Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Anim Sci Technol ; 66(1): 204-218, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38618027

ABSTRACT

Elsholtzia fruticosa (EF) is present in tropical regions throughout South Asian countries as well as the Himalayas. Although it has been used as a traditional medicine to treat digestive, respiratory, and inflammatory issues, its effect on preadipocyte differentiation is unknown. In this study, we examined the effects of a methanol extract prepared from EF on the differentiation of 3T3-L1 preadipocytes. Cell differentiation was assessed by microscopic observation and oil-red O staining. The expression of adipogenic and lipogenic genes, including PPARγ and C/EBPα, was measured by western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), to provide insight into adipogenesis and lipogenesis mechanisms. The results indicated that EF promotes the differentiation of 3T3-L1 preadipocytes, with elevated lipid accumulation occurring in a concentration-dependent manner without apparent cytotoxicity. EF enhances the expression of adipogenic and lipogenic genes, including PPARγ, FABP4, adiponectin, and FAS, at the mRNA and protein levels. The effect of EF was more pronounced during the early and middle stages of 3T3-L1 cell differentiation. Treatment with EF decreased C/EBP homologous protein (CHOP) mRNA and protein levels, while increasing C/EBPα and PPARγ expression. Treatment with EF resulted in the upregulation of cyclin E and CDK2 gene expression within 24 h, followed by a decrease at 48 h, demonstrating the early-stage impact of EF. A concomitant increase in cyclin-D1 levels was observed compared with untreated cells, indicating that EF modulates lipogenic and adipogenic genes through intricate mechanisms involving CHOP and cell cycle pathways. In summary, EF induces the differentiation of 3T3-L1 preadipocytes by increasing the expression of adipogenic and lipogenic genes, possibly through CHOP and cell cycle-dependent mechanisms.

2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38437631

ABSTRACT

This study examined the impact of maternal protein supplementation during mid-gestation on offspring, considering potential sex-related effects. Forty-three pregnant purebred Tabapuã beef cows (20 female and 23 male fetuses) were collectively managed in a pasture until 100 d of gestation. From 100 to 200 d of gestation, they were randomly assigned to the restricted group [(RES) - basal diet (75% corn silage + 25% sugar cane bagasse + mineral mixture); n = 24] or control group [(CON) - same basal diet + based-plant supplement [40% of crude protein, 3.5 g/kg of body weight (BW); n = 19]. From 200 d of gestation until parturition, all cows were equally fed corn silage and mineral mixture. During the cow-calf phase, cows and their calves were maintained in a pasture area. After weaning, calves were individually housed and evaluated during the backgrounding (255 to 320 d), growing 1 (321 to 381 d), and growing 2 (382 to 445 d) phases. Offspring's blood samples were collected at 210 and 445 d of age. Samples of skeletal muscle tissue were collected through biopsies at 7, 30, and 445 d of age. Muscle tissue samples were subjected to reverse-transcription quantitative polymerase chain reaction analysis. Prenatal treatment and offspring's sex (when pertinent) were considered fixed effects. The significance level was set at 5%. At mid-gestation, cows supplemented with protein reached 98% and 92% of their protein and energy requirements, while nonsupplemented cows attained only 30% and 50% of these requirements, respectively. The RES offspring were lighter at birth (27 vs. 31 kg), weaning (197 vs. 214 kg), and 445 d of age (398 vs. 429 kg) (P ≤ 0.05). The CON calves had greater (P < 0.05) morphometric measurements overall. The CON offspring had ~26% greater muscle fiber area (P ≤ 0.01). There was a trend (P = 0.06) for a greater Mechanistic target of rapamycin kinase mRNA expression in the Longissimus thoracis in the CON group at 7 d of age. The Myogenic differentiation 1 expression was greater (P = 0.02) in RES-females. Upregulation of Carnitine palmitoyltransferase 2 was observed in RES offspring at 445 d (P = 0.04). Expression of Fatty acid binding protein 4 (P < 0.001), Peroxisome proliferator-activated receptor gamma (P < 0.001), and Stearoyl-Coenzyme A desaturase (P < 0.001) was upregulated in CON-females. Therefore, protein supplementation during gestation enhances offspring growth and promotes favorable responses to lipogenesis, particularly in females.


In tropical conditions, beef cows on pasture often experience protein restriction during mid-to-late gestation, potentially impacting offspring development negatively. To address this, we investigated the effects of strategic protein supplementation for pregnant beef cows fed low-quality forage during mid-gestation on the postnatal growth trajectory of their offspring. The supplementation program, implemented during mid-gestation, increased dry matter intake by addressing nitrogen deficiency in the rumen, resulting in meeting 98% and 92% of protein and energy requirements in supplemented cows. In contrast, nonsupplemented cows met only 30% and 50% of these requirements, respectively. Consequently, protein supplementation positively influenced the postnatal growth trajectory of the offspring, attributed to beneficial changes in secondary myogenesis and hypertrophy processes. Supplementing cows with crude protein also stimulated lipogenesis, potentially contributing to intramuscular fat deposition, particularly in females. Therefore, this study emphasizes the importance of nutritional interventions for pregnant beef cows fed low-quality forage.


Subject(s)
Animal Feed , Dietary Supplements , Animals , Cattle , Female , Pregnancy , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Minerals , Muscle, Skeletal , Male
3.
Phytother Res ; 38(3): 1574-1588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282115

ABSTRACT

BACKGROUND AND AIM: Gefitinib resistance is an urgent problem to be solved in the treatment of non-small cell lung cancer (NSCLC). Tanshinone IIA (Tan IIA) is one of the main active components of Salvia miltiorrhiza, which exhibits significant antitumor effects. The aim of this study is to explore the reversal effect of Tan IIA on gefitinib resistance in the epidermal growth factor receptor (EGFR)-mutant NSCLC and the underlying mechanism. EXPERIMENTAL PROCEDURE: CCK-8, colony formation assay, and flow cytometry were applied to detect the cytotoxicity, proliferation, and apoptosis, respectively. The changes in lipid profiles were measured by electrospray ionization-mass spectrometry (MS)/MS. Western blot, real-time q-PCR, and immunohistochemical were used to detect the protein and the corresponding mRNA levels. The in vivo antitumor effect was validated by the xenograft mouse model. KEY RESULTS: Co-treatment of Tan IIA enhanced the sensitivity of resistant NSCLC cells to gefitinib. Mechanistically, Tan IIA could downregulate the expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream target genes, causing changes in lipid profiles, thereby reversing the gefitinib-resistance in EGFR-mutant NSCLC cells in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS: Tan IIA improved gefitinib sensitivity via SREBP1-mediated lipogenesis. Tan IIA could be a potential candidate to enhance sensitivity for gefitinib-resistant NSCLC patients.


Subject(s)
Abietanes , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/pathology , Gefitinib/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Lipogenesis , Sterol Regulatory Element Binding Protein 1/metabolism , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors , Apoptosis , Lipids , Cell Line, Tumor
4.
Heliyon ; 10(1): e23288, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192788

ABSTRACT

This work aimed to identify the mechanisms by which taurine exerts its anti-obesity effects in the C57BL/6J ob/ob mice model and determine if taurine supplementation increases the amelioration of inflammation and lipogenesis linked genes in the adipose and liver tissues. Three groups of C57BL/6J mice were fed a standard chow diet for a period of 10 weeks the C57BL/6J normal group, the C57BL/6J ob/ob negative control group with no taurine intake and C57BL/6J ob/ob taurine group with taurine intake. Real time PCR was used to examine the gene expression profile in the experimental groups intrascapular brown adipose tissue (BAT), inguinal white adipose tissue (WAT) and liver. TNF-alpha, Ccl2, Adgre and illb genes that are associated with inflammation were found to have varying level of expression in the three tissues. In comparison to BAT and liver these genes were expressed at a much lower level in WAT, with enhanced serum adiponectin levels.

5.
Fish Shellfish Immunol ; 146: 109387, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272331

ABSTRACT

Acetyl-CoA carboxylase (ACC) plays a regulatory role in both fatty acid synthesis and oxidation, controlling the process of lipid deposition in the liver. Given that existing studies have shown a close relationship between low phosphorus (P) and hepatic lipid deposition, this study was conducted to investigate whether ACC plays a crucial role in this relationship. Zebrafish liver cell line (ZFL) was incubated under low P medium (LP, P concentration: 0.77 mg/L) or adequate P medium (AP, P concentration: 35 mg/L) for 240 h. The results showed that, compared with AP-treated cells, LP-treated cells displayed elevated lipid accumulation, and reduced fatty acid ß-oxidation, ATP content, and mitochondrial mass. Furthermore, transcriptomics analysis revealed that LP-treated cells significantly increased lipid synthesis (Acetyl-CoA carboxylases (acc), Stearyl coenzyme A dehydrogenase (scd)) but decreased fatty acid ß-oxidation (Carnitine palmitoyltransferase I (cptI)) and (AMP-activated protein kinase (ampk)) mRNA levels compared to AP-treated cells. The phosphorylation of AMPK and ACC, and the protein expression of CPTI were significantly decreased in LP-treated cells compared with those in AP-treated cells. After 240 h of LP treatment, PF-05175157 (an ACC inhibitor) was supplemented in the LP treatment for an additional 12 h. PF-05175157-treated cells showed higher phosphorylation of ACC, higher protein expression of CPTI, and lower protein expression of FASN, lower TG content, enhanced fatty acid ß-oxidation, increased ATP content, and mitochondrial mass compared with LP-treated cells. PF-05175157 also relieved the LP-induced oxidative stress and inflammatory response. Overall, these findings suggest that ACC is a promising target for treating LP-induced elevation of lipid deposition in ZFL, and can alleviate oxidative stress and inflammatory response.


Subject(s)
Acetyl-CoA Carboxylase , Zebrafish , Animals , Zebrafish/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , AMP-Activated Protein Kinases/genetics , Liver/metabolism , Oxidative Stress , Fatty Acids/metabolism , Phosphorus , Lipids , Adenosine Triphosphate/metabolism
6.
Kaohsiung J Med Sci ; 40(3): 280-290, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38294255

ABSTRACT

Gypenoside XIII is isolated from Gynostemma pentaphyllum (Thunb.) Makino. In mice, G. pentaphyllum extract and gypenoside LXXV have been shown to improve non-alcoholic steatohepatitis (NASH). This study investigated whether gypenoside XIII can regulate lipid accumulation in fatty liver cells or attenuate NASH in mice. We used HepG2 hepatocytes to establish a fatty liver cell model using 0.5 mM oleic acid. Fatty liver cells were treated with different concentrations of gypenoside XIII to evaluate the molecular mechanisms of lipid metabolism. In addition, a methionine/choline-deficient diet induced NASH in C57BL/6 mice, which were given 10 mg/kg gypenoside XIII by intraperitoneal injection. In fatty liver cells, gypenoside XIII effectively suppressed lipid accumulation and lipid peroxidation. Furthermore, gypenoside XIII significantly increased SIRT1 and AMPK phosphorylation to decrease acetyl-CoA carboxylase phosphorylation, reducing fatty acid synthesis activity. Gypenoside XIII also decreased lipogenesis by suppressing sterol regulatory element-binding protein 1c and fatty acid synthase production. Gypenoside XIII also increased lipolysis and fatty acid ß-oxidation by promoting adipose triglyceride lipase and carnitine palmitoyltransferase 1, respectively. In an animal model of NASH, gypenoside XIII effectively decreased the lipid vacuole size and number and reduced liver fibrosis and inflammation. These findings suggest that gypenoside XIII can regulate lipid metabolism in fatty liver cells and improve liver fibrosis in NASH mice. Therefore, gypenoside XIII has potential as a novel agent for the treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism , Gynostemma/chemistry , Gynostemma/metabolism , Mice, Inbred C57BL , Hepatocytes/metabolism , Fatty Acids/metabolism , Fatty Acids/pharmacology , Lipids/pharmacology , Liver Cirrhosis/metabolism , Liver/metabolism , Plant Extracts
7.
J Dairy Sci ; 107(5): 2916-2929, 2024 May.
Article in English | MEDLINE | ID: mdl-38101747

ABSTRACT

Dietary fat is fed to increase energy intake and provide fatty acids (FA) to support milk fat production. Oilseeds contain unsaturated FA that increase the risk for biohydrogenation-induced milk fat depression, but FA in whole cottonseed (WCS) are expected to be slowly released in the rumen and thus have a lower risk for biohydrogenation-induced milk fat depression. Our hypothesis was that increasing dietary WCS would increase milk fat yield by providing additional dietary FA without induction of milk fat depression. Four primiparous and 8 multiparous lactating Holstein cows, 136 ± 35 and 127 ± 4 DIM, respectively, were arranged in a replicated 4 × 4 Latin square design with 21-d periods. Treatments were WCS provided at 0%, 3.4%, 6.8%, and 9.9% of dietary dry matter, and WCS was substituted for cottonseed hulls and soybean meal to maintain dietary fiber and protein. Treatment did not change milk yield. There was a treatment-by-parity interaction for milk fat percent and yield with a quadratic decreased in primiparous cows but no effect of WCS in multiparous cows. Cottonseed linearly increased milk fat trans-10 18:1 in primiparous cows but not in multiparous cows. Increasing WCS increased milk preformed (18C) FA yield and partially overcame the trans-10 18:1 inhibition of de novo FA synthesis in the primiparous cows. Apparent transfer of 18C FA from feed to milk decreased in all cows as WCS increased, but the magnitude of the change was greater in primiparous cows. Increasing WCS decreased total-tract apparent dry matter, organic matter, and neutral detergent fiber digestibility. There was no change in total FA digestibility. However, 18C FA digestibility tended to be decreased in both parities and 16C FA digestibility was quadratically increased in multiparous cows but not changed in primiparous cows. Total fecal flow of intact WCS increased as WCS level increased, but fecal flow of intact seeds as a percentage consumed was similar across treatments. Fecal flow of intact seeds was greater in multiparous cows (4.3% vs. 1.1% of consumed). Plasma concentrations of glucose, nonesterified FA, triglycerides, and insulin were not changed. However, plasma urea-N increased with increasing WCS. Plasma gossypol increased with WCS (0.08-1.15 µg/mL) but was well below expected toxic levels. In conclusion, WCS maintained milk and milk component yield when fed at up to 9.9% of the diet to multiparous cows without concerns of gossypol toxicity, but primiparous cows were more susceptible to biohydrogenation-induced milk fat depression in the current trial. This highlights the interactions of parity with diet composition when feeding rumen-available unsaturated fat to dairy cows.


Subject(s)
Gossypol , Milk , Female , Cattle , Animals , Milk/metabolism , Fatty Acids/metabolism , Cottonseed Oil/metabolism , Lactation/physiology , Gossypol/metabolism , Gossypol/pharmacology , Digestion , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Rumen/metabolism
8.
J Microbiol Biotechnol ; 34(3): 634-643, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38111312

ABSTRACT

Juglans mandshurica Maxim. walnut (JMW) is well-known for the treatment of dermatosis, cancer, gastritis, diarrhea, and leukorrhea in Korea. However, the molecular mechanism underlying its anti-obesity activity remains unknown. In the current study, we aimed to determine whether JMW can influence adipogenesis in 3T3-L1 preadipocytes and high-fat diet rats and determine the antioxidant activity. The 20% ethanol extract of JMW (JMWE) had a total polyphenol content of 133.33 ± 2.60 mg GAE/g. Considering the antioxidant capacity, the ABTS and DPPH values of 200 µg/ml of JMWE were 95.69 ± 0.94 and 79.38 ± 1.55%, respectively. To assess the anti-obesity activity of JMWE, we analyzed the cell viability, fat accumulation, and adipogenesis-related factors, including CCAAT-enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). We found that total lipid accumulation and triglyceride levels were reduced, and the fat accumulation rate decreased in a dose-dependent manner. Furthermore, JMWE suppressed adipogenesis-related factors C/EBPα, PPARγ, and SREBP1c, as well as FAS and ACC, both related to lipogenesis. Moreover, animal experiments revealed that JMWE could be employed to prevent and treat obesity-related diseases. Hence, JMWE could be developed as a healthy functional food and further explored as an anti-obesity drug.


Subject(s)
Anti-Obesity Agents , Juglans , Mice , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Juglans/metabolism , 3T3-L1 Cells , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Adipocytes , Obesity/drug therapy , Obesity/metabolism , Adipogenesis , Anti-Obesity Agents/chemistry , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/pharmacology , CCAAT-Enhancer-Binding Protein-alpha/therapeutic use , Acetyl-CoA Carboxylase/metabolism , Plant Extracts/metabolism
9.
Trop Anim Health Prod ; 56(1): 30, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38159113

ABSTRACT

The use of essential oils has recently increased in the poultry sector. The aim of this study was to investigate the effects of essential oil mixture (juniper, mint, oregano and rosemary oil) on fatty acid oxidation and lipogenic gene expression in geese. Research groups were formed as C (control; no additives), EK1 (0.4 ml/l essential oil mixture supplemented) and EK2 (0.8 ml/l essential oil mixture supplemented). Relative expression levels of genes included in lipogenesis (ACCα, ChREBP, FASN, LXRα and SREBP-1) expression levels of genes included in fatty acid oxidation (ACOX1, CPT1, CPT1A, PPARα and PPARγ) were measured using RT-qPCR. Group EK1 upregulates the mRNA expression levels of genes involved in lipogenesis such as ACCα, ChREBP and SREBP-1, while it downregulates the mRNA expression in levels of all genes involved in fatty acid oxidation. Group EK2 increases the mRNA expression levels of genes involved in lipogenesis such as ACCα, FASN and SREBP-1, while it decreased mRNA expression at the levels of all genes involved in fatty acid oxidation, as in the other group. In the study, adding an essential oil mixture to drinking water is predicted to increase fatty liver because it upregulates genes related to fat synthesis (lipogenesis) and downregulates genes related to fat degradation (fatty acid oxidation).


Subject(s)
Lipogenesis , Oils, Volatile , Animals , Lipogenesis/genetics , Liver/metabolism , Geese/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Gene Expression Regulation , Fatty Acids/metabolism , RNA, Messenger/metabolism
10.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139090

ABSTRACT

Current Dietary Guidelines for Americans recommend replacing saturated fat (SFA) intake with polyunsaturated fatty acids (PUFAs) and monosaturated fatty acids (MUFAs) but do not specify the type of PUFAs, which consist of two functionally distinct classes: omega-6 (n-6) and omega-3 (n-3) PUFAs. Given that modern Western diets are already rich in n-6 PUFAs and the risk of chronic disease remains high today, we hypothesized that increased intake of n-3 PUFAs, rather than n-6 PUFAs, would be a beneficial intervention against obesity and related liver diseases caused by high-fat diets. To test this hypothesis, we fed C57BL/6J mice with a high-fat diet (HF) for 10 weeks to induce obesity, then divided the obese mice into three groups and continued feeding for another 10 weeks with one of the following three diets: HF, HF+n-6 (substituted half of SFA with n-6 PUFAs), and HF+n-3 (substituted half of SFA with n-3 PUFAs), followed by assessment of body weight, fat mass, insulin sensitivity, hepatic pathology, and lipogenesis. Interestingly, we found that the HF+n-6 group, like the HF group, had a continuous increase in body weight and fat mass, while the HF+n-3 group had a significant decrease in body weight and fat mass, although all groups had the same calorie intake. Accordingly, insulin resistance and fatty liver pathology (steatosis and fat levels) were evident in the HF+n-6 and HF groups but barely seen in the HF+n-3 group. Furthermore, the expression of lipogenesis-related genes in the liver was upregulated in the HF+n-6 group but downregulated in the HF+n-3 group. Our findings demonstrate that n-6 PUFAs and n-3 PUFAs have differential effects on obesity and fatty liver disease and highlight the importance of increasing n-3 PUFAs and reducing n-6 PUFAs (balancing the n-6/n-3 ratio) in clinical interventions and dietary guidelines for the management of obesity and related diseases.


Subject(s)
Fatty Acids, Omega-3 , Fatty Liver , Insulin Resistance , Humans , Mice , Animals , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Mice, Inbred C57BL , Fatty Acids, Omega-3/pharmacology , Obesity/metabolism , Fatty Acids, Unsaturated , Fatty Liver/metabolism , Fatty Acids , Fatty Acids, Omega-6/pharmacology , Body Weight
11.
J Tradit Complement Med ; 13(6): 623-638, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020549

ABSTRACT

Background and aim: Triple-negative breast cancer (TNBC) is a highly invasive type of breast cancer with a poor prognosis. Currently, there are no effective management strategies for TNBC. Earlier, our lab reported the percolation of Spatholobus suberectus for the treatment of breast cancer. Lipid metabolic reprogramming is a hallmark of cancer. However, the anti-TNBC efficiency of S. suberectus extract and its causal mechanism for preventing lipogenesis have not been fully recognized. Hence, the present study aimed to investigate the inhibitory role of S. suberectus extract on lipogenesis and tumorigenesis in TNBC in vitro and in vivo by activating AMPK-ACC and K-Ras-ERK signaling pathways using lipidomic and metabolomic techniques. Experimental procedure: Dried stems of S. suberectus extract inhibited lipogenesis and tumorigenesis and promoted fatty acid oxidation as demonstrated by the identification of the metabolites and fatty acid markers using proteomic and metabolomic analysis, qPCR, and Western blot. Results and conclusion: The results indicated that S. suberectus extract promotes fatty acid oxidation and suppresses lipogenic metabolites and biomarkers, thereby preventing tumorigenesis via the AMPK-ACC and K-Ras-ERK signaling pathways. On the basis of this preclinical evidence, we suggest that this study represents a milestone and complements Chinese medicine. Further studies remain underway in our laboratory to elucidate the active principles of S. suberectus extract. This study suggests that S. suberectus extract could be a promising therapy for TNBC.

12.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37768168

ABSTRACT

We hypothesized that the provision of rumen-inert fat (RIF) to growing cattle (9 to 13 mo of age) would affect the expression of genes involved in lipid metabolism and thereby affect the size and number of adipocytes of steers slaughtered at 30 mo of age. Thirty steers with an average initial body weight (BW) of 239 ±â€…25 kg were allocated to six pens, balanced for BW and genetic merit for marbling, and assigned to one of two treatment groups: control (only basal diet) or test diet (basal diet with 200 g of RIF per day, on an as-fed basis) for 5 mo. Biopsy samples of longissimus lumborum (LM) muscle were then collected for analysis of fatty acid composition and gene expression. Both groups were then fed the same basal diets during the early and late fattening phases, without RIF, until slaughter (average shrunk BW = 759 kg). Supplementation with RIF increased the longissimus thoracis (LT) intramuscular fatty acid concentration at slaughter (P = 0.087) and numerically increased the quality grade score (P = 0.106). The LM intramuscular relative mRNA expression of genes such as PPARα, ZFP423 and SREBP1, FASN, SCD, FABP4, GPAT1, and DGAT2 were downregulated (P < 0.1) following RIF supplementation. Supplementation of RIF decreased (P < 0.1) diameter and concomitantly increased intramuscular adipocytes per viewing section at slaughter. This likely was caused by promotion of triacylglycerol hydrolysis during the growing phase. Another possible explanation is that the relative mRNA expression of gene ATGL was upregulated by RIF supplementation during the growing (P < 0.1) and the fattening phases (P < 0.05), while the genes associated with fatty acid uptake (FABP4) and esterification (DGAT2) were downregulated during the growing phase and upregulated (P < 0.1) during the fattening phase. This implies that the lipid turnover rate was higher for steers during the growing than fattening phase. This study demonstrated that RIF supplementation during the growing phase induced a carryover effect on the lipogenic transcriptional regulation involved in adipocyte lipid content of intramuscular adipose tissue; increased triacylglycerol hydrolysis during the growing phase subsequently was followed by increased lipid accumulation during the fattening phases.


Rumen inert fat (RIF) is a type of fat supplement that is used in the diets of beef cattle as early as 6 mo of age in calves and continues through the finishing period to improve the dietary energy density which can be used by the animal to deposit more lipid in the muscle tissue. However, for Hanwoo beef cattle, the precise time of RIF supplementation has not yet been determined. This study hypothesized that supplementing RIF at the growing phase (9 to 13 mo of age) would have a positive influence on the marbling characteristics of meat at slaughter. The growth rate and performance of steers were not improved by RIF supplementation, however, an increase in intramuscular fatty acid content was noted that was accompanied by the increased number of intramuscular adipocytes and decreased intramuscular adipocyte diameter. Supportively, upregulation of the genes associated with fatty acid uptake and esterification during the fattening phase of RIF-fed animals was noted. Overall, supplementing RIF at the growing stage could improve the lipid content of the meat which is supported by the increased lipid hydrolysis during the growing phase and followed by increased lipid accumulation during the fattening phases.


Subject(s)
Adipose Tissue , Rumen , Cattle , Animals , Rumen/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Fatty Acids/metabolism , Diet/veterinary , Dietary Supplements , Gene Expression , RNA, Messenger/metabolism , Triglycerides/metabolism , Animal Feed/analysis , Body Composition
13.
Diabetes Metab J ; 47(6): 771-783, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690781

ABSTRACT

BACKGRUOUND: Since prediabetes is a risk factor for metabolic syndromes, it is important to promote a healthy lifestyle to prevent prediabetes. This study aimed to determine the effects of green coffee (GC), chlorogenic acid (CGA) intake, and exercise training (EX) on hepatic lipid metabolism in prediabetes male C57BL/6 mice. METHODS: Forty-nine mice were randomly divided into two groups feeding with a normal diet (n=7) or a high-fat diet (HFD, n=42) for 12 weeks. Then, HFD mice were further divided into six groups (n=7/group): control (pre-D), GC, CGA, EX, GC+EX, and CGA+EX. After additional 10 weeks under the same diet, plasma, and liver samples were obtained. RESULTS: HFD-induced prediabetes conditions with increases in body weight, glucose, insulin, insulin resistance, and lipid profiles were alleviated in all treatment groups. Acsl3, a candidate gene identified through an in silico approach, was lowered in the pre-D group, while treatments partly restored it. HFD induced adverse alterations of de novo lipogenesis- and ß oxidation-associated molecules in the liver. However, GC and CGA supplementation and EX reversed or ameliorated these changes. In most cases, GC or CGA supplementation combined with EX has no synergistic effect and the GC group had similar results to the CGA group. CONCLUSION: These findings suggest that regular exercise is an effective non-therapeutic approach for prediabetes, and CGA supplementation could be an alternative to partially mimic the beneficial effects of exercise on prediabetes.


Subject(s)
Chlorogenic Acid , Prediabetic State , Male , Mice , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Chlorogenic Acid/therapeutic use , Lipid Metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements
14.
J Dairy Sci ; 106(11): 7613-7629, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641263

ABSTRACT

Acetate supplementation increases milk fat production, but interactions with animal-related factors have not been investigated. The objective of this study was to characterize the interaction of acetate supplementation with parity and genetic potential for milk fat synthesis including the DGAT1 K232A polymorphism (AA and KA genotypes). In total, 47 primiparous and 49 multiparous lactating cows were used in 2 blocks in a crossover design. The basal diet was formulated to have a low risk of biohydrogenation-induced milk fat depression and had 32.8% and 32.0% neutral detergent fiber and 21.7% and 23.6% starch [all on a dry matter (DM) basis] in block 1 and 2, respectively. The control treatment received the basal diet, and the acetate supplementation treatment included anhydrous sodium acetate supplemented to the basal diet at 3.2% and 3.1% of DM of the diet for block 1 and 2, respectively (targeting 10 mol/d of acetate). The DGAT1 genotype frequency of the experimental cows was 45% AA and 51% KA, with 4% cows with either a KK or unimputable genotype. Acetate supplementation increased DM intake (DMI) in KA multiparous cows, but acetate did not change DMI in AA multiparous or primiparous cows of either genotype. Acetate supplementation increased the frequency of meals by 8% and decreased the length of each meal by ∼5 min compared with control. There was no effect of acetate on milk yield. Acetate supplementation increased milk fat yield and concentration by 117 g/d and 0.31 percentage units, respectively, regardless of DGAT1 polymorphism or parity. The increase in milk fat yield was mostly due to an increase in yield of 16C mixed-sourced fatty acids, suggesting that acetate supplementation drives mammary de novo synthesis toward completion. Response to acetate supplementation was not related to genomic predicted transmitting ability of milk fat concentration and yield or to pretrial milk fat percent and yield, suggesting that acetate increases milk fat production regardless of genetic potential for milk fat yield and level of milk fat synthesis. Interestingly, analyzing the temporal effect on the interaction between treatment and DGAT1 polymorphism on milk fat yield suggested that DGAT1 polymorphism may affect the short-term response to acetate supplementation during the first ≤7 d on treatment. Acetate supplementation also increased plasma ß-hydroxybutyrate concentration and decreased plasma glucose concentration. In conclusion, acetate supplementation consistently increased milk fat synthesis regardless of parity or genetic potential for milk fat synthesis.


Subject(s)
Lactation , Milk , Pregnancy , Female , Cattle , Animals , Milk/metabolism , Lactation/physiology , Diet/veterinary , Dietary Supplements , Fatty Acids/metabolism , Acetates/pharmacology , Feeding Behavior , Parity , Animal Feed/analysis
15.
Nutrients ; 15(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37432205

ABSTRACT

Epidemiological studies found that the intake of dairy products is associated with an increased amount of circulating odd-chain fatty acids (OCFA, C15:0 and C17:0) in humans and further indicate that especially C17:0 is associated with a lower incidence of type 2 diabetes. However, causal relationships are not elucidated. To provide a mechanistic link, mice were fed high-fat (HF) diets supplemented with either milk fat or C17:0 for 20 weeks. Cultured primary mouse hepatocytes were used to distinguish differential effects mediated by C15:0 or C17:0. Despite an induction of OCFA after both dietary interventions, neither long-term milk fat intake nor C17:0 supplementation improved diet-induced hepatic lipid accumulation and insulin resistance in mice. HF feeding with milk fat actually deteriorates liver inflammation. Treatment of primary hepatocytes with C15:0 and C17:0 suppressed JAK2/STAT3 signaling, but only C15:0 enhanced insulin-stimulated phosphorylation of AKT. Overall, the data indicate that the intake of milk fat and C17:0 do not mediate health benefits, whereas C15:0 might be promising in further studies.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Insulin Resistance , Humans , Animals , Mice , Diabetes Mellitus, Type 2/prevention & control , Fatty Acids , Diet, High-Fat/adverse effects
16.
Medicina (Kaunas) ; 59(6)2023 May 28.
Article in English | MEDLINE | ID: mdl-37374248

ABSTRACT

Background and Objectives: Non-alcoholic Fatty Liver Disease (NAFLD) can occur as a result of micronutrient deficiencies. Hibiscus sabdarifa, a plant used in traditional medicine, contains ingredients that can help prevent this process. This study looked at the potency of Hibiscus sabdariffa Ethanol Extract (HSE) to prevent homocysteine-induced liver damage in animals that were deficient in vitamin B12. Materials and Methods: A comparative study of the effects of roselle extract is presented in an experimental design. Thirty Sprague-Dawley rats were divided into six groups using randomization. To demonstrate the absence of liver damage in the experimental animals under normal conditions, a control group was fed a normal diet without HSE. For the induction of liver damage in the experimental animals, the vitamin B12-restricted group was administered a vitamin B12-restricted diet. To test the effect of HSE on liver damage, the treatment group was given HSE along with a vitamin B12-restricted diet. Each group was given two treatment periods of eight and sixteen weeks. These results were compared with the results of the parameter examination between the vitamin B12 restriction group, with and without HSE, using an ANOVA statistic. The data were analyzed with licensed SPSS 20.0 software. Results: HSE significantly increased the blood levels of vitamin B12 while lowering homocysteine levels. The administration of HSE reduced liver damage based on the activity of liver function enzymes in the plasma due to a limitation of vitamin B12. HSE decreased Sterol Regulatory Element-Binding Protein-1c (SREBP1c) and Nuclear Factor Kappa B (NFkB) protein expressions in the liver tissue, but did not decrease Glucose-Regulated Protein 78 (GRP78) protein expression. Significantly, the levels of Tumor Necrosis Factor alpha (TNF-a) and IL-6 in the liver tissue were lower, while the levels of IL-10 and Nuclear factor-erythroid-2 Related Factor 2 (NRF2) were higher with HSE administration. HSE produced a better histopathological profile of the Hematoxylin and Eosin (H&E)-Masson tricrome for inflammation, fat and fibrosis in the liver. Conclusions: In this study, HSE was found to slow the development of liver damage in experimental animals that were given a vitamin B12-deficient diet.


Subject(s)
Hibiscus , Non-alcoholic Fatty Liver Disease , Vitamin B 12 Deficiency , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Rats, Sprague-Dawley , Liver , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Ethanol/pharmacology , Vitamin B 12 Deficiency/complications , Vitamin B 12 Deficiency/drug therapy , Vitamin B 12 , Flowers
17.
J Ethnopharmacol ; 317: 116665, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37279813

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qing-Zhi-Tiao-Gan-Tang or Qing-Zhi-Tiao-Gan Decoction (QZTGT) is based on the compatibility theory of traditional Chinese medicine (TCM), that is a combination of three classical formulae for the treatment of nonalcoholic fatty liver disease (NAFLD). Its pharmacodynamic material basis is made up of quinones, flavanones, and terpenoids. AIM OF THE STUDY: This study aimed to look for a promising recipe for treating nonalcoholic steatohepatitis (NASH), a more advanced form of NAFLD, and to use a transcriptome-based multi-scale network pharmacological platform (TMNP) to find its therapy targets. MATERIALS AND METHODS: A classical dietary model of NASH was established using MCD (Methionine- and choline-deficient) diet-fed mice. Liver coefficients like ALT, AST, serum TC, and TG levels were tested following QZTGT administration. A transcriptome-based multi-scale network pharmacological platform (TMNP) was used to further analyze the liver gene expression profile. RESULTS: The composition of QZTGT was analyzed by HPLC-Q-TOF/MS, a total of 89 compounds were separated and detected and 31 of them were found in rat plasma. QZTGT improved liver morphology, inflammation and fibrosis in a classical NASH model. Transcriptomic analysis of liver samples from NASH animal model revealed that QZTGT was able to correct gene expression. We used transcriptome-based multi-scale network pharmacological platform (TMNP) to predicted molecular pathways regulated by QZTGT to improve NASH. Further validation indicated that "fatty acid degradation", "bile secretion" and "steroid biosynthesis" pathways were involved in the improvement of NASH phenotype by QZTGT. CONCLUSIONS: Using HPLC-Q-TOF/MS, the compound composition of QZTGT, a Traditional Chinese prescription, was separated, analyzed and identified systematically. QZTGT mitigated NASH symptoms in a classical dietary model of NASH. Transcriptomic and network pharmacology analysis predicted the potential QZTGT regulated pathways. These pathways could be used as therapeutic targets for NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Rats , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Liver Cirrhosis/drug therapy , Choline , Diet , Mice, Inbred C57BL , Disease Models, Animal
18.
Front Endocrinol (Lausanne) ; 14: 1167285, 2023.
Article in English | MEDLINE | ID: mdl-37334306

ABSTRACT

Introduction: The therapeutic effects and mechanisms of Dipterocarpus tuberculatus (D. tuberculatus) extracts have been examined concerning inflammation, photoaging, and gastritis; however, their effect on obesity is still being investigated. Methods: We administered a methanol extract of D. tuberculatus (MED) orally to Lep knockout (KO) mice for 4 weeks to investigate the therapeutic effects on obesity, weight gain, fat accumulation, lipid metabolism, inflammatory response, and ß-oxidation. Results: In Lep KO mice, MED significantly reduced weight gains, food intake, and total cholesterol and glyceride levels. Similar reductions in fat weights and adipocyte sizes were also observed. Furthermore, MED treatment reduced liver weight, lipid droplet numbers, the expressions of adipogenesis and lipogenesis-related genes, and the expressions of lipolysis regulators in liver tissues. Moreover, the iNOS-mediated COX-2 induction pathway, the inflammasome pathway, and inflammatory cytokine levels were reduced, but ß-oxidation was increased, in the livers of MED-treated Lep KO mice. Conclusion: The results of this study suggest that MED ameliorates obesity and has considerable potential as an anti-obesity treatment.


Subject(s)
Lipid Metabolism , Obesity , Plant Extracts , Animals , Mice , Lipogenesis , Mice, Knockout , Obesity/drug therapy , Obesity/metabolism , Weight Gain , Plant Extracts/therapeutic use , Dipterocarpaceae/chemistry
19.
J Ethnopharmacol ; 317: 116789, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37328083

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lythrum salicaria L., also called purple loosestrife, has traditionally been used as a medicinal plant to treat internal dysfunction, such as gastrointestinal disorders or hemorrhages. It contains numerous phytochemical compounds, including orientin, and has been reported to have anti-diarrheal, anti-inflammatory, antioxidant, and antimicrobial properties. AIM OF THE STUDY: The effects of Lythrum salicaria L. on obesity have not been explored. Therefore, we investigated the anti-obesity effects of Lythri Herba, the aerial part of this plant, in vitro and in vivo. MATERIALS AND METHODS: Using distilled water, Lythri Herba water extracts (LHWE) were prepared by extracting Lythri Herba at 100°Ï¹. The contents of orientin in LHWE were identified using High Performance Liquid Chromatography (HPLC) analysis. To evaluate the anti-obesity effect of LHWE, 3T3-L1 adipocytes and a high-fat diet (HFD)-fed mice were used. Oil-red O staining was performed to examine the anti-adipogenic effects of LHWE in vitro. The histological changes in epididymal white adipose tissue (epiWAT) by LHWE were examined using hematoxylin and eosin staining. Serum leptin levels were measured by enzyme-linked immunosorbent assay. Specific quantification kits measured total cholesterol and triglyceride levels in the serum. The relative fold induction of protein and mRNA was determined using western blot and Quantitative real-time Polymerase Chain Reaction analysis, respectively. RESULTS: HPLC analysis demonstrated the presence of orientin in LHWE. LHWE treatment markedly reduced lipid accumulation in differentiated 3T3-L1 adipocytes. LHWE administration also conferred resistance to HFD-induced weight gain in mice and reduced epiWAT mass. Mechanistically, LHWE significantly decreased lipogenesis by downregulating lipoprotein lipase (LPL), glucose-6-phosphate dehydrogenase, ATP-citrate lyase, fatty acid synthase, stearoyl-CoA desaturase 1, sterol regulatory element binding transcription factor 1, and carbohydrate response element binding protein expression and increased the expression of genes involved in fatty acid oxidation (FAO), peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1 in 3T3-L1 adipocytes and epiWAT. Furthermore, LHWE significantly up-regulated the phosphorylation of AMP-activated protein kinase in 3T3-L1 adipocytes and epiWAT. CONCLUSION: LHWE decreases white adipogenesis in vitro and HFD-induced weight gain in vivo, which is associated with reduced lipogenesis and enhanced FAO.


Subject(s)
Anti-Obesity Agents , Water , Mice , Animals , Water/pharmacology , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Obesity/drug therapy , Obesity/metabolism , Lipid Metabolism , Weight Gain , Adipogenesis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , 3T3-L1 Cells , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
20.
Eur J Pharmacol ; 952: 175808, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37263401

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and has no approved treatment. The hepatic farnesoid X receptor (FXR) is one of the most promising therapeutic targets for NAFLD. Diosgenin (DG), a natural compound extracted from Chinese herbal medicine, is very effective in preventing metabolic diseases. Our research aims to determine the effects and molecular mechanisms of DG on NAFLD in vivo and in vitro. The effect of DG on hepatic steatosis was evaluated in Sprague‒Dawley (SD) rats induced by a high-fat diet (HFD) and in HepG2 cells exposed to free fatty acids (FFAs, sodium oleate:sodium palmitate = 2:1). DG treatment efficiently managed hepatic lipid deposition in vivo and in vitro. Mechanistically, DG upregulated the expression of FXR and small heterodimer partner (SHP) and downregulated the expression of genes involved in hepatic de novo lipogenesis (DNL), including sterol regulatory element-binding protein 1C (SREBP1C), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN). Moreover, DG promoted the expression of peroxisome proliferator-activated receptor alpha (PPARα), which is related to fatty acid oxidation. In addition, DG inhibited the expression of the CD36 molecule (CD36) related to fatty acid uptake. However, hepatic FXR silencing weakened the regulatory effects of DG on these genes. Collectively, our data show that DG has a good effect on alleviating nonalcoholic hepatic steatosis via the hepatic FXR-SHP-SREBP1C/PPARα/CD36 pathway. DG promises to be a novel candidate FXR activator that can be utilized to treat NAFLD.


Subject(s)
Diosgenin , Non-alcoholic Fatty Liver Disease , Animals , Rats , Fatty Acids/metabolism , Fatty Acids, Nonesterified/pharmacology , Liver , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Rats, Sprague-Dawley , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Diosgenin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL