutrophication), hydro-morphological alteration of the shoreline, and water level variation, separating the effect of individual lakes and continuous explanatory variables. Lake water total phosphorus concentration (TP) showed substantial variation but was not related to any of the tested biological indicators, nor to any of the tested pressures. We suggest that this may be due to feedback processes such as P removal in the lake littoral zone. Instead, we found that a gradient in surrounding land-use towards increasing urbanization, and a land-use-based estimate of P run-off, served as a better descriptor of eutrophication. Overall, eutrophication and water level fluctuation were most important for explaining variation in the assessed indicators, whereas shoreline hydro-morphological alteration was less important. Diatom indicators were most responsive to all three pressures, whereas macrophyte biomass and species number responded only to water level fluctuation. The Trophic Diatom Index for Lakes (TDIL) was negatively related to urbanization and wave exposure. This indicates that it is a suitable indicator for pressures related to urbanization, although a confounding effect of wave exposure is possible. Invertebrate abundance responded strongly to eutrophication, but the indicator based on taxonomic composition (Average Score Per Taxon) did not. Our results suggest that our metrics can be applied in Western Balkan lakes, despite the high number of endemic species present in some of these lakes. We argue that local water management should focus on abating the causes of eutrophication and water level fluctuation, whilst preserving sufficient lengths of undeveloped shoreline to ensure good water quality in the long run.


Subject(s)
Lakes , Water Quality , Balkan Peninsula , Environmental Biomarkers , Environmental Monitoring , Eutrophication , Phosphorus/analysis , Quality Indicators, Health Care
12.
Mass Spectrom Rev ; 41(6): 945-963, 2022 11.
Article in English | MEDLINE | ID: mdl-33955035

ABSTRACT

The approaches for analysis of N-glycans have radically altered in the last 20 years or so. Due to increased sensitivity, mass spectrometry has become the predominant method in modern glycomics. Here, we summarize recent studies showing that the improved resolution and detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has contributed greatly to the discovery of a large range of anionic and zwitterionic N-glycan structures across the different kingdoms of life, whereby MALDI-TOF MS in negative mode is less widely performed than in positive mode. However, its use enables the detection of key fragments indicative of certain sugar modifications such as sulfate, (methyl) phosphate, phosphoethanolamine, (methyl)aminoethylphosphonate, glucuronic, and sialic acid, thereby enabling certain isobaric glycan variations to be distinguished. As we also discuss in this review, complementary approaches such as negative-mode electrospray ionization-MS/MS, Fourier-transform ion cyclotron resonance MS, and ion mobility MS yield, respectively, cross-linkage fragments, high accuracy masses, and isomeric information, thus adding other components to complete the jigsaw puzzle when defining unusual glycan modifications from lower organisms.


Subject(s)
N-Acetylneuraminic Acid , Tandem Mass Spectrometry , Animals , Invertebrates/chemistry , Phosphates , Polysaccharides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sugars , Sulfates
13.
J Nat Med ; 76(1): 1-19, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34415546

ABSTRACT

Nature is a prolific source of organic products with diverse scaffolds and biological activities. The process of natural product discovery has gradually become more challenging, and advances in novel strategic approaches are essential to evolve natural product chemistry. Our focus has been on surveying untouched marine resources and fermentation to enhance microbial productive performance. The first topic is the screening of marine natural products isolated from Indonesian marine organisms for new types of bioactive compounds, such as antineoplastics, antimycobacterium substances, and inhibitors of protein tyrosine phosphatase 1B, sterol O-acyl-transferase, and bone morphogenetic protein-induced osteoblastic differentiation. The unique biological properties of marine organohalides are discussed herein and attempts to efficiently produce fungal halogenated metabolites are documented. This review presents an overview of our recent work accomplishments based on the MONOTORI study.


