Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
Add more filters

Publication year range
1.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480613

ABSTRACT

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Subject(s)
Flax , Glucosides , Lignans , Flax/chemistry , Flax/metabolism , Fermentation , Lignans/pharmacology , Lignans/chemistry , Lignans/metabolism , Glycosides , Butylene Glycols/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology
2.
Genes (Basel) ; 15(3)2024 02 21.
Article in English | MEDLINE | ID: mdl-38540329

ABSTRACT

Kadsura coccinea is a medicinal plant from the Schisandraceae family that is native to China and has great pharmacological potential due to its lignans. However, there are significant knowledge gaps regarding the genetic and molecular mechanisms of lignans. We used transcriptome sequencing technology to analyze root, stem, and leaf samples, focusing on the identification and phylogenetic analysis of Cytochrome P450 (CYP) genes. High-quality data containing 158,385 transcripts and 68,978 unigenes were obtained. In addition, 36,293 unigenes in at least one database, and 23,335 across five databases (Nr, KEGG, KOG, TrEMBL, and SwissProt) were successfully annotated. The KEGG pathway classification and annotation of these unigenes identified 10,825 categorized into major metabolic pathways, notably phenylpropanoid biosynthesis, which is essential for lignan synthesis. A key focus was the identification and phylogenetic analysis of 233 Cytochrome P450 (CYP) genes, revealing their distribution across 38 families in eight clans, with roots showing specific CYP gene expression patterns indicative of their role in lignan biosynthesis. Sequence alignment identified 22 homologous single genes of these CYPs, with 6 homologous genes of CYP719As and 1 of CYP81Qs highly expressed in roots. Our study significantly advances the understanding of the biosynthesis of dibenzocyclooctadiene lignans, offering valuable insights for future pharmacological research and development.


Subject(s)
Kadsura , Lignans , Humans , Transcriptome/genetics , Phylogeny , Gene Expression Profiling , Cytochrome P-450 Enzyme System/genetics , Lignans/pharmacology
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542438

ABSTRACT

Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (-)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (-)-gomisin J.


Subject(s)
Lignans , Polycyclic Compounds , Schisandra , Lignans/pharmacology , Cyclooctanes/pharmacology , Anti-Inflammatory Agents/pharmacology
4.
Plants (Basel) ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38475422

ABSTRACT

The fruit of Forsythia suspensa (Thunb.) Vahl has been used in traditional Chinese medicine as "Forsythiae fructus". The species is also grown in parks and gardens, and on streets and building lots, as an ornamental plant, but it requires pruning. In this study, the allelopathic activity and allelopathic substances in the leaves of pruned branches of F. suspensa were investigated to determine any potential application. The leaf extracts of F. suspensa showed growth inhibitory activity against three weed species; Echinochloa crus-galli, Lolium multiflorum, and Vulpia myuros. Two allelopathic substances in the extracts were isolated through the bioassay-guided purification process, and identified as (-)-matairesinol and (-)-arctigenin. (-)-Matairesinol and (-)-arctigenin, which showed significant growth inhibitory activity at concentrations greater than 0.3 mM in vitro. The inhibitory activity of (-)-arctigenin was greater than that of (-)-matairesinol. However, both compounds were more active than (+)-pinolesinol which is their precursor in the biosynthetic pathway. The investigation suggests that F. suspensa leaves are allelopathic, and (-)-matairesinol and (-)-arctigenin may contribute to the growth inhibitory activities. Therefore, the leaves of the pruned branches can be applied as a weed management strategy in some agricultural practices such as using the leaf extracts in a foliar spray and the leaves in a soil mixture, thereby reducing the dependency on synthetic herbicides in the crop cultivation and contributing to developing eco-friendly agriculture.

5.
J Agric Food Chem ; 72(10): 5133-5144, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427577

ABSTRACT

Botanical insecticides are considered an environmentally friendly approach to insect control because they are easily biodegraded and cause less environmental pollution compared to traditional chemical pesticides. In this study, we reported the insecticidal activities of the ingredients from Taiwania flousiana Gaussen (T. flousiana). Five compounds, namely helioxanthin (C1), taiwanin E (C2), taiwanin H (C3), 7,4'-dimethylamentoflavone (C4), and 7,7″-di-O-methylamentoflavone (C5), were isolated and tested against the second, third, and fourth instar larvae of Aedes aegypti. Our results indicated that all five compounds showed insecticidal activities, and helioxanthin, which is an aryltetralin lignan lactone, was the most effective with LC50 values of 0.60, 2.82, and 3.12 mg/L, respectively, 48 h after application, with its activity against the second instar larvae similar to that of pyrethrin and better than that of rotenone. Further studies found that helioxanthin accumulated in the gastric cecum and the midgut and caused swelling of mitochondria with shallow matrices and fewer or disappeared crista. Additionally, our molecular mechanisms studies indicated that the significantly differentially expressed genes (DEGs) were mainly associated with mitochondria and the cuticle, among which the voltage-dependent anion-selective channel (VDAC) gene was the most down-regulated by helioxanthin, and VDAC is the potential target of helioxanthin by binding to specific amino acid residues (His 122 and Glu 147) via hydrogen bonds. We conclude that aryltetralin lignan lactone is a potential class of novel insecticides by targeting VDAC.


Subject(s)
Aedes , Insecticides , Lignans , Animals , Insecticides/chemistry , Molecular Docking Simulation , Lignans/pharmacology , Plant Extracts/chemistry , Larva
6.
Nutrients ; 16(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337729

ABSTRACT

BACKGROUND: There has been an increasing global prevalence of depression and other psychiatric diseases in recent years. Perceived stress has been proven to be associated with psychiatric and somatic symptoms. Some animal and human studies have suggested that consuming foods abundant in lignans and phytosterols may be associated with lower levels of stress, depression, and anxiety. Still, the evidence is not yet strong enough to draw firm conclusions. Thus, we investigated the association between dietary intake of these phytochemicals and the level of stress experienced by adult individuals. METHODS: Diet was assessed using self-reported 7-day dietary records. The intakes of lignans and phytosterols were estimated using databases with their content in various food products. The Perceived Stress Scale (PSS) was implemented to measure the level of perceived stress. A logistic regression analysis was used to test for associations. RESULTS: The odds of elevated PSS were negatively associated with dietary intake of total phytosterols, stigmasterol, and ß-sitosterol, with evidence of a decreasing trend across tertiles of phytochemicals. The analysis for doubling the intake reinforced the aforementioned relationships and found protective effects against PSS for total lignans, pinoresinol, and campesterol. CONCLUSIONS: Habitual inclusion of lignans and phytosterols in the diet may play a role in psychological health. To address the global outbreak of depression and other mental health issues triggered by stress, it is important to take a holistic approach. There is a need to develop effective strategies for prevention and treatment, among which certain dietary interventions such as consumption of products abundant in lignans and phytosterols may play a substantial role.


Subject(s)
COVID-19 , Lignans , Phytosterols , Psychological Tests , Self Report , Humans , Young Adult , Poland , Pandemics , COVID-19/epidemiology , Phytosterols/analysis , Diet , Perception
7.
Biosci Biotechnol Biochem ; 88(3): 270-275, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38169014

ABSTRACT

Secondary metabolites are specialized metabolic products synthesized by plants, insects, and bacteria, some of which exhibit significant physiological activities against other organisms. Plants containing bioactive secondary metabolites have been used in traditional medicine for centuries. In developed countries, one-fourth of medicines directly contain plant-derived compounds or indirectly contain them via semi-synthesis. These compounds have contributed considerably to the development of not only medicine but also molecular biology. Moreover, the biosynthesis of these physiologically active secondary metabolites has attracted substantial interest and has been extensively studied. However, in many cases, the degradation mechanisms of these secondary metabolites remain unclear. In this review, some unique microbial degradation pathways for lignans and C-glycosides are explored.


Subject(s)
Bacteria , Fungi , Glycosides , Lignans , Lignans/metabolism , Glycosides/metabolism , Bacteria/metabolism , Metabolic Networks and Pathways , Fungi/metabolism
8.
Fitoterapia ; 173: 105826, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219842

ABSTRACT

Five undescribed lignans, cleiseberharnins A-D (1-4), cleiseberharside A (5) were isolated from the fruits of Cleistanthus eberhartii (Phyllanthaceae), together with six known aryltetralin lignans, cleistantoxin (6), picroburseranin (7), neocleistantoxin (8), 7-hydroxypicropolygamain (9), cleisindoside D (10), and cleisindoside A (11). Their structures and relative configurations were established by analysis of HRESIMS and NMR data, and quantum chemical calculations of JH,H coupling constants. The absolute configurations of 1-5 were determined by analysis of their experimental CD spectra and comparison with calculated electronic circular dichroism (ECD) spectra. All compounds (1-11) were evaluated for their cytotoxicity against KB, MCF-7, HepG-2, and Lu-1 human cancer cell lines. Among the tested compounds, compounds 6 and 7 showed strong activity against KB, MCF7, HepG2 and Lu-1 cell lines with IC50 values in the range of 0.02-0.62 µM. Compound 1 showed activity against three cancer cell lines KB, HepG2, and Lu-1 with IC50 values of 6.98, 7.61 and 11.75 µM, respectively. Compound 2 exhibited a selective inhibition with moderate cytotoxicity against Lu-1 with IC50 value of 15.30 µM. Compounds 4, 5 and 9 showed moderate activity against the three cancer cell lines with IC50 values in the range of 8.73-19.70 µM.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Lignans , Malpighiales , Humans , Cell Line, Tumor , Fruit/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Molecular Structure , Lignans/pharmacology , Lignans/chemistry
9.
Fitoterapia ; 172: 105740, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939734

ABSTRACT

Three new phenolic glycosides (1-3) and a new lignan glycoside (4), together with five known compounds (5-9) were isolated from the ethanol extract of the aerial part of Gaultheria leucocarpa var. yunnanensis (Franch.) T.Z.Hsu & R.C.Fang. Their structures were determined on the basis of spectroscopic techniques, experimental and calculated ECD spectra, acid hydrolysis, and enzymatic hydrolysis experiments. All the isolates were evaluated for their anti-inflammatory and antioxidant activities. Compounds 7 and 8 exhibited inhibitory effects against the LPS-induced production of NO with IC50 of 63.71 and 10.66 µM, respectively, compared to L-NMMA having an IC50 of 6.95 µM. Besides, compound 7 also represented significant DPPH radical scavenging activity with EC50 of 18.75 µM, comparable with vitamin C (EC50 = 15.77 µM).


Subject(s)
Cardiac Glycosides , Gaultheria , Lignans , Glycosides/chemistry , Lignans/pharmacology , Gaultheria/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
10.
Phytochemistry ; 217: 113920, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951561

ABSTRACT

Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1ß in MH7A cells at 15 µM and they also could strongly protect AML12 cells against D-GalN injury at 30 µM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.


Subject(s)
Drugs, Chinese Herbal , Gentiana , Lignans , Humans , Gentiana/chemistry , Lignans/pharmacology , Glucosides/pharmacology , Glucosides/chemistry , Drugs, Chinese Herbal/pharmacology , Inflammation
11.
Chem Biodivers ; 20(12): e202301600, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37963833

ABSTRACT

Four previously undescribed diastereomeric lignan glycosides, namely cistadesertosides B-E (1-4) were isolated from the stems of cultural Cistanche deserticola in Tarim desert. The structures of these compounds were elucidated on the basis of extensive spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR, circular dichroism (CD) data and chemical degradation. The in vitro anti-inflammatory activity of the isolates was also investigated. It showed that compounds 3 and 4 exhibited potential effects with IC50 values of 21.17 µM and 26.97 µM, respectively (positive control quercetin, IC50 , 10.01 µM).


Subject(s)
Cistanche , Lignans , Glycosides/pharmacology , Glycosides/chemistry , Lignans/pharmacology , Lignans/chemistry , Cistanche/chemistry , Plant Extracts/chemistry , Anti-Inflammatory Agents
12.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37895822

ABSTRACT

Ferula sinkiangensis K. M. Shen (Apiaceae) is distributed in arid desert areas of Xinjiang, and its resin is a traditional Chinese medicine to treat gastrointestinal digestive diseases. To explore bioactive components from F. sinkiangensis, three new lignans and thirteen known components were isolated. The structural elucidation of the components was established utilizing spectroscopic analyses together with ECD calculations. Griess reaction results indicated new compounds 1 and 2 significantly decreased NO production in LPS-stimulated RAW 264.7 macrophages, and ELISA results indicated that they effectively attenuated LPS-induced inflammation by inhibiting TNF-α, IL-1ß, and IL-6 expressions. The in silico approach confirmed that compound 1 docked into the receptors with strong binding energies of -5.84~-10.79 kcal/mol. In addition, compound 6 inhibited the proliferation of AGS gastric cancer cells with IC50 values of 15.2 µM by suppressing the cell migration and invasion. This study disclosed that F. sinkiangensis might be a promising potential resource for bioactive components.

13.
BMC Genomics ; 24(1): 607, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821824

ABSTRACT

Schisandra sphenanthera is an extremely important medicinal plant, and its main medicinal component is bioactive lignans. The S. sphenanthera fruit is preferred by the majority of consumers, and the root, stem, and leaf are not fully used. To better understand the lignan metabolic pathway, transcriptome and metabolome analyses were performed on the four major tissues of S. sphenanthera. A total of 167,972,229 transcripts and 91,215,760 unigenes with an average length of 752 bp were identified. Tissue-specific gene analysis revealed that the root had the highest abundance of unique unigenes (9703), and the leaves had the lowest (189). Transcription factor analysis showed that MYB-, bHLH- and ERF-transcription factors, which played important roles in the regulation of secondary metabolism, showed rich expression patterns and may be involved in the regulation of processes involved in lignan metabolism. In different tissues, lignans were preferentially enriched in fruit and roots by gene expression profiles related to lignan metabolism and relative lignan compound content. Furthermore, schisandrin B is an important compound in S. sphenanthera. According to weighted gene co-expression network analysis, PAL1, C4H-2, CAD1, CYB8, OMT27, OMT57, MYB18, bHLH3, and bHLH5 can be related to the accumulation of lignans in S. sphenanthera fruit, CCR5, SDH4, CYP8, CYP20, and ERF7 can be related to the accumulation of lignans in S. sphenanthera roots. In this study, transcriptome sequencing and targeted metabolic analysis of lignans will lay a foundation for the further study of their biosynthetic genes.


Subject(s)
Lignans , Plants, Medicinal , Schisandra , Plants, Medicinal/genetics , Schisandra/genetics , Transcriptome , Secondary Metabolism , Metabolome
14.
Fitoterapia ; 168: 105553, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257697

ABSTRACT

Three undescribed lignan glycosides, echiunines E-G (1-3), as well as eight known compounds (4-11) were isolated from Fritillaria verticillata Willd. Among them, compounds 1-3 were a series of lignan glycosides reported for the first time from genus Fritillaria. Their structures were elucidated by analyses of extensive spectroscopic data and comparison of the NMR data with those reported previously, the absolute configuration of compounds were further confirmed by calculated ECD method. The NO release inhibitory effects of compounds were evaluated in LPS-activated RAW264.7 macrophages. Compounds 7-8 showed inhibitory acitivities in a dose-dependent manner.


Subject(s)
Fritillaria , Lignans , Lignans/pharmacology , Lignans/chemistry , Molecular Structure , Glycosides/pharmacology , Glycosides/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
15.
Z Naturforsch C J Biosci ; 78(7-8): 299-305, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37029666

ABSTRACT

Common ragweed (Ambrosia artemisiifolia L.) is an invasive plant in Europe with spreading use in the contemporary folk medicine. The chemical composition of the above-ground parts is extensively studied, however, the metabolites of the roots are less discovered. By multiple chromatographic purification of the root extracts, we isolated thiophene A (1), n-dodecene (2), taraxerol-3-O-acetate (3), α-linoleic acid (4), (+)-pinoresinol (5), and thiophene E (7,10-epithio-7,9-tridecadiene-3,5,11-triyne-1,2-diol) (6). The 1H NMR data published earlier for 1 were supplemented together with the assignment of 13C NMR data. Thiophene E (6), which is reported for the first time from this species, exerted cytotoxic and antiproliferative effects on A-431 epidermoid skin cancer cells, whereas taraxerol-3-O-acetate (3) and α-linoleic acid (4) had slight antiproliferative effect on gynecological cancer cell lines. Thiophene E (6) and taraxerol-3-O-acetate (3) displayed antiproliferative and cytotoxic effects on MRC-5 fibroblast cells. Thiophene E (6) exerted weak antibacterial activity (MIC 25 µg/mL) on MRSA ATCC 43300, on Staphylococcus aureus ATCC 25923, Escherichia coli AG100 and E. coli ATCC 25922 both thiophenes were inactive. Although the isolated compounds exerted no remarkable cytotoxic or antiproliferative activities, the effects on MRC-5 fibroblast cells highlight the necessity of further studies to support the safety of ragweed root.


Subject(s)
Ambrosia , Neoplasms , Humans , Escherichia coli , Linoleic Acid/pharmacology , Cell Line , Thiophenes/pharmacology , Acetates/pharmacology
16.
Chem Biodivers ; 20(3): e202200196, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36879423

ABSTRACT

The chemical investigation of the methanol extract of the whole plant of Gymnanthemum theophrastifolium (Schweinf. ex Oliv. & Hiern) H.Rob. (Asteraceae) led to the isolation of a new elemane-type sesquiterpene (1), a new acetonide derived polyacetylene (2) and a naturally occurring compound (3) from the plant kingdom along with sixteen known compounds (4-19). Their structures were elucidated by extensive NMR and MS analysis. This is the first report on the chemical constituents of G. theophrastifolium. Furthermore, compounds 12, 13, and 14 are reported for the first time from the family Asteraceae, while compound 9 is reported for the first time from the genus Gymnanthemum. Thus, the present results provide valuable insights to the chemophenetic knowledge of G. theophrastifolium, which is also discussed in this work.


Subject(s)
Asteraceae , Sesquiterpenes , Polyacetylene Polymer , Monocyclic Sesquiterpenes , Molecular Structure , Asteraceae/chemistry , Sesquiterpenes/chemistry , Polyynes/pharmacology , Plant Extracts/chemistry
17.
Nat Prod Res ; 37(24): 4290-4301, 2023.
Article in English | MEDLINE | ID: mdl-36775642

ABSTRACT

Lignans are a large category of polyphenolic compounds that have low molecular weight and are widely distributed in the plant kingdom. They have been recognized for their potential antioxidizing and antiproliferative action. One of the most important lignans is cubebin which is abundantly isolated from the leaves and seeds of Piper cubeba and Piper nigrum. Cubebin possesses numerous biological actions such as antileukemic, trypanocidal, antimycobacterial, analgesic, anti-inflammatory, histamine antagonist, antifungal, and antispasmodic. This review discusses the in vitro and in vivo pharmacological studies on cubebin related to biochemistry and pharmacological applications and it ensures that it widely shows therapeutic potential. We expect that these therapeutic actions will set a new track in the formation of novel biological agents by the derivatization of cubebin. This review will assuredly fascinate countless researchers to begin further experimentation that might lead to novel agents for the treatment and prevention of diseases.


Subject(s)
Lignans , Piper nigrum , Piper , Lignans/chemistry , Plant Extracts/chemistry , Piper/chemistry
18.
J Integr Med ; 21(1): 77-88, 2023 01.
Article in English | MEDLINE | ID: mdl-36192353

ABSTRACT

OBJECTIVE: AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering. METHODS: To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses. RESULTS: One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses. CONCLUSION: This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.


Subject(s)
Isatis , Abscisic Acid , Isatis/genetics , Multigene Family , Phylogeny , Homeodomain Proteins/genetics , Genome, Plant
19.
J Biomol Struct Dyn ; 41(15): 7055-7068, 2023.
Article in English | MEDLINE | ID: mdl-36001586

ABSTRACT

Excessive intake of purine-rich foods such as seafood and red meat leads to excess xanthine oxidase activity and provokes gout attacks. The aim of this paper is to evaluate in vitro and in silico, the inhibition effect of Cupressus sempervirens plant extracts (flavonoids (Cae) and alkaloids (CaK)) and its six derivative compounds on bovine xanthine oxidase (BXO). The in silico study consists of molecular docking with GOLD v4.0 based on the best PLPchem score (PLP) and prediction of biological activity with the PASS server tool. The inhibitors used were lignan (cp1), Amentoflavone (cp2), Cupressuflavone (cp3), Isocryptomerin (cp4), Hinokiflavone (cp5), and Neolignan (cp6). The in vitro results showed that CaK gives an IC50 of 3.52 ± 0.04 µg/ml. Similarly, Cae saved an IC50 of 8.46 ± 1.98 µg/ml compared with the control (2.82 ± 0.10 µg/ml). The in silico results show that cp1 was the best inhibitor model (PLP of 88.09) with approved pharmacokinetics. These findings suggest that cp1 and cp2 may offer good alternatives for the treatment of hyperuricemia; cp3 was moderate, while the others (cp4 to cp6) were considered weak inhibitors according to their PLP.Communicated by Ramaswamy H. Sarma.

20.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4972-4977, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164907

ABSTRACT

The chemical constituents in Urtica dioica fruits were investigated by silica gel chromatography, preparative HPLC, NMR, and HR-MS for the first time. As a result, 21 compounds were isolated from the fruits of U. dioica and identified 7R,8S,8'R-olivil(1), oleic acid(2), α-linoleic acid(3), palmic acid(4), methyl palmitate(5), α-linolenic acid(6), α-linolenic acid methyl ester(7), 5-O-caffeoyl-shikimic acid(8), vanillic acid(9), p-coumaric acid(10), 5-O-p-coumaroylshikimic acid(11), cinnamic acid(12), quinic acid(13), shikimic acid(14), ethyl caffeate(15), coniferyl ferulate(16), ferulic acid(17), caffeic acid(18), chlorogenic acid(19), pinoresinol(20), and quercetin(21). Compound 1 was a new compound and compounds 2-16 were isolated from U. dioica for the first time.


Subject(s)
Urtica dioica , Chlorogenic Acid , Fruit , Linoleic Acid , Oleic Acid , Quercetin/chemistry , Quinic Acid , Shikimic Acid , Silicon Dioxide , Urtica dioica/chemistry , Vanillic Acid , alpha-Linolenic Acid
SELECTION OF CITATIONS
SEARCH DETAIL