Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.679
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 329: 118165, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588984

ABSTRACT

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Drugs, Chinese Herbal , Lipid Metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , AMP-Activated Protein Kinases/metabolism , Male , Mice , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Disease Models, Animal
2.
J Ethnopharmacol ; 329: 118160, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588985

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD), represents a significant global health issue. Liver lipidomics has garnered increased focus recently, highlighting Traditional Chinese Medicine's (TCM) role in mitigating such conditions through lipid metabolism regulation. The Zuogui Jiangtang Qinggan Formula (ZGJTQGF), a longstanding TCM regimen for treating Type 2 Diabetes Mellitus (T2DM) with NAFLD, lacks a definitive mechanism for its lipid metabolism regulatory effects. AIM OF THE STUDY: This research aims to elucidate ZGJTQGF's mechanism on lipid metabolism in T2DM with NAFLD. MATERIALS AND METHODS: The study, utilized db/db mice to establish T2DM with NAFLD models. Evaluations included Hematoxylin-Eosin (HE) and Oil Red O stainedstaining of liver tissues, alongside biochemical lipid parameter analysis. Liver lipidomics and Western blotting further substantiated the findings, systematically uncovering the mechanism of action mechanism. RESULTS: ZGJTQGF notably reduced body weight, and Fasting Blood Glucose (FBG), enhancing glucose tolerance in db/db mice. HE, and Oil Red O staining, complemented by biochemical and liver lipidomics analyses, confirmed ZGJTQGF's efficacy in ameliorating liver steatosis and lipid metabolism anomalies. Lipidomics identified 1571 significantly altered lipid species in the model group, primarily through the upregulation of triglycerides (TG) and diglycerides (DG), and the downregulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Post-ZGJTQGF treatment, 496 lipid species were modulated, with increased PC and PE levels and decreased TG and DG, showcasing significant lipid metabolism improvement in T2DM with NAFLD. Moreover, ZGJTQGF's influence on lipid synthesis-related proteins was observed, underscoring its anti-steatotic impact through liver lipidomic alterations and offering novel insights into hepatic steatosis pathogenesis. CONCLUSIONS: Liver lipidomics analysis combined with protein verification further demonstrated that ZGJTQGF could ameliorate the lipid disturbance of TG, DG, PC, PE in T2DM with NAFLD, as well as improve fatty acid and cholesterol synthesis and metabolism through De novo lipogenesis pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Lipid Metabolism , Lipidomics , Liver , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Liver/drug effects , Liver/metabolism , Male , Lipid Metabolism/drug effects , Mice , Mice, Inbred C57BL , Blood Glucose/drug effects , Blood Glucose/metabolism
3.
Zhen Ci Yan Jiu ; 49(4): 358-366, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649203

ABSTRACT

OBJECTIVES: To analyze the effects of electroacupuncture (EA) at "Fenglong" (ST40) and "Zusanli" (ST36) of different intensities and durations on rats with non-alcoholic fatty liver disease (NAFLD) based on the protein kinase R-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) signaling pathway, so as to explore its mechanism underlying improvement of NAFLD. METHODS: SD rats were randomly divided into normal diet group, high-fat model group, sham EA group, strong stimulation EA (SEA) group, and weak stimulation EA (WEA) group, with 15 rats in each group. Each group was further divided into 2, 3, and 4-week subgroups. NAFLD rat model was established by feeding a high-fat diet. After successful modeling, rats in the SEA and WEA groups received EA at bilateral ST40 and ST36 with dense and sparse waves (4 Hz/20 Hz) at current intensities of 4 mA (SEA group) and 2 mA (WEA group), lasting for 20 minutes, once a day, 5 days a week with 2 days of rest. The sham EA group only had the EA apparatus connected without electricity. Different duration subgroups were intervened for 2, 3, and 4 weeks. After the intervention, the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rats were detected by an automatic biochemical analyzer;liver morphological changes were observed by Oil Red O staining;real-time fluorescence quantitative PCR and Western blot were used to detect the expression of PERK, ATF4, and CHOP mRNAs and proteins in the rat liver tissue. RESULTS: In the high-fat model group, there was a significant accumulation of red lipid droplets in the liver cells, which was reduced significantly in the SEA group at the 4th week. Compared with the normal diet group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.01) in the high-fat model group . Compared with the high-fat model group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, CHOP mRNAs and proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups. Compared with the sham EA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were decreased (P<0.01, P<0.05) in the SEA and WEA groups, the expression of PERK, ATF4, and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at the 2nd, 3rd, and 4th week, the expression of PERK and CHOP proteins at the 2nd, 3rd, 4th week and ATF4 protein at 2nd week in the liver tissue were decreased (P<0.01, P<0.05) in the WEA group. Compared with the SEA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.05, P<0.01) in the WEA group. Compared with the 2-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and PERK proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups at 3rd and 4th week, the expression of ATF4 proteins in the liver tissue was decreased (P<0.01) in the SEA group at 3rd and 4th week, and the expression of CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at 4th week and in the WEA group at 3rd and 4th week. Compared with the 3-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were significantly decreased (P<0.05, P<0.01) in the SEA and WEA groups at 4th week, the expression of PERK and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA and WEA groups at 4th week, and the expression of ATF4 protein in the liver tissue was decreased (P<0.05) in the SEA group at 4th week. CONCLUSIONS: EA at ST40 and ST36 can significantly improve liver function in NAFLD rats, and its mechanism of action may involve inhibiting PERK expression thereby targeting the downstream ATF4/CHOP signaling pathway to suppress endoplasmic reticulum stress, exerting a liver protective effect;the optimal effect was observed with EA intensity of 4 mA for 4 weeks.


Subject(s)
Activating Transcription Factor 4 , Acupuncture Points , Electroacupuncture , Liver , Non-alcoholic Fatty Liver Disease , Rats, Sprague-Dawley , Signal Transduction , Transcription Factor CHOP , eIF-2 Kinase , Animals , Rats , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics
4.
Immun Inflamm Dis ; 12(4): e1258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652023

ABSTRACT

OBJECTIVE: Vitamins and homocysteine (Hcy) are involved in liver metabolism and related to the pathogenesis of autoimmune liver disease (AILD), but consensus is lacking. This study aims to systematically summarize relevant evidence to clarify the association of serum vitamins and Hcy levels with AILD. METHODS: The English and Chinese literature was searched until August 29, 2023. Studies were included if they were observational studies of investigating serum vitamins and Hcy levels in patients with AILD and their healthy comparisons. Quality assessment was performed by using the Newcastle-Ottawa Scale, and a meta-analysis was conducted using ReviewManager 5.3. The protocol was registered in the international prospective register of systematic reviews (PROSPERO), with registration number CRD42023455367. RESULTS: A total of 25 case-control studies comprising 3487 patients (1673 patients and 1814 healthy controls) were included for analysis. There were 548 autoimmune hepatitis (AIH) cases, 1106 primary biliary cholangitis (PBC) cases, and 19 primary sclerosing cholangitis (PSC) cases. We found that serum A and E were decreased in both AIH and PBC/PSC; but vitamin C was reduced only in patients with PBC, not AIH. In addition, decreased content of 25(OH)D3 was found in both AIH and PBC. However, levels of 25(OH)D did not differ between the patients and controls, and were independent of disease types and the country. Only one study that met the inclusion criteria reported vitamin B6, B9, B12, and Hcy changes, and found that vitamin B6 and B9 were significantly decreased in patients with PBC, while serum vitamin B12 and Hcy levels were significantly elevated in them. One eligible study each confirmed a reduction in plasma vitamin K1 and 1,25(OH)2D3 in patients with PBC. CONCLUSION: Most vitamins are deficient in AILD, so appropriate vitamin supplementation should be necessary. Further studies with larger sample sizes are needed to validate these findings.


Subject(s)
Homocysteine , Humans , Homocysteine/blood , Vitamins/blood , Hepatitis, Autoimmune/blood , Hepatitis, Autoimmune/immunology , Case-Control Studies , Autoimmune Diseases/blood , Autoimmune Diseases/immunology
5.
Hereditas ; 161(1): 12, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566171

ABSTRACT

The Huanglian-Hongqu herb pair (HH) is a carefully crafted traditional Chinese herbal compound designed to address disorders related to glucose and lipid metabolism. Its primary application lies in treating hyperlipidemia and fatty liver conditions. This study explored the potential mechanism of HH in treating non-alcoholic fatty liver disease (NAFLD) through network pharmacology, molecular docking, and in vivo animal experiments. Ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UPLC-Q-TOF-MS) was employed to identify the chemical composition of HH. Network pharmacology was used to analyze the related signaling pathways affected by HH. Subsequently, the prediction was verified by animal experiment. Finally, we identified 29 components within HH. Network pharmacology unveiled interactions between HH and 153 NAFLD-related targets, highlighting HH's potential to alleviate NAFLD through NF-κB signaling pathway. Molecular docking analyses illuminated the binding interactions between HH components and key regulatory proteins, including NF-κB, NLRP3, ASC, and Caspase-1. In vivo experiments demonstrated that HH alleviated NAFLD by reducing serum and liver lipid levels, improving liver function, and lowering inflammatory cytokine levels in the serum. Moreover, HH administration downregulated mRNA and protein levels of the NF-κB/NLRP3 pathway. In conclusion, our findings demonstrated that HH has potential therapeutic benefits in ameliorating NAFLD by targeting the NF-κB/NLRP3 pathway, facilitating the broader application of HH in the field of NAFLD.


Subject(s)
Drugs, Chinese Herbal , NF-kappa B , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Molecular Docking Simulation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Network Pharmacology
6.
Front Med (Lausanne) ; 11: 1356225, 2024.
Article in English | MEDLINE | ID: mdl-38590315

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in hepatocytes (nonalcoholic fatty liver (NAFL)), and lobular inflammation and hepatocyte damage (which characterize nonalcoholic steatohepatitis (NASH) are found in most patients). A subset of patients will gradually develop liver fibrosis, cirrhosis, and eventually hepatocellular carcinoma, which is a deadly disease that threatens human life worldwide. Ferroptosis, a novel nonapoptotic form of programmed cell death (PCD) characterized by iron-dependent accumulation of reactive oxygen radicals and lipid peroxides, is closely related to NAFLD. Traditional Chinese medicine (TCM) has unique advantages in the prevention and treatment of NAFLD due to its multicomponent, multipathway and multitarget characteristics. In this review, we discuss the effect of TCM on NAFLD by regulating ferroptosis, in order to provide reference for the further development and application of therapeutic drugs to treat NAFLD.

7.
Pediatr Surg Int ; 40(1): 97, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581576

ABSTRACT

PURPOSE: The effect of different types of lipid emulsion may guide therapy of patients with intestinal failure (IF) to limit morbidity such as intestinal failure-associated liver disease (IFALD). METHODS: A retrospective chart review of pediatric patients with IF who received soybean oil lipid emulsion (SL) or mixed oil lipid emulsion (ML) was performed. Data over 1 year were collected. RESULTS: Forty-five patients received SL and 34 received ML. There were no differences in the incidence (82 versus 74%, P = 0.35) or resolution (86 versus 92%, P = 0.5) of IFALD between the cohorts. The median dose of ML was higher compared to SL (2 versus 1 g/kg/day, P < 0.001). If resolved, IFALD resolved rapidly in the ML cohort compared to the SL cohort (67 versus 37 days, P = 0.01). Weight gain was higher in the ML compared to the SL cohort at resolution of IFALD or 1 year from diagnosis of IF (P = 0.009). CONCLUSION: The administration of ML did not alter the incidence or resolution of IFALD compared to SL in pediatric IF. There was rapid resolution of IFALD and enhanced weight gain in the ML cohort compared to SL in pediatric IF.


Subject(s)
Intestinal Diseases , Intestinal Failure , Liver Diseases , Liver Failure , Humans , Child , Fat Emulsions, Intravenous/therapeutic use , Parenteral Nutrition , Retrospective Studies , Intestinal Diseases/drug therapy , Liver Diseases/complications , Liver Failure/complications , Soybean Oil/therapeutic use , Weight Gain , Fish Oils
8.
Front Pharmacol ; 15: 1337633, 2024.
Article in English | MEDLINE | ID: mdl-38650630

ABSTRACT

Globally, alcohol-associated liver disease (ALD) has become an increased burden for society. Disulfirams, Benzodiazepines (BZDs), and corticosteroids are commonly used to treat ALD. However, the occurrence of side effects such as hepatotoxicity and dependence, impedes the achievement of desirable and optimal therapeutic efficacy. Therefore, there is an urgent need for more effective and safer treatments. Hovenia dulcis is an herbal medicine promoting alcohol removal clearance, lipid-lowering, anti-inflammatory, and hepatoprotective properties. Hovenia dulcis has a variety of chemical components such as dihydromyricetin, quercetin and beta-sitosterol, which can affect ALD through multiple pathways, including ethanol metabolism, immune response, hepatic fibrosis, oxidative stress, autophagy, lipid metabolism, and intestinal barrier, suggesting its promising role in the treatment of ALD. Thus, this work aims to comprehensively review the chemical composition of Hovenia dulcis and the molecular mechanisms involved in the process of ALD treatment.

9.
J Pharm Anal ; 14(4): 100910, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38655398

ABSTRACT

Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.

10.
Zhen Ci Yan Jiu ; 49(4): 424-433, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649212

ABSTRACT

OBJECTIVES: To explore the rules of acupoint selection in the treatment of metabolic-associated fatty liver disease (MAFLD) with acupuncture and moxibustion by using data mining technology. METHODS: The clinical research literature on acupuncture treatment of MAFLD was collected from PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database, VIP Database and China Biology Medicine from their inception to November 20, 2022. According to our inclusion and exclusion criteria, the literature was independently screened and re-screened by two research members, and the screened results were checked, followed by establishing an acupoint prescription database using Excel 2019. Descriptive statistics of acupoints applied frequency, involved meridians, locations and specific acupoints were perpormed. Then, SPSS Modeler18.0 software was used to conduct analysis about association rules, and the SPSS Statistics 26.0 software was used to perform cluster analysis on high-frequency acupoints, exploring the characteristics and rules of acupoint selection and combination in the treatment of MAFLD. RESULTS: Totally, 178 papers were collected, containing 130 acupoints, with a total application frequency of 1 305. The top five acupoints are Zusanli (ST36), Fenglong (ST40), Ganshu (BL18), Taichong (LR3) and Sanyinjiao (SP6). The commonly involved meridians are the Stomach Meridian of Foot Yangming, Bladder Meridian of Foot Taiyang, and Spleen Meridian of Foot Taiyin. The employed acupoints are mostly located in the lower limbs and abdomen, and the five Shu acupoints and crossing acupoints are in the majority. The association rule analysis of high frequency acupoints indicated that of the 16 qualified acupoint groups, the top 5 with close correlation degrees are ST36 and ST40, ST36 and LR3, ST36 and SP6, ST40 and LR3 and ST36, ST36 and SP6 and ST40. Further, 3 effective clusters were obtained by cluster analysis. CONCLUSIONS: Acupuncture and moxibustion treatment of MAFLD follows the therapeutic principles of soothing the liver, invigorating the spleen, tonifying the kidney, and resolving phlegm and removing dampness. The core acupoint group is ST36, ST40 and LR3, and the combination of acupoints is based on syndrome differentiation. These results may provide a useful reference for clinical practice.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Data Mining , Humans , Fatty Liver/therapy , Fatty Liver/metabolism , Meridians , Moxibustion
11.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1587-1593, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621943

ABSTRACT

This study aims to explore the effect of Zuogui Jiangtang Qinggan Formula(ZGJTQGF) on the lipid metabolism in the db/db mouse model of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD) via the insulin receptor(INSR)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)/sterol-regulatory element-binding protein 2(SREBP-2) signaling pathway. Twenty-four db/db mice were randomized into positive drug(metformin, 0.067 g·kg~(-1)) and low-(7.5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) ZGJTQGF groups. Six C57 mice were used as the blank group and administrated with an equal volume of distilled water. The mice in other groups except the blank group were administrated with corresponding drugs by gavage for 6 consecutive weeks. At the end of drug administration, fasting blood glucose(FBG) and blood lipid levels were measured, and oral glucose tolerance test was performed. Compared with the blank group, the mice treated with ZGJTQGF showed decreased body mass and liver weight coefficient, lowered levels of FBG, total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL), and weakened liver function. The pathological changes and lipid accumulation in the liver tissue were examined. Western blot was employed to measure the protein levels of INSR, AMPK, p-AMPK, and SREBP-2. Compared with the blank group, the model group showed down-regulated protein levels of INSR and p-AMPK/AMPK and up-regulated protein level of SREBP-2. Compared with the model group, high-dose ZGJTQGF up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2. Low-dose ZGJTQGF slightly up-regulated the protein levels of INSR and p-AMPK/AMPK and down-regulated the protein level of SREBP-2, without significant differences. The results suggested that ZGJTQGF may alleviate insulin resistance and improve lipid metabolism in db/db mice by activating the INSR/AMPK/SREBP-2 signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Lipid Metabolism , AMP-Activated Protein Kinases/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Liver , Lipids
12.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1611-1620, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621946

ABSTRACT

This study investigated the protective effect of tanshinone Ⅱ_A(TSⅡ_A) on the liver in the rat model of non-alcoholic fatty liver disease(NAFLD) and the mechanism of TSⅡ_A in regulating ferroptosis via the nuclear factor E2-related factor 2(Nrf2) signaling pathway. The rat model of NAFLD was established with a high-fat diet for 12 weeks. The successfully modeled rats were assigned into model group, low-and high-dose TSⅡ_A groups, and inhibitor group, and normal control group was set. Enzyme-linked immunosorbent assay was employed to determine the content of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum of rats in each group. A biochemical analyzer was used to measure the content of aspartate aminotransferase(AST), alaninl aminotransferase(ALT), total cholesterol(TC), and triglycerides(TG). Hematoxylin-eosin(HE) staining was used to detect pathological damage in liver tissue. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling(TUNEL) was employed to examine the apoptosis of the liver tissue. Oil red O staining, MitoSOX staining, and Prussian blue staining were conducted to reveal lipid deposition, the content of reactive oxygen species(ROS), and iron deposition in liver tissue. Western blot was employed to determine the expression of Nrf2, heme oxygenase-1(HO-1), glutathione peroxidase 4(GPX4), ferroptosis suppressor protein 1(FSP1), B cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the liver tissue. The result showed that TSⅡ_A significantly reduced the content of MDA, AST, ALT, TC, and TG in the serum, increased the activity of SOD, decreased the apoptosis rate, lipid deposition, ROS, and iron deposition in the liver tissue, up-regulated the expression of Nrf2, HO-1, FSP1, GPX, and Bcl-2, and inhibited the expression of Bax in the liver tissue of NAFLD rats. However, ML385 partially reversed the protective effect of TSⅡ_A on the liver tissue. In conclusion, TSⅡ_A could inhibit ferroptosis in the hepatocytes and decrease the ROS and lipid accumulation in the liver tissue of NAFLD rats by activating the Nrf2 signaling pathway.


Subject(s)
Abietanes , Ferroptosis , Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Liver , Signal Transduction , Triglycerides/metabolism , Superoxide Dismutase/metabolism , Iron/metabolism
13.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1275-1285, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621975

ABSTRACT

This study aims to investigate the regulatory effects of Shenling Baizhu Powder(SBP) on cellular autophagy in alcoholic liver disease(ALD) and its intervention effect through the TLR4/NLRP3 pathway. A rat model of chronic ALD was established by gavage of spirits. An ALD cell model was established by stimulating BRL3A cells with alcohol. High-performance liquid chromatography(HPLC) was utilized for the compositional analysis of SBP. Liver tissue from ALD rats underwent hematoxylin-eosin(HE) and oil red O staining for pathological evaluation. Enzyme-linked immunosorbent assay(ELISA) was applied to quantify lipopolysaccharides(LPS), tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1ß), and interleukin-18(IL-18) levels. Quantitative reverse transcription polymerase chain reaction(qRT-PCR) was conducted to evaluate the mRNA expression of myeloid differentiation factor 88(MyD88) and Toll-like receptor 4(TLR4). The effect of different drugs on BRL3A cell proliferation activity was assessed through CCK-8 analysis. Western blot analysis was performed to examine the protein expression of NOD-like receptor pyrin domain-containing 3(NLRP3), nuclear factor-kappa B P65(NF-κB P65), phosphorylated nuclear factor-kappa B P65(p-P65), caspase-1, P62, Beclin1, and microtubule-associated protein 1 light chain 3(LC3Ⅱ). The results showed that SBP effectively ameliorated hepatic lipid accumulation, reduced liver function, mitigated hepatic tissue inflammation, and reduced levels of LPS, TNF-α, IL-1ß, and IL-18. Moreover, SBP exhibited the capacity to modulate hepatic autophagy induced by prolonged alcohol intake through the TLR4/NLRP3 signaling pathway. This modulation resulted in decreased expression of LC3Ⅱ and Beclin1, an elevation in P62 expression, and the promotion of autolysosome formation. These research findings imply that SBP can substantially enhance liver function and mitigate lipid irregularities in the context of chronic ALD. It achieves this by regulating excessive autophagic responses caused by prolonged spirit consumption, primarily through the inhibition of the TLR4/NLRP3 pathway.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases, Alcoholic , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18 , Powders , Lipopolysaccharides , Tumor Necrosis Factor-alpha , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Beclin-1 , NF-kappa B/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/genetics
14.
Aging (Albany NY) ; 16(5): 4591-4608, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38428407

ABSTRACT

BACKGROUND: Excessive lipids accumulation and hepatocytes death are prominent characteristics of non-alcoholic fatty liver disease (NAFLD). Nonetheless, the precise pathophysiological mechanisms are not fully elucidated. METHODS: HepG2 cells stimulated with palmitic acids and rats fed with high-fat diet were used as models for NAFLD. The impact of Glucosylceramidase Beta 3 (GBA3) on fatty acid oxidation (FAO) was assessed using Seahorse metabolic analyzer. Lipid content was measured both in vitro and in vivo. To evaluate NAFLD progression, histological analysis was performed along with measurements of inflammatory factors and liver enzyme levels. Western blot and immunohistochemistry were employed to examine the activity levels of necroptosis. Flow cytometry and reactive oxygen species (ROS) staining were utilized to assess levels of oxidative stress. RESULTS: GBA3 promoted FAO and enhanced the mitochondrial membrane potential without affecting glycolysis. These reduced the lipid accumulation. Rats supplemented with GBA3 exhibited lower levels of inflammatory factors and liver enzymes, resulting in a slower progression of NAFLD. GBA3 overexpression reduced ROS and the ratio of cell apoptosis. Phosphorylation level was reduced in the essential mediator, MLKL, implicated in necroptosis. Mechanistically, as a transcriptional coactivator, GBA3 promoted the expression of Carnitine Palmitoyltransferase 2 (CPT2), which resulted in enhanced FAO. CONCLUSIONS: Increased FAO resulting from GBA3 reduced oxidative stress and the production of ROS, thereby inhibiting necroptosis and delaying the progression of NAFLD. Our research offers novel insights into the potential therapeutic applications of GBA3 and FAO in the management and treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Reactive Oxygen Species/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Glucosylceramidase , Lipid Metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Lipids
15.
Phytomedicine ; 128: 155505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547616

ABSTRACT

BACKGROUND: Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE: Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS: A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS: PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION: PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , PCSK9 Inhibitors , Animals , Humans , Fatty Liver/drug therapy , Fatty Liver, Alcoholic/drug therapy , Lipid Metabolism/drug effects , Liver/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , PCSK9 Inhibitors/therapeutic use , Proprotein Convertase 9/metabolism
16.
Phytomedicine ; 128: 155495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471317

ABSTRACT

BACKGROUND: Ginsenosides have received increased amounts of attention due to their ability to modulate the intestinal flora, which may subsequently alleviate alcoholic liver disease (ALD). The effects of ginseng fermentation solution (GFS) on the gut microbiota and metabolism in ALD patients have not been explored. PURPOSE: This research aimed to explore the regulatory effect of GFS on ALD both in vitro and in vivo. METHOD: This study assessed the anti-ALD efficacy of GFS using an LO2 cell model and a zebrafish model. Untargeted metabolomics was used for differentially abundant metabolite analysis, and high-throughput 16S rRNA sequencing was used to examine the effect of GFS on ALD. RESULTS: The LO2 cell line experiments demonstrated that GFS effectively mitigated alcohol-induced oxidative stress and reduced apoptosis by upregulating PI3K and Bcl-2 expression and decreasing the levels of malondialdehyde, total cholesterol, and triglycerides. In zebrafish, GFS improved morphological and physiological parameters and diminished oxidative stress-induced ALD. Meanwhile, the results from Western blotting indicated that GFS enhanced the expression of PI3K, Akt, and Bcl-2 proteins while reducing Bax protein expression, thereby ameliorating the ALD model in zebrafish. Metabolomics data revealed significant changes in a total of 46 potential biomarkers. Among them, metabolites such as prostaglandin F2 alpha belong to arachidonic acid metabolism. In addition, GFS also partly reversed the imbalance of gut microbiota composition caused by alcohol. At the genus level, alcohol consumption elevated the presence of Flectobacillus, Curvibacter, among others, and diminished Elizabethkingia within the intestinal microbes of zebrafish. Conversely, GFS reversed these effects, notably enhancing the abundance of Proteobacteria and Archaea. Correlation analyses further indicated a significant negative correlation between prostaglandin F2 alpha, 11,14,15-THETA, Taurocholic acid and Curvibacter. CONCLUSION: This study highlights a novel mechanism by which GFS modulates anti-ALD activity through the PI3K/Akt signalling pathway by influencing the intestinal flora-metabolite axis. These results indicate the potential of GFS as a functional food for ALD treatment via modulation of the gut flora.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Panax , Animals , Humans , Apoptosis/drug effects , Cell Line , Disease Models, Animal , Fermentation , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Liver Diseases, Alcoholic/drug therapy , Oxidative Stress/drug effects , Panax/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Zebrafish
17.
J Food Sci ; 89(5): 3019-3036, 2024 May.
Article in English | MEDLINE | ID: mdl-38517018

ABSTRACT

Vine tea (Ampelopsis grossedentata), a traditional Chinese tea, is rich in flavonoids with various biological activities. Our study found that Vine tea total flavonoids (TFs) treatment reduced the body mass and blood lipid levels and improved the hepatic tissue morphology in mice fed the high-fat diet (HFD). In vivo, TF treatment activated the hepatic adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, initiated autophagy, and regulated the expression levels of proteins for lipid metabolism in those HFD-fed mice. In vitro, TF treatment dramatically reduced the lipid droplets and triacylglycerol content in HepG2 and L02 cells treated with oleic acid (OA). These were associated with the activation of the AMPK/mTOR pathway and autophagy initiation in OA-treated hepatocytes. This phenotype was abolished in the presence of 3-methyladenine, an autophagy inhibitor. Our results indicated that the TF activation of AMPK/mTOR leads to the stimulation of autophagy and a decrease in the buildup of intracellular lipids in hepatocytes, showing the potential of TF as a therapeutic agent for nonalcoholic fatty liver disease. PRACTICAL APPLICATION: Vine tea, a tea drink, has been consumed by Chinese folk for over a thousand years. The result of this study will provide evidence that vine tea total flavonoids have potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Flavonoids , Mice, Inbred C57BL , TOR Serine-Threonine Kinases , Animals , Flavonoids/pharmacology , TOR Serine-Threonine Kinases/metabolism , Mice , Diet, High-Fat/adverse effects , AMP-Activated Protein Kinases/metabolism , Male , Humans , Hep G2 Cells , Ampelopsis/chemistry , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Autophagy/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Tea/chemistry , Triglycerides/metabolism , Plant Extracts/pharmacology
18.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 621-633, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38516704

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with a global prevalence of 25%. Patients with NAFLD are more likely to suffer from advanced liver disease, cardiovascular disease, or type II diabetes. However, unfortunately, there is still a shortage of FDA-approved therapeutic agents for NAFLD. Lian-Mei-Yin (LMY) is a traditional Chinese medicine formula used for decades to treat liver disorders. It has recently been applied to type II diabetes which is closely related to insulin resistance. Given that NAFLD is another disease involved in insulin resistance, we hypothesize that LMY might be a promising formula for NAFLD therapy. Herein, we verify that the LMY formula effectively reduces hepatic steatosis in diet-induced zebrafish and NAFLD model mice in a time- and dose-dependent manner. Mechanistically, LMY suppresses Yap1-mediated Foxm1 activation, which is crucial for the occurrence and development of NAFLD. Consequently, lipogenesis is ameliorated by LMY administration. In summary, the LMY formula alleviates diet-induced NAFLD in zebrafish and mice by inhibiting Yap1/Foxm1 signaling-mediated NAFLD pathology.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Lipogenesis , Zebrafish , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Diet, High-Fat , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Lipids , Mice, Inbred C57BL , Forkhead Box Protein M1/metabolism
19.
Cureus ; 16(2): e54052, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38481880

ABSTRACT

Alcohol-related liver disease (ALD) presents a significant global health concern, with liver transplantation being a crucial intervention for patients in the advanced stages of the disease. However, the persistent risk of alcohol relapse in transplant recipients with ALD remains a formidable challenge. This comprehensive review explores the multifaceted nature of alcohol relapse, from its underlying factors to strategies for prevention. It highlights the importance of rigorous pre-transplant assessments, effective post-transplant interventions, and the role of multidisciplinary care teams in mitigating the risk of relapse. Furthermore, the review underscores the significance of adopting a holistic approach to ALD and transplantation, acknowledging the interconnectedness of medical, psychosocial, and psychological factors. With this holistic approach, we aim to enhance patient outcomes, reduce relapse rates, and ultimately improve the overall quality of life for individuals affected by ALD.

20.
Front Pharmacol ; 15: 1354809, 2024.
Article in English | MEDLINE | ID: mdl-38487166

ABSTRACT

Nobiletin (NOB) is a flavonoid derived from citrus peel that has potential as an alternative treatment for liver disease. Liver disease is a primary health concern globally, and there is an urgent need for effective drugs. This review summarizes the pharmacological characteristics of NOB and current in vitro and in vivo studies investigating the preventive and therapeutic effects of NOB on liver diseases and its potential mechanisms. The findings suggest that NOB has promising therapeutic potential in liver diseases. It improves liver function, reduces inflammation and oxidative stress, remodels gut microflora, ameliorates hepatocellular necrosis, steatosis, and insulin resistance, and modulates biorhythms. Nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α(PPAR-α), extracellular signal-regulated kinase (ERK), protein kinase B (AKT), toll-like receptor 4 (TLR4) and transcription factor EB (TFEB) signaling pathways are important molecular targets for NOB to ameliorate liver diseases. In conclusion, NOB may be a promising drug candidate for treating liver disease and can accelerate its application from the laboratory to the clinic. However, more high-quality clinical trials are required to validate its efficacy and identify its molecular mechanisms and targets.

SELECTION OF CITATIONS
SEARCH DETAIL