Subject(s)
Aquatic Organisms , Biological Products , Biological Products/pharmacology , Fungi , Indonesia , Natural Resources
14.
Environ Pollut ; 291: 118165, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34536642

ABSTRACT

There is a growing need to recover degraded soils to restore their essential ecosystem services and limit damages of anthropic activities onto these systems. Safe and sustainable solutions for long-term recovery must be designed, ideally by recycling existing resources. Using ash from combustion of residual forest biomass at the pulp and paper industry is an interesting and sustainable strategy to recover mining soils. However, formulations must be found to limit the potential toxicity associated with soluble salts and chloride that ash contains. Here, we assessed the effectiveness of three field ash-based amendments for the recovery of three highly acidic soils from Portuguese abandoned mines. Three amendments were tested: an un-stabilized mixture of ash and biological sludge, granulated ash, and granulated ash mixed with composted sludge. One year after application in open field plots (in the scope of LIFE No_Waste project), soil health restoration was evaluated through (i) soil physico-chemical characterization and (ii) soil habitat functions though standardized ecotoxicological tests. This study highlights that stabilized materials provided nutrients, organic matter and alkalinity that corrected soil pH and decreased metal bioavailability, while controlling the release of soluble salts and chloride from ash. This soil improvement correlated with improved soil model organisms' reproduction and survival. For similar amendment, the native soil properties studied (as soil native electrical conductivity) affected the level of organism response. This work provides evidence that ash stabilization, formulation and supplementation with organic matter could be sustainable strategies to restore highly degraded mining soils and to recover their ecological functions. It further highlights the importance of analyzing combined effects on soil physico-chemical properties and ecological function recovery to assess restoration strategy efficiencies in complex multi-stressor environments.


Subject(s)
Soil Pollutants , Soil , Biomass , Ecosystem , Mining , Soil Pollutants/analysis , Soil Pollutants/toxicity
15.
Mar Pollut Bull ; 173(Pt A): 112934, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537570

ABSTRACT

Marine traffic is the most pervasive underwater anthropogenic noise pollution which can mask acoustic communication in marine mammals and fish, but its effect in marine invertebrates remains unknown. Here, we performed an at sea experiment to study the potential of shipping noise to mask and alter lobster acoustic communication. We used hydrophones to record buzzing sounds and accelerometers to detect lobster carapace vibrations (i.e. the buzzing sounds' sources). We demonstrated that male individuals produced carapace vibrations under various ambient noise conditions, including heavy shipping noise. However, while the associated waterborne buzzing sounds could be recorded under natural ambient noise levels, they were masked by shipping noise. Additionally, lobsters significantly increased their call rates in presence of shipping noise, suggesting a vocal compensation due to the reduction of intraspecific communication. This study reports for the first time the potential acoustic masking of lobster acoustic communication by chronic anthropogenic noise pollution, which could affect ecologically important behaviors.


Subject(s)
Nephropidae , Noise , Acoustics , Animals , Humans , Male , Noise/adverse effects , Ships , Sound
16.
Environ Sci Technol ; 55(12): 7920-7929, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34086445

ABSTRACT

The exposure of ecologically critical invertebrate species to biologically active pharmaceuticals poses a serious risk to the aquatic ecosystem. Yet, the fate and toxic effects of pharmaceuticals on these nontarget aquatic invertebrates and the underlying mechanisms are poorly studied. Herein, we investigated the toxicokinetic (TK) processes (i.e., uptake, biotransformation, and elimination) of the pharmaceutical diclofenac and its biotransformation in the freshwater invertebrate Hyalella azteca. We further employed mass spectrometry-based metabolomics to assess the toxic effects of diclofenac on the metabolic functions of H. azteca exposed to environmentally relevant concentrations (10 and 100 µg/L). The TK results showed a quick uptake of diclofenac by H. azteca (maximum internal concentration of 1.9 µmol/kg) and rapid formation of the conjugate diclofenac taurine (maximum internal concentration of 80.6 µmol/kg), indicating over 40 times higher accumulation of diclofenac taurine than that of diclofenac in H. azteca. Depuration kinetics demonstrated that the elimination of diclofenac taurine was 64 times slower than diclofenac in H. azteca. Metabolomics results suggested that diclofenac inhibited prostaglandin synthesis and affected the carnitine shuttle pathway at environmentally relevant concentrations. These findings shed light on the significance of the TK process of diclofenac, especially the formation of diclofenac taurine, as well as the sublethal effects of diclofenac on the bulk metabolome of H. azteca. Combining the TK processes and metabolomics provides complementary insights and thus a better mechanistic understanding of the effects of diclofenac in aquatic invertebrates.


Subject(s)
Amphipoda , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Diclofenac/toxicity , Ecosystem , Invertebrates , Metabolomics , Toxicokinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
17.
Environ Toxicol Chem ; 40(5): 1298-1307, 2021 05.
Article in English | MEDLINE | ID: mdl-33369780

ABSTRACT

Physical impacts of diluted bitumen (dilbit) and the application of surface washing agents (SWAs) in freshwater have not been characterized for aquatic invertebrates. These compounds are known to reduce surface tension in feather and fur microstructures of birds and mammals, and are thus likely to affect the buoyancy of surface-dwelling aquatic insects. We evaluated impacts of fresh dilbit and a SWA on water striders (Metrobates sp.), which are surface-dwelling organisms that rely on fine-hair microstructures to remain buoyant. We report nominal sheen thickness values that cause 50% immobility in 48 h as determined from exposure studies in outdoor tanks. A comparison of our data with those from historic oil spill volumes in Canada and the United States in the past 12 yr indicates that our reported nominal sheen thicknesses could have been reached or exceeded in 99% of historic spills when scaled to a small reference lake. The addition of Corexit EC9580A, a SWA approved for marine use in Canada, led to 100% immobility in striders within minutes, both in combination with oil and alone. Our study reveals an acute sensitivity to Corexit EC9580A and dilbit by surface-dwelling insects and may be driven by disruption of mechanisms of buoyancy. We highlight a need to evaluate physical impacts, typically excluded from standard toxicity testing, within the context of spill impact mitigation assessments. Environ Toxicol Chem 2021;40:1298-1307. © 2020 SETAC.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Insecta , Invertebrates , Lakes , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
Int J Mol Sci ; 21(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198405

ABSTRACT

Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproduction via the hypothalamus-pituitary-gonad axis (HPG axis) in vertebrates. GnRHs and their receptors (GnRHRs) are also conserved in invertebrates lacking the HPG axis, indicating that invertebrate GnRHs do not serve as "gonadotropin-releasing factors" but, rather, function as neuropeptides that directly regulate target tissues. All vertebrate and urochordate GnRHs comprise 10 amino acids, whereas amphioxus, echinoderm, and protostome GnRH-like peptides are 11- or 12-residue peptides. Intracellular calcium mobilization is the major second messenger for GnRH signaling in cephalochordates, echinoderms, and protostomes, while urochordate GnRHRs also stimulate cAMP production pathways. Moreover, the ligand-specific modulation of signal transduction via heterodimerization between GnRHR paralogs indicates species-specific evolution in Ciona intestinalis. The characterization of authentic or putative invertebrate GnRHRs in various tissues and their in vitro and in vivo activities indicate that invertebrate GnRHs are responsible for the regulation of both reproductive and nonreproductive functions. In this review, we examine our current understanding of and perspectives on the primary sequences, tissue distribution of mRNA expression, signal transduction, and biological functions of invertebrate GnRHs and their receptors.


Subject(s)
Hypothalamus/metabolism , Invertebrates/metabolism , Receptors, LHRH/metabolism , Animals , Biological Evolution , COS Cells , Calcium/metabolism , Chlorocebus aethiops , Ciona intestinalis , Cyclic AMP/metabolism , Echinodermata , Female , Gonadotropin-Releasing Hormone/metabolism , HEK293 Cells , Humans , Ligands , Male , Markov Chains , Mollusca , Signal Transduction , Tissue Distribution , Urochordata
19.
Braz. j. biol ; Braz. j. biol;80(2): 393-404, Apr.-June 2020. tab
Article in English | LILACS | ID: biblio-1132371

ABSTRACT

Abstract This paper reports the in vitro antiproliferative effects, antiprotozoal, anti-herpes and antimicrobial activities of 32 organic extracts of 14 marine sponges and 14 corals collected in northeast Brazilian coast. The ethanolic extracts of the sponges Amphimedon compressa and Tedania ignis, and the acetone extract of Dysidea sp. showed relevant results concerning the antiproliferative effects against A549, HCT-8, and PC-3 cell lines by sulforhodamine B assay, but also low specificity. Concerning the antiprotozoal screening, the ethanolic extract of Amphimedon compressa and the acetone and ethanolic extracts of Dysidea sp. were the most active against Leishmania amazonensis and Trypanosoma cruzi expressing β-galactosidase in THP-1 cells. In the preliminary anti-HSV-1 (KOS strain) screening, the ethanolic extracts of the sponges Amphimedon compressa, Haliclona sp. and Chondrosia collectrix inhibited viral replication by more than 50%. The most promising anti-herpes results were observed for the ethanolic extract of Haliclona sp. showing high selective indices against HSV-1, KOS and 29R strains (SI> 50 and >79, respectively), and HSV-2, 333 strain (IS>108). The results of the antibacterial screening indicated that only the ethanolic extract of Amphimedon compressa exhibited a weak activity against Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli by the disk diffusion method. In view of these results, the extracts of Amphimedon compressa, Tedania ignis and Dysidea sp. were selected for further studies aiming the isolation and identification of the bioactive compounds with antiproliferative and/or antiprotozoal activities. The relevant anti-herpes activity of the ethanolic extract of Haliclona sp. also deserves special attention, and will be further investigated.


Resumo Este artigo reporta as atividades in vitro antiproliferativa, atiprotozoárica, anti-herpética e antimicrobiana de 32 extratos orgânicos provenientes de 14 esponjas marinhas e 14 corais coletados no litoral nordestino brasileiro. Os extratos etanólicos das esponjas Amphimedon compressa e Tedania ignis, e o extrato acetônico de Dysidea sp. demonstraram resultados promissores em relação aos efeitos antiproliferativos frente as linhagens celulares A549, HCT-8, PC-3 pelo método da sulforrodamina B, mas sem especificidade. Em relação à atividade antiprotozárica, os extratos etanólico de Amphimedon compressa e acetônico e etanólico de Dysidea sp. apresentaram atividade contra Leishmania amazonensis e Trypanosoma cruzi através do método de expressão de β-galactosidase em células THP-1. Na investigação preliminar de atividade antiviral frente ao vírus Herpes simplex tipo 1 (cepa KOS), os extratos etanólicos das esponjas Amphimedon compressa, Haliclona sp. e Chondrosia collectrix inibiram mais de 50% da replicação viral. O extrato etanólico da esponja Haliclona sp. demonstrou resultados promissores para atividade anti-herpética com altos índices de seletividade para as cepas KOS (IS >50) e 29R (IS>79) frente ao VHS-1 e cepa 333 (IS>108) frente ao VHS-2. O extrato etanólico da esponja Amphimedon compressa exibiu uma pequena atividade contra Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli pelo método de difusão em disco. De acordo com os resultados apresentados, os extratos das esponjas Amphimedon compressa, Tedania ignis e Dysidea sp. serão selecionados para futuros estudos de isolamento e identificação dos compostos bioativos para as atividades antiproliferativa e antiprozoárica. O extrato etanólico de Haliclona sp. será investigado por possuir atividade relevante anti-herpética.


Subject(s)
Animals , Porifera , Brazil , Plant Extracts , Enterococcus faecalis , Anti-Bacterial Agents
20.
Environ Toxicol Chem ; 39(9): 1685-1692, 2020 09.
Article in English | MEDLINE | ID: mdl-32418248

ABSTRACT

Pesticides are a major contaminant in coastal waters and can cause adverse effects in marine invertebrates such as jellyfish. Most studies have investigated short-term responses of organisms to unrealistically high concentrations of pesticides; however, chronic exposure to persistent low concentrations, which are more likely to occur in the environment, are rarely analyzed. We tested the response of polyps of the moon jellyfish Aurelia aurita to environmental concentrations of the herbicide atrazine and the insecticide chlorpyrifos, individually and in combination, over 9 wk. We hypothesized that exposure to individual pesticides would reduce rates of asexual reproduction and alter polyps' metabolite profiles, and that the results would be more severe when polyps were exposed to the combined pesticides. Polyps survived and reproduced (through budding) in all treatments, and no differences among treatments were observed. Proton nuclear magnetic resonance spectroscopy revealed no difference in profiles of polar metabolites of polyps exposed to the individual or combined pesticides. Our results suggest that A. aurita polyps are unaffected by chronic exposure to atrazine and chlorpyrifos at concentrations recommended as being protective by current Australian water quality guidelines. Environ Toxicol Chem 2020;39:1685-1692. © 2020 SETAC.


Subject(s)
Environmental Exposure/analysis , Pesticides/toxicity , Scyphozoa/physiology , Animals , Aquatic Organisms/drug effects , Atrazine/toxicity , Chlorpyrifos/toxicity , Herbicides/toxicity , Linear Models , Metabolomics , Principal Component Analysis , Proton Magnetic Resonance Spectroscopy , Reproduction, Asexual/drug effects , Scyphozoa/drug effects , Survival Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